Skip to main content
Log in

Asymptotics and Convergence for the Complex Monge-Ampère Equation

  • Research
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

We study the asymptotics of complete Kähler-Einstein metrics on strictly pseudoconvex domains in \(\mathbb {C}^n\) and derive a convergence theorem for solutions to the corresponding Monge-Ampère equation. If only a portion of the boundary is analytic, the solutions satisfy Gevrey type estimates for tangential derivatives. A counterexample for the model linearized equation suggests that there is no local convergence theorem for the complex Monge-Ampère equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Baouendi, C. Goulaouic, Nonanalytic-Hypoellipticity for some degenerate elliptic operators, Bulletin of the American Mathematical Society, volume 78, number 3, (1972)

  2. Cheng, S.-Y., Yau, S.-T.: On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equation. Comm. Pure Appl. Math. 33, 507–544 (1980)

    Article  MathSciNet  Google Scholar 

  3. Chruściel, P., Delay, E., Lee, J., Skinner, D.: Boundary regularity of conformally compact Einstein metrics. J. Diff. Geom. 69, 111–136 (2005)

    MathSciNet  Google Scholar 

  4. Fefferman, C.: Monge-Ampère equation, the Bergman kernel, and geometry of pseudoconvex domains. Ann. Math. 103, 395–416 (1976)

    Article  MathSciNet  Google Scholar 

  5. Fefferman, C., Graham, C.R.: \(Q\)-curvature and Poincaré metrics. Math. Res. Lett. 9, 139–151 (2002)

    Article  MathSciNet  Google Scholar 

  6. Fefferman, C., Graham, C.R.: The Ambient Metric, Annals of Mathematics Studies, 178. Princeton University Press, Princeton (2012)

    Google Scholar 

  7. Friedman, A.: On the regularity of the solutions of nonlinear Elliptic and Parabolic systems of partial differential equations. Journal of mathematics and mechanics 7(1), 43–59 (1958)

    MathSciNet  Google Scholar 

  8. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Elliptic Type. Springer, Berlin (1983)

    Google Scholar 

  9. Graham, C.R., Witten, E.: Conformal anomaly of submanifold observables in AdS/CFT correspondence. Nuclear Physics B 546, 52–64 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. Han, Q., Khuri, M.: Existence and blow-up behavior for solutions of the generalized Jang equation. Comm. P.D.E. 38, 2199–2237 (2013)

    Article  MathSciNet  Google Scholar 

  11. Q. Han, X. Jiang, Boundary regularity of minimal graphs in the hyperbolic space, Journal für die reine und angewandte Mathematik (Crelles Journal), Vol. 2023, no. 801(2023), 239-272

  12. Q. Han, X. Jiang, The convergence of boundary expansions and the analyticity of minimal surfaces in the hyperbolic space, arxiv:1801.08348

  13. Q. Han, Z. Wang, Solutions of the minimal surface equation and of the Monge-Ampère equation near infinity, preprint

  14. Hardt, R., Lin, F.-H.: Regularity at infinity for area-minimizing hypersurfaces in hyperbolic space. Invent. Math. 88, 217–224 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Helliwell, Boundary regularity for conformally compact Einstein metrics in even dimensions, Comm. P.D.E., 33(2008), 842-880

  16. X. Jiang, L. Xiao, Optimal regularity of constant curvature graphs in Hyperbolic space, Calc. Var. P.D.E., 58:133 (2019)

  17. Kichenassamy, S.: Fuchsian Reduction: Applications to Geometry. Cosmology and Mathematical Physics, Birkhäuser, Boston (2007)

    Book  Google Scholar 

  18. S. Kichenassamy, W. Littman, Blow-up Surfaces for Nonlinear Wave Equations, Part I, Commun. in P. D. E., 18(1993), 431-452

  19. S. Kichenassamy, W. Littman, Blow-up Surfaces for Nonlinear Wave Equations, Part II, Commun. in P. D. E., 18(1993), 1869-1899

  20. Lee, J., Melrose, R.: Boundary behavior of the complex Monge-Ampère equation. Acta Math. 148, 159–192 (1982)

    Article  MathSciNet  Google Scholar 

  21. Nirenberg, L.: An abstract form of the nonlinear Cauchy-Kowalewski Theorem. J. Differential Geometry 6, 561–576 (1972)

    Article  MathSciNet  Google Scholar 

  22. Wang, Xiaodong: Some recent results in CR geometry, Tsinghua lectures in mathematics. Adv. Lect. Math. 45, 469–484 (2019)

    Google Scholar 

  23. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I. Comm. Pure Appl. Math. 31, 339–411 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xumin Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Analyticity Type Estimates

Appendix A. Analyticity Type Estimates

If \(p<0\), we assume that \(p!=0.\) The following result is due to Friedman [7]. Also see [12].

Lemma A.1

Let \(\Omega \) be a domain in \(\mathbb R^n\) and p be a positive integer. Assume that \(\Phi \) is a \(C^p\)-function in \( \Omega \times \mathbb R^N\) satisfying, for any \((x,y)\in \Omega \times \mathbb R^N\) and any nonnegative integers j and k with \(j+k\le p\),

$$\begin{aligned} \Big |\frac{\partial ^{j+k}\Phi (x,y)}{\partial x^j\partial y^k}\Big | \le A_0A_1^jA_2^k(j-2)!(k-2)!, \end{aligned}$$
(A.1)

for some positive constants \(A_0\), \(A_1\), and \(A_2\). Then, there exist positive constants \(B_0\), \(\widetilde{B}_0\), and \(B_1\), depending only on n, N, \(A_0\), \(A_1\) and \(A_2\), such that, for any \(C^p\)-function \(y=(y_1, \cdots , y_N): \Omega \rightarrow \mathbb R^N\), if for any \(x\in \Omega \) and any nonnegative integer \(k\le p\),

$$\begin{aligned} \sum _{i=1}^N|\partial ^k_xy_i(x)|\le B_0B_1^{(k-2)^+}(k-2)!, \end{aligned}$$
(A.2)

then, for any \(x\in \Omega \),

$$\begin{aligned} |\partial _x^p[\Phi (x,y(x))]|\le \widetilde{B}_0B_1^{(p-2)^+}(p-2)!. \end{aligned}$$
(A.3)

Remark A.2

Write \(x=(x',x_n)\). In Lemma A.1, if we assume (A.1) and (A.2) hold only for \(D_{x'}\) instead of \(D_x\), then (A.3) holds for \(D_{x'}\).

Lemma A.3

Let p be any integer and \(p\ge 2\). Then, there is a universal constant C such that

$$\begin{aligned} \sum _{l=1}^{p-1} {\left( {\begin{array}{c}p-1\\ l\end{array}}\right) }(l-2)! \cdot (p-2-l)! \le C (p-2)!, \end{aligned}$$
(A.4)

and

$$\begin{aligned} \sum _{l=0}^{p-1} {\left( {\begin{array}{c}p-1\\ l\end{array}}\right) } (l-2) ! (p-3-l)!\le C(p-3)!. \end{aligned}$$
(A.5)

Proof

If \(l=p-1\), we have

$$\begin{aligned} {\left( {\begin{array}{c}p-1\\ l\end{array}}\right) }(l-2)! \cdot (p-l-2)! = (p-3)!. \end{aligned}$$

Moreover, we get

$$\begin{aligned} \sum _{l=1}^{p-2} {\left( {\begin{array}{c}p-1\\ l\end{array}}\right) }(l-2)! \cdot (p-2-l)!&\le \sum _{l=2}^{p-2} \frac{p-1}{l(l-1)(p-l-1)}(p-2)! \\&\le C(p-2)!, \end{aligned}$$

as

$$\begin{aligned} \sum _{l=2}^{p-2} \frac{p-1}{l(l-1)(p-l-1)}\&=\sum _{l=2}^{p-2} \frac{1}{l-1}\left( \frac{1}{l}+\frac{1}{p-l-1}\right) \\&=\sum _{l=2}^{p-2} \frac{1}{(l-1)l}+\frac{1}{p-2}\sum _{l=2}^{p-2}\left( \frac{1}{l-1}+\frac{1}{p-l-1}\right) , \end{aligned}$$

which is bounded by a universal constant C. Notice that \(\sum _{l=2}^{p-2} \frac{1}{l-2} < 1+\ln p\) and \(\frac{1+\ln p}{p-2}\) is bounded by a universal constant when \(p \ge 3\). Then we derive (A.4).

For (A.5), first we observe that, for \(l=0, 1, p-1\) or \(p-2\),

$$\begin{aligned} {\left( {\begin{array}{c}p-1\\ l\end{array}}\right) } (l-2) ! (p-3-l)!\le C(p-3)!. \end{aligned}$$

Moreover, we get

$$\begin{aligned}&\sum _{l=2}^{p-3} {\left( {\begin{array}{c}p-1\\ l\end{array}}\right) } (l-2) ! (p-3-l)!\\&= (p-3)! \sum _{l=2}^{p-3} \frac{(p-1)(p-2)}{l(l-1)(p-1-l)(p-2-l)} \\&\le 2(p-3)! \sum _{l=2}^{p-3} \left( \frac{1}{l} + \frac{1}{p-2-l}\right) \left( \frac{1}{l-1} + \frac{1}{p-1-l}\right) , \end{aligned}$$

where the summation over l is bounded by a universal constant. Then, we get (A.5). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Jiang, X. Asymptotics and Convergence for the Complex Monge-Ampère Equation. Ann. PDE 10, 8 (2024). https://doi.org/10.1007/s40818-024-00171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-024-00171-2

Keywords

Navigation