Skip to main content
Log in

Optimal Tuning of Fuzzy Logic Power System Stabilizer Using Harmony Search Algorithm

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, the design of fuzzy logic power system stabilizer (FPSS) is carried out using a harmony search algorithm (HSA) to optimize the input–output scaling factors of the fuzzy logic controller. The optimization problem is considered minimization of integral square error as an objective function with single-machine and multimachine power system. The performance of the HSA optimized FPSS with both systems is compared that of with robust FPSS; HSA tuned input scaling factors of FPSS, and particle swarm optimization tuned input–output FPSS for a wide range of operating conditions. The speed response performance for both systems is compared in terms of performance indices, and superiority of the proposed HSFPSS is validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Gupta, R., Bandyopadhyay, B., Kulkarni, A.M.: Power system stabiliser for multimachine power system using robust decentralised periodic output feedback. IEE Proc. Control Theory Appl. 152(1), 3–8 (2005). doi:10.1049/ip-cta:20041127

    Article  Google Scholar 

  2. Ibrahim, A.S., Hogg, B.W., Sharaf, M.M.: Self-tuning controllers for turbogenerator excitation and governing systems. IEE Proc. D 136(5), 238–251 (1989)

    Article  Google Scholar 

  3. Kutzner, R.: A robust H∞ PSS with enlarged damping range. In: IEEE Power Engineering Society Summer Meeting—1999, 18–22 July 1999, vol. 51, pp. 53–57

  4. He, J., Malik, O.P.: An adaptive power system stabilizer based on recurrent neural networks. IEEE Trans. Energy Convers. 12(4), 413–418 (1997). doi:10.1109/60.638966

    Article  Google Scholar 

  5. Zhang, Y., Chen, G.P., Malik, O.P., Hope, G.S.: An artificial neural network based adaptive power system stabilizer. IEEE Trans. Energy Convers. 8(1), 71–77 (1993). doi:10.1109/60.207408

    Article  Google Scholar 

  6. Wang, L., Yang, R., Pardalos, P.M., Qian, L., Fei, M.: An adaptive fuzzy controller based on harmony search and its application to power plant control. Int. J. Electr. Power Energy Syst. 53, 272–278 (2013). doi:10.1016/j.ijepes.2013.05.015

    Article  Google Scholar 

  7. Ramirez-Gonzalez, M., Castellanos B, R., Malik, O.P.: Application of simple fuzzy PSSs for power system stability enhancement of the Mexican Interconnected System. In: IEEE Power and Energy Society General Meeting—2010, 25–29 July 2010, pp. 1–8

  8. Ghoshal, S.P., Chatterjee, A., Mukherjee, V.: Bio-inspired fuzzy logic based tuning of power system stabilizer. Expert Syst. Appl. 36(5), 9281–9292 (2009). doi:10.1016/j.eswa.2008.12.004

    Article  Google Scholar 

  9. Sambariya, D.K., Gupta, R., Sharma, A.K.: Fuzzy applications to single machine power system stabilizers. J. Theor. Appl. Inf. Technol. 5(3), 317–324 (2009). http://www.jatit.org/volumes/research-papers/Vol5No3/9Vol5No3.pdf. Accessed 19 Jan 2014

  10. Gupta, R., Sambariya, D.K., Gunjan, R.: Fuzzy logic based robust power system stabilizer for multi-machine power system. In: IEEE International Conference on Industrial Technology, ICIT 2006, 15–17 December 2006, pp. 1037–1042

  11. Sambariya, D.K., Prasad, R.: Evaluation of interval type-2 fuzzy membership function and robust design of power system stabilizer for SMIB power system. Sylwan J. 158(5), 289–307 (2014). http://sylwan.ibles.org/archive.php?v=158&i=5. Accessed 16 May 2014

  12. Sambariya, D.K., Prasad, R.: Power System Stabilizer design for Multimachine Power System using Interval Type-2 Fuzzy Logic Controller. Int. Rev. Electr. Eng. 8(5), 1556–1565 (2013). http://www.praiseworthyprize.org/latest_issues/IREE-latest/IREE_vol_8_n_5.html. Accessed 31 Oct 2013

  13. Wang, L., Dun, C.-X., Lee, C.-G., Fu, Q.-L., Zeng, Y.-R.: Model and algorithm for fuzzy joint replenishment and delivery scheduling without explicit membership function. Int. J. Adv. Manuf. Technol. 66(9–12), 1907–1920 (2013). doi:10.1007/s00170-012-4469-5

    Article  Google Scholar 

  14. Qu, H., Wang, L., Liu, R.: A contrastive study of the stochastic location–inventory problem with joint replenishment and independent replenishment. Expert Syst. Appl. 42(4), 2061–2072 (2015). doi:10.1016/j.eswa.2014.10.017

    Article  Google Scholar 

  15. Wang, L., Fu, Q.-L., Lee, C.-G., Zeng, Y.-R.: Model and algorithm of fuzzy joint replenishment problem under credibility measure on fuzzy goal. Knowl. Based Syst. 39, 57–66 (2013). doi:10.1016/j.knosys.2012.10.002

    Article  Google Scholar 

  16. Talaat, H.E.A., Abdennour, A., Al-Sulaiman, A.A.: Design and experimental investigation of a decentralized GA-optimized neuro-fuzzy power system stabilizer. Int. J. Electr. Power Energy Syst. 32(7), 751–759 (2010). doi:10.1016/j.ijepes.2010.01.011

    Article  Google Scholar 

  17. Alkhatib, H., Duveau, J.: Dynamic genetic algorithms for robust design of multimachine power system stabilizers. Int. J. Electr. Power Energy Syst. 45(1), 242–251 (2013). doi:10.1016/j.ijepes.2012.08.080

    Article  Google Scholar 

  18. Pedram, M.M., Seifi, H.: Extended algorithm of a fuzzy-set based power-system stabilizer with genetic algorithm timing. Eur. Trans. Electr. Power 7(3), 205–210 (1997). doi:10.1002/etep.4450070309

    Article  Google Scholar 

  19. Sambariya, D.K., Prasad, R.: Robust tuning of power system stabilizer for small signal stability enhancement using metaheuristic bat algorithm. Int. J. Electr. Power Energy Syst. 61, 229–238 (2014). doi:10.1016/j.ijepes.2014.03.050

    Article  Google Scholar 

  20. El-Zonkoly, A.M., Khalil, A.A., Ahmied, N.M.: Optimal tunning of lead-lag and fuzzy logic power system stabilizers using particle swarm optimization. Expert Syst. Appl. 36(2, Part 1), 2097–2106 (2009). doi:10.1016/j.eswa.2007.12.069

    Article  Google Scholar 

  21. Eslami, M., Shareef, H., Mohamed, A.: Power system stabilizer design using hybrid multi-objective particle swarm optimization with chaos. J. Cent. South Univ. Technol. 18(5), 1579–1588 (2011). doi:10.1007/s11771-011-0875-3

    Article  Google Scholar 

  22. Chang, W.-D., Shih, S.-P.: PID controller design of nonlinear systems using an improved particle swarm optimization approach. Commun. Nonlinear Sci. Numer. Simul. 15(11), 3632–3639 (2010). doi:10.1016/j.cnsns.2010.01.005

    Article  MATH  Google Scholar 

  23. Elangovan, Y.J.C.S.: Strict-Tabu based eigenvalue optimization of power system stabilizer. Electr. Mach. Power Syst. 28(8), 779–790 (2000). doi:10.1080/07313560050082758

    Article  Google Scholar 

  24. Abido, M.A.: An efficient heuristic optimization technique for robust power system stabilizer design. Electr. Power Syst. Res. 58(2), 53–62 (2001). doi:10.1016/s0378-7796(01)00113-4

    Article  Google Scholar 

  25. Wang, S.K., Chiou, J.P., Liu, C.W.: Parameters tuning of power system stabilizers using improved ant direction hybrid differential evolution. Int. J. Electr. Power Energy Syst. 31(1), 34–42 (2009). doi:10.1016/j.ijepes.2008.10.003

    Article  Google Scholar 

  26. Abido, M.A.: Robust design of power system stabilizers for multimachine power systems using differential evolution. In: Panigrahi, B., Abraham, A., Das, S. (eds.) Computational Intelligence in Power Engineering. Studies in Computational Intelligence, vol. 302, pp. 1–18. Springer, Berlin (2010)

    Chapter  Google Scholar 

  27. Tripathi, S., Panda, S.: Tuning of power system stabilizer employing differential evolution optimization algorithm. In: Panigrahi, B., Suganthan, P., Das, S., Satapathy, S. (eds.) Swarm, Evolutionary, and Memetic Computing. Lecture Notes in Computer Science, vol. 7076, pp. 59–67. Springer, Berlin (2011)

    Chapter  Google Scholar 

  28. Ali, E.S., Abd-Elazim, S.M.: Bacteria foraging optimization algorithm based load frequency controller for interconnected power system. Int. J. Electr. Power Energy Syst. 33(3), 633–638 (2011). doi:10.1016/j.ijepes.2010.12.022

    Article  Google Scholar 

  29. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001). doi:10.1177/003754970107600201

    Article  Google Scholar 

  30. Geem, Z.W.: Harmony search applications in industry. In: Prasad, B. (ed.) Studies in Fuzziness and Soft Computing, Soft Computing Applications in Industry. Studies in Fuzziness and Soft Computing, vol. 226, pp. 117–134. Springer Berlin Heidelberg (2008). doi:10.1007/978-3-540-77465-5_6

  31. Abd-Elazim, S.M., Ali, E.S.: A hybrid Particle Swarm Optimization and Bacterial Foraging for optimal Power System Stabilizers design. Int. J. Electr. Power Energy Syst. 46, 334–341 (2013). doi:10.1016/j.ijepes.2012.10.047

    Article  Google Scholar 

  32. Abido, M.A.: Simulated annealing based approach to PSS and FACTS based stabilizer tuning. Int. J. Electr. Power Energy Syst. 22(4), 247–258 (2000). doi:10.1016/s0142-0615(99)00055-1

    Article  Google Scholar 

  33. Wang, L., Yang, R., Xu, Y., Niu, Q., Pardalos, P.M., Fei, M.: An improved adaptive binary Harmony Search algorithm. Inf. Sci. 232, 58–87 (2013). doi:10.1016/j.ins.2012.12.043

    Article  MathSciNet  Google Scholar 

  34. Yu, J., Guo, P.: Improved PSO algorithm with harmony search for complicated function optimization problems. In: Wang, J., Yen, G., Polycarpou, M. (eds.) Advances in Neural Networks—ISNN 2012. Lecture Notes in Computer Science, vol. 7367, pp. 624–632. Springer Berlin Heidelberg (2012). doi:10.1007/978-3-642-31346-2_70

  35. Sinsuphan, N., Leeton, U., Kulworawanichpong, T.: Optimal power flow solution using improved harmony search method. Appl. Soft Comput. 13(5), 2364–2374 (2013). doi:10.1016/j.asoc.2013.01.024

    Article  Google Scholar 

  36. Verma, A., Panigrahi, B.K., Bijwe, P.R.: Harmony search algorithm for transmission network expansion planning. IET Proc. Gener. Transm. Distrib. 4(6), 663–673 (2010). doi:10.1049/iet-gtd.2009.0611

    Article  Google Scholar 

  37. Sirjani, R., Mohamed, A., Shareef, H.: Optimal allocation of shunt VAR compensators in power systems using a novel global harmony search algorithm. Int. J. Electr. Power Energy Syst. 43(1), 562–572 (2012). doi:10.1016/j.ijepes.2012.05.068

    Article  Google Scholar 

  38. Sambariya, D.K., Prasad, R.: Design of Harmony Search Algorithm based tuned Fuzzy logic Power System Stabilizer. Int. Rev. Electr. Eng. 8(5), 1594–1607 (2013). http://www.praiseworthyprize.org/latest_issues/IREE-latest/IREE_vol_8_n_5.html. Accessed 31 Oct 2013

  39. El-Hawary, M.E.: Electric Power Applications of Fuzzy Systems. Wiley-IEEE Press, New York (1998)

    Book  Google Scholar 

  40. Hsu, Y.-Y., Chen, C.-L.: Identification of optimum location for stabiliser applications using participation factors. IEE Proc. Gener. Transm. Distrib. 134(3), 238–244 (1987). doi:10.1049/ip-c:19870037

    Article  Google Scholar 

  41. Abido, M.A.: Optimal design of power-system stabilizers using particle swarm optimization. IEEE Trans. Energy Convers. 17(3), 406–413 (2002). doi:10.1109/tec.2002.801992

    Article  Google Scholar 

  42. Larsen, E.V., Swann, D.A.: Applying power system stabilizers Part I: general concepts. IEEE Trans. Power Appar. Syst. PAS-100(6), 3017–3024 (1981). doi:10.1109/tpas.1981.316355

    Article  Google Scholar 

  43. Kamalasadan, S., Swann, G.: A novel power system stabilizer based on fuzzy model reference adaptive controller. In: IEEE Power and Energy Society General Meeting, PES’09’, 26–30 July 2009, pp. 1–8. doi:10.1109/pes.2009.5275897

  44. Kundur, P., Klein, M., Rogers, G.J., Zywno, M.S.: Application of power system stabilizers for enhancement of overall system stability. IEEE Trans. Power Syst. 4(2), 614–626 (1989). doi:10.1109/59.193836

    Article  Google Scholar 

  45. Demello, F.P., Concordia, C.: Concepts of synchronous machine stability as affected by excitation control. IEEE Trans. Power Appar. Syst. PAS-88(4), 316–329 (1969). doi:10.1109/tpas.1969.292452

    Article  Google Scholar 

  46. Gan, D., Qu, Z., Cai, H.: Multi machine power system excitation control design via theories of feedback linearization control and nonlinear robust control. Int. J. Syst. Sci. 31(4), 519–527 (2000)

    Article  MATH  Google Scholar 

  47. Mahabuba, A., Abdullah Khan, M.: Optimal location of power system stabilizers in a multi machine power system using relative gain array (RGA) and genetic algorithm (GA). Int. J. Electr. Power Eng. 2(1), 19–27 (2008)

    Google Scholar 

  48. Yadav, P., Kumar, R., Panda, S.K., Chang, C.S.: An Intelligent Tuned Harmony Search algorithm for optimisation. Inf. Sci. 196, 47–72 (2012). doi:10.1016/j.ins.2011.12.035

    Article  Google Scholar 

  49. Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Del Ser, J., Bilbao, M.N., Salcedo-Sanz, S., Geem, Z.W.: A survey on applications of the harmony search algorithm. Eng. Appl. Artif. Intell. 26(8), 1818–1831 (2013). doi:10.1016/j.engappai.2013.05.008

    Article  Google Scholar 

  50. Fourie, J., Green, R., Geem, Z.W.: Generalised adaptive harmony search: a comparative analysis of modern harmony search. J. Appl. Math. 2013, 1–13 (2013). doi:10.1155/2013/380985

    Article  MathSciNet  Google Scholar 

  51. Fourie, J., Mills, S., Green, R.: Harmony filter: a robust visual tracking system using the improved harmony search algorithm. Image Vis. Comput. 28(12), 1702–1716 (2010). doi:10.1016/j.imavis.2010.05.006

    Article  Google Scholar 

  52. Kazemi, A., Parizad, A., Baghaee, H.R.: On the use of harmony search algorithm in optimal placement of facts devices to improve power system security. In: IEEE EUROCON’09’, 18–23 May 2009, pp. 570–576. doi:10.1109/eurcon.2009.5167689

  53. Sambariya, D.K., Gupta, R.: Fuzzy applications in a multi-machine power system stabilizer. J. Electr. Eng. Technol. 5(3), 503–510 (2010). http://www.jeet.or.kr/ltkpsweb/pub/pubfpfile.aspx?ppseq=100. Accesed 10 July 2010

  54. Kundur, P.: Power System Stability and Control. Twelfth reprint. Tata McGraw-Hill Education Pvt. Ltd., New Delhi (2011)

  55. Rogers, G.: Power System Oscillations. Springer (2000). doi:10.1007/978-1-4615-4561-3

    Book  Google Scholar 

  56. Padiyar, K.R.: Power System Dynamics Stability and Control, 2nd edn. BS Publications, Hyderabad (2008)

    Google Scholar 

  57. Das, T.K., Venayagamoorthy, G.K.: Optimal design of power system stabilizers using a small population based PSO. In: IEEE Power Engineering Society General Meeting, 2006, pp. 1–7. doi: 10.1109/pes.2006.1709322

  58. Eslami, M., Shareef, H., Mohamed, A., Ghoshal, S.P.: Tuning of power system stabilizers using particle swarm optimization with passive congregation. Int. J. Phys. Sci. 5(17), 2574–2589 (2010)

    Google Scholar 

  59. Eslami, M., Shareef, H., Mohamed, A., Khajehzadeh, M.: An efficient particle swarm optimization technique with chaotic sequence for optimal tuning and placement of PSS in power systems. Int. J. Electr. Power Energy Syst. 43(1), 1467–1478 (2012). doi:10.1016/j.ijepes.2012.07.028

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Sambariya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sambariya, D.K., Prasad, R. Optimal Tuning of Fuzzy Logic Power System Stabilizer Using Harmony Search Algorithm. Int. J. Fuzzy Syst. 17, 457–470 (2015). https://doi.org/10.1007/s40815-015-0041-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0041-4

Keywords

Navigation