Skip to main content

Advertisement

Log in

Vulnerability of Parkia biglobosa, Vitellaria paradoxa and Vitex doniana to climate change: wild indigenous agroforestry species in Benin

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Climate change is a major threat to biodiversity, with global greenhouse gas emissions exceeding the Paris Agreement, which has a significant impact on the distribution of species at risk of facing extinction. Thus, predicting climate change's influence on species distribution is crucial. In Sub-Saharan Africa, particularly in Benin, some useful plants such as Parkia biglobosa, Vitex doniana, and Vitellaria paradoxa contribute greatly to improving socio-economic standards. However, they are subjected to overexploitation and climate change, which potentially could lead to their extinction. To predict the habitat suitability of these native agroforestry species for their conservation and cultivation, we assessed the best-performing algorithm among Maximum Entropy, Random Forest, Support Vector Machine, Generalized Linear Models and Boosted Regression Tree. Data were collected from field occurrences and Global Biodiversity Information Facility, and coupled with environment variables selected based on collinearity tests, contribution of variables, and Jackknife tests. We analyzed the main variables affecting their distribution under Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 scenarios by the year 2055. Results showed that Random Forest (RF) was the most appropriate model for predicting the distribution of the three species, with an area under the curve (AUC) > 0.90. Cation exchange capacity, isothermality, and potential evapotranspiration are the environmental factors that all three species depend on. Under current environmental conditions, P. biglobosa, V. paradoxa, and V. doniana covered 52.10%, 76.91%, and 70.22% of the suitable habitats throughout the study area (11,540 km2). A probable expansion of the suitable habitats was noted, with up to 76.19% for P. biglobosa and 82.82% for V. paradoxa. Exceptionally, V. doniana will lose 7.36% of its suitable habitats under the pessimistic (RCP 8.5) scenarios by the year 2055. These findings represent a step forward in the process of conserving P. biglobosa, V. paradoxa, and V. doniana in appropriate habitats in the context of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Adjahossou SGC, Gouwakinnou GN, Houéhanou DT, Sode AI, Yaoitcha AS, Houinato MRB, Sinsin B (2016) Effectiveness of protected areas in the conservation of priority favourable habitats of valuable woody species in Benin. Bois Forets Des Tropiques 328(328):67–76. https://doi.org/10.19182/bft2016.328.a31303

    Article  Google Scholar 

  • Adjonou K, Abotsi KE, Segla KN, Rabiou H, Houetchegnon T, Sourou KNB, Johnson BN, Ouinsavi CAIN, Kokutse AD, Mahamane A, Kokou K (2020) Vulnerability of African Rosewood (Pterocarpus erinaceus, Fabaceae) natural stands to climate change and implications for silviculture in West Africa. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e04031

    Article  Google Scholar 

  • Agbo RI, Idohou R, Vihotogbé R, Missihoun AA, Dagba RA, Assogbadjo AE (2018) Spatio-temporal dynamics of suitable habitats for Detarium microcarpum Guill. & Perr. (Caesalpiniaceae), a priority food tree species in Benin (West Africa). Model Earth Syst Environ 5(2):595–604. https://doi.org/10.1007/s40808-018-0550-x

    Article  Google Scholar 

  • Agwu OP, Bakayokoa A, Jimoh SO, Dimobe K, Porembski S (2020) Impact of climate on ecology and suitable habitat of Garcinia kola Heckel in Nigeria. Trees for People 1(February):100006. https://doi.org/10.1016/j.tfp.2020.100006

    Article  Google Scholar 

  • Akinnifesi FK, Chirwa PW, Ajayi OC, Sileshi G, Matakala P, Kwesiga FR, Harawa H, Makumba W (2008) Contributions of agroforestry research to livelihood of smallholder farmers in Southern Africa: 1. Taking stock of the adaptation, adoption and impact of fertilizer tree options. Agric J 3:58–75

    Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Sch 43:1223–1232

    Google Scholar 

  • Antunes N (2015) Application of predictive algorithms to the identification of eco-cultural niches of past populations: an ethnoarchaeological approach, University of Bordeaux, thesis presented to the PACEA Laboratory to obtain the doctoral degree, Specialty: Prehistory, Doctoral School: Sciences and Environment

  • Arbonnier M (2009) Trees, shrubs and lianas in the dry zones of West Africa. Edition Quae, MNHN

  • Assogbadjo AE, Sinsin B (2007) Characterisation and conservation strategy for the Baobab (Adansonia digitata L.) in the agrarian landscapes of Benin. In: Mayaka TB, De Longh H, Sinsin B (eds) Ecological restoration of African Savana Ecosystem. Proceedings of the third RNSCC international seminar, 6 Feb, Cotonou, Benin. CEDC/CML, Leiden University, pp 35–50

  • Austin M (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Model 1–2:1–19

    Google Scholar 

  • Avaligbé YJF, Chabi FO, Gnanglè CP, Bello OD, Yabi I, Ahoton L, Saïdou A (2021) Modelling the current and future spatial distribution area of shea tree (Vittelaria paradoxa C. F. Gaertn) in the context of climate change in Benin. Am J Clim Change 10(03):263–281. https://doi.org/10.4236/ajcc.2021.103012

    Article  Google Scholar 

  • Ayihouenou BE, Fandohan AB, Sodé AI, Gouwakinnou NG, Djossa AB (2016) Biogeography of locust bean [Parkia biglobosa (Jack.) R. Br. ex. Don.] under current and future environmental conditions in Benin. Bulletin de la Recherche Agronomique du Bénin (BRAB), Special issue on Agronomy, Society, Environment & Food Safety, pp 93–108. https://www.researchgate.net/publication/309121433

  • Azontondé HM, Igue M, Dagbénonbakin G (2016) The soil fertility map by agro-ecological zone of Benin. Validated in 2016 Legal Deposit No. 9045

  • Babalola FD (2012) Evaluation of the marketing chain of Parkia biglobosa (Jacq Benth) R. Br. ex G. Don in South-West Nigeria. Int J Basic Appl Sci 1(3):210–217

    Google Scholar 

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Villalobos F (2011) The crucial role of the accessible area in ecological niche modelling and species distribution modelling. Ecol Model 222(11):1810–1819

    Google Scholar 

  • Bayala J, Balesdent J, Marol C, Zapata F, Teklehaimanot Z, Ouédraogo SJ (2006) The relative contribution of trees and crops to the soil carbon content in a parkland system in Burkina Faso using variations in natural 13C abundance. J Nutr Cycl Agroecosyst 76:193–201

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15(4):365–377

    Google Scholar 

  • Belle EMS, Burgess ND, Misrachi M, Arnell A, Masumbuko B, Somda J, Hartley A, Jones R, Janes T, McSweeney C, Mathison C, Buontempo C, Butchart S, Willis SG, Baker DJ, Carr J, Hughes A, Foden W, Smith RJ, Smith J, Stolton S, Dudley N, Hockings M, Mulongoy J, Kingston N (2016) Climate change impacts on biodiversity and protected areas in West Africa, Summary of findings from the PARCC project, Climate Resilient Protected Areas in West Africa. UNEP-WCMC, Cambridge, UK

  • Belliard J, Marollier L, Zahm A, Tales E (2016) Prediction of the distribution of fish species in the Seine hydrographic network: comparison of the performance of various existing models PIREN-Seine-phase VII-report, pp 1–18. https://www.piren-seine.fr/sites/default/files/piren_documents/rapports_dactivite_2016/a2b4_2_belliard_piren2016.pdf

  • Benedetti R, Piersimoni F, Postiglione P (2017) Spatially balanced sampling: a review and a reappraisal. Int Stat Rev. https://doi.org/10.1111/insr.12216

    Article  Google Scholar 

  • Chunrong A, Linton OB, Zhang Z (2018) A simple and efficient estimation method for models with nonignorable missing data. Available at SSRN: https://ssrn.com/abstract=3099405 or https://doi.org/10.2139/ssrn.3099405

  • Ciss M, Biteye B, Fall AG, Fall M, Gahn MCB, Leroux L, Apolloni A (2019) Ecological niche modelling to estimate the distribution of Culicoides, potential vectors of bluetongue virus in Senegal. BMC Ecol 19(1):1–12

    Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46

    Google Scholar 

  • Cotillon SE, Tappan GG (2016) Landscapes of West Africa: a window on a changing world

  • Coulibaly A, Avakoudjo HGG, Idohou R, Vodounnon EJ, Diallo S, Cherif M (2023) Impact of climate change on the distribution of Bombax costatum Pellegr. & Vuillet in Mali, West Africa. Trees for People 11:100359

    Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53. https://doi.org/10.1126/science.1200303

    Article  CAS  Google Scholar 

  • Dimobe K, Ouedraogo A, Ouedraogo K, Goetze D, Stein K, Schmidt M, Nacoulmaa BMI, Gnoumoua A, Traoréa L, Porembskic S, Thiombiano A (2020) Climate change reduces the distribution area of the shea tree (Vitellaria paradoxa CF Gaertn.) in Burkina Faso. J Arid Environ 181:104237. https://doi.org/10.1016/j.jaridenv.2020.104237

    Article  Google Scholar 

  • Dotchamou OFT, Atindogbe G, Azihou AF, Fonton HN (2016) Characterisation of the spatial distribution of Parkia biglobosa (jacq.) r. br. trees in Benin. Science de la vie, de la terre et agronomie REV. CAMES - VOL.04 NUM.01. ISSN 2424-7235, pp 59–67

  • Elith J, Leathwick J, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x

    Article  CAS  Google Scholar 

  • ESRI (2016) ArcGIS for Desktop 10.5. Institut de recherche sur les systèmes environnementaux, Redlands

  • Fachola OB, Lougbegnon OT, Agossou N (2019) Modelling the ecological niche of Parkia biglobosa (Jacq.) in Southern and Central Benin (West Africa). Can J Geographys 6(1):19–25

    Google Scholar 

  • Fandohan B, Gouwakinnou GN, Fonton NH, Sinsin B, Liu J (2013) Impact des changements climatiques sur la répartition géographique des aires favorables à la culture et à la conservation des fruitiers sous-utilisés: cas du tamarinier au Bénin. Biotechnol Agron Soc Environ 17(3):450–462

    Google Scholar 

  • FAO (2008) Climate change adaptation and mitigation in the food and agriculture sector (Rome)

  • Fitzpatrick MC, Hargrove WW (2009) The projection of species distribution models and the problem of nonanalog climate. Biodivers Conserv 18:2255–2261

    Google Scholar 

  • Gbesso FHG, Tente BHA, Gouwakinnou GN, Sinsin BA (2013) Influence des changements climatiques sur la distribution géographique de Chrysophyllum albidum G.Don (Sapotaceae) au Benin. Int J Brain Cogn Sci 7(5):2007–2018

    Google Scholar 

  • Gouwakinnou GN (2013) Using niche modelling to plan conservation of an indigenous tree species under changing climate: example of Sclerocarya birrea in Benin, West Africa. Res Dev Sub-Saharan Afr 5:1–8

    Google Scholar 

  • Guan XY, Shi W, Cao KF (2018) Effect of climate change in future on geographical distribution of widespread Quercus acutissima and analysis of dominant climatic factors. J Trop Subtrop Bot 26(6):661–668

    Google Scholar 

  • Guidigan MLG, Azihou F, Idohou R, Okhimamhe AA, Fandohan AB, Sinsin B, Adet L (2018) Modelling the current and future distribution of Kigelia africana under climate change in Benin, West Africa. Model Earth Syst Environ 4(3):1225–1238. https://doi.org/10.1007/s40808-018-0491-4

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2):147–186

    Google Scholar 

  • Guo Q, Kelly M, Graham CH (2005) Support vector machines for predicting the distribution of Sudden Oak Death in California. Ecol Model 182:75–90

    Google Scholar 

  • Hall JB, Aebischer DP, Thomlinson HF, Osei-Amaning E, Hindle JR (1996) Vitellaria paradoxa a monograph. Bangor, Royaume-Uni, School of Agriculture and Forest Sciences, University of Wales, 105p

  • Hancock AM, Witonsky DB, Alkorta-Aranburu G, Beall CM, Gebremedhin A, Sukernik R, Utermann G, Pritchard JK, Coop G, Di Rienzo A (2011) Adaptations to climate-mediated selective pressures in humans. PLoS Genet 7:e1001375. https://doi.org/10.1371/journal.pgen.1001375

    Article  CAS  Google Scholar 

  • Heringer G, Bueno ML, Meira-Neto JAA, Matos FAR, Neri AV (2019) Can Acacia mangium and Acacia auriculiformis hinder restoration efforts in the Brazilian Atlantic Forest under current and future climate conditions? Biol Invasions 21:2949–2962. https://doi.org/10.1007/s10530-019-02024-7

    Article  Google Scholar 

  • Hijmans RJ, Cameron E, Parra JL, Jones PG, Jarvis A (2005) Very high-resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–2197

    Google Scholar 

  • Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036

    Google Scholar 

  • Hounkpèvi A, Tosso F, Gbèmavo D, Kouassi E, Koné D, Glèlè Kakaï R (2016) Climate and potential habitat suitability for cultivation and in situ conservation of the black plum (Vitex doniana Sweet) in Benin, West

  • Hu X, Garzanti E, Moore T, Raffi I (2015) Datation stratigraphique directe du début de la collision Inde-Asie au Sélandien (Paléocène moyen, 59 ± 1 Ma). Géologie 43(10):859–862. https://doi.org/10.1130/G36872.1

    Article  Google Scholar 

  • INSAE (Institut National de la Statistique et de l’Analyse Economique - Bénin) (2020) A monograph on the cotton sector in Benin. Working paper, N°DSEE2020DT02, October 2020, p 54 www.insae-bj.org

  • IPCC (2018) In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global warming of 1.5 C. An IPCC Special report on the impacts of global warming of 1.5C above preindustrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (p. 630) (in press). www.ipcc.ch

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • IPCC (2023) Summary for policymakers. In: Climate change 2023: synthesis report. A report of intergovernmental panel on climate change. Contribution of Working Groups I, II and III to the sixth assessment report of intergovernmental panel on climate change [Core Writing Team, Lee H, Romero J (eds)]. IPCC, Geneva, Switzerland, 36 pp (in press)

  • Jamal ZA, Abou-Shaara HF, Qamer S, Alhumaidi AM, Khan KA, Khan MF, Amjad BM, Hannan A, Al-Kahtani SN, Taha El-K A, Ishtiaq Anjum S, Attaullah M, Raza G, Ansari MJ (2021) Future expansion of small hive beetles, Aethina tumida, towards North Africa and South Europe based on temperature factors using maximum entropy algorithm. J King Saud Univ Sci 33(1):101242. https://doi.org/10.1016/j.jksus.2020.101242

  • Kaky E, Nolan V, Alatawi A, Gilbert F (2020) A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: a case study with Egyptian medicinal plants. Ecol Inform 60:101150. https://doi.org/10.1016/j.ecoinf.2020.101150

    Article  Google Scholar 

  • Kincaid T, Olsen T (2019) Spsurvey: spatial survey design and analysis. R package version 4.0.0. https://cran.r-project.org/web/packages/spsurvey/spsurvey.pdf

  • Koura K, Dissou EF, Ganglo JC (2013) Ecological and structural characterisation of the dwarf parkland [Parkia biglobosa (Jacq.) R. Br. Ex. G. Don] in the Donga department of north-west Benin. Int J Biol Chem Sci 7(2):726–738

    Google Scholar 

  • Kpadé P (2011) Adaptation of coordination and new contradictions between actors in the cotton system in Benin in the face of economic liberalisation. Doctoral School LISIT 491. University of Burgundy, Dijon, France

  • Ky KJM (2008) Vitex doniana Sweet. In: Louppe D, Oteng-Amoako AA, Brink M (eds) Prota: Timbers/Bois d’oeuvre. Backhuys Publishers, Leiden/CTA, Wageningen, PROTA Foundation, Wageningen, Pays Bas

  • Lee D-S, Bae Y-S, Byun B-K, Lee S, Park JK, Park Y-S (2019) Occurrence prediction of the citrus flatid planthopper (Metcalfa pruinosa (Say, 1830)) in South Korea using a Random Forest model. Forests 10:583

    Google Scholar 

  • Lee D-S, Choi WI, Nam Y, Park Y-S (2021) Predicting potential occurrence of pine wilt disease based on environmental factors in South Korea using machine learning algorithms. Ecol Inform 64:101378. https://doi.org/10.1016/j.ecoinf.2021.101378

    Article  Google Scholar 

  • Li J, Hilbert DW (2008) LIVES: a new habitat modelling technique for predicting the distribution of species’ occurrences using presence-only data based on limiting factor theory. Biodivers Conserv 17:3079–3095. https://doi.org/10.1007/s10531-007-9270-7

    Article  Google Scholar 

  • Mahamoud A, Gzam M, Mohamed NA, Hamada SH, Montacer M (2022) A preliminary assessment of coastal vulnerability for Ngazidja Island, Comoros Archipelago, Western Indian Ocean. Res Square. https://doi.org/10.1007/s12665-021-10136-4

    Article  Google Scholar 

  • Mapongmetsem PM, Djoumessi MC, Tonleu Yemele M, Fawa G, Guidaoussou Doumara D, Tchiagam Noubissie JB, Avana Tientcheu ML, Bellefontaine R (2012) Domestication of Vitex doniana Sweet (Verbenaceae): influence of substrate type, hormonal stimulation, leaf area and node position on rooting of unimodal cuttings. J Agric Environ Int Dev 106(1):23–45

    Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. In: Monographs on statistics and applied probability(Springer US) (ed). https://doi.org/10.1007/978-1-4899-3242-6

  • Merow C, Smith MJ, Silander JrJ A (2013) A practical guide to MaxEnt for modelling species’ distributions: what it does, and why inputs and settings matter. Ecography 36(10):1058–1069

    Google Scholar 

  • Mi C, Huettmann F, Guo Y, Han X, Wen L (2017) Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ 5:e2849

    Google Scholar 

  • Miller J (2010) Species distribution modelling. Geogr Compass 4(6):490–509

    Google Scholar 

  • N’Danikou S, Achigan-Dako EG, Wong JL (2011) Eliciting local values of wild edible plants in Southern Benin to identify priority species for conservation1. Econ Bot 65(4):381–395

    Google Scholar 

  • N’Danikou S, Achigan-Dako EG, Tchokponhoue DA et al (2015) Modelling socioeconomic determinants for cultivation and in-situ conservation of Vitex doniana Sweet (Black plum), a wild harvested economic plant in Benin. J Ethnobiol Ethnomed 11:28. https://doi.org/10.1186/s13002-015-0017-3

    Article  Google Scholar 

  • Naimi B, Araújo MB (2016) SDM: a reproducible and extensible platform for species distribution modelling. Ecography 39:368–375

    Google Scholar 

  • Natta AK (2003) Ecological assessment of riparian forest in Benin: phytodiversity, phytosociology, and spatial distribution of tree species. PhD Thesis, Wageningen University, Pays Bas, 215p

  • Naughton CC, Lovett PN, Mihelcic JR (2015) Land suitability modeling of shea (Vitellaria paradoxa) distribution across sub-Saharan Africa. Appl Geogr 58:217–227

    Google Scholar 

  • Odeny D, Karanja F, Mwachala G, Pellikka P, Marchant R (2019) Impact of climate change on species distribution and carbon storage of agroforestry trees on isolated East African Mountains. Am J Clim Change 8:364–386. https://doi.org/10.4236/ajcc.2019.83020

    Article  Google Scholar 

  • Okurut IT, Okullo JBL, Waiswa D, Muyizzi J (2020) Modelling the potential distribution of Vitellaria paradoxa subsp. Nilotica (C.F. Gaertn) across the Kidepo Landscape of Uganda in the face of climate change. J Geosci Environ Prot 8:14–24. https://doi.org/10.4236/gep.2020.88002

    Article  Google Scholar 

  • Pearson RG, Dawson TP, Liu C (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27:285–298

    Google Scholar 

  • Phillips SJ, Dudík M (2008) Modelling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Sch Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Platts PJ, Omeny PA, Marchant R (2015) AFRICLIM: high-resolution climate projections for ecological applications in Africa. Afr J Ecol 53(1):103–108. https://doi.org/10.1111/aje.12180

    Article  Google Scholar 

  • Pouteau R, Meyer JY, Stoll B (2011) A SVM-based model for predicting distribution of the invasive tree Miconia calvescens in tropical rainforests. Ecol Model 222:2631–2641. https://doi.org/10.1016/j.ecolmodel.2011.04.030

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • R Core Team. (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

  • Robertson GP, Allen VG, Boody G, Boose ER, Creamer NG, Drinkwater LE, Gosz JR, Lynch L, Havlin JL, Jackson LE, Pickett ST, Pitelka L, Randall A, Reed AS, Seastedt TR, Waide RB, Wall DH (2008) Long-term agricultural research: a research, education, and extension imperative. Bioscience 58:640–643

    Google Scholar 

  • Saliou ARA, Oumorou M, Sinsin BA (2015) Modelling the ecological niches of fodder ligneous plants under bioclimatic bioclimatic variability in Middle Benin (West Africa). Revue D’ecologie (terre Et Vie) 70(4):342–353

    Google Scholar 

  • Segurado P, Araujo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568

    Google Scholar 

  • Shabani F, Kumar L, Ahmadi M (2016) A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol Evol 6(16):5973–5986

    Google Scholar 

  • Shabani F, Kumar L, Ahmadi M (2018) Assessing accuracy methods of species distribution models: AUC, specificity, sensitivity and the true skill statistic. Glob J Hum Soc Sci 18(1):6–18

    Google Scholar 

  • Shi N, Naudiyal N, Wang J, Gaire NP, Wu Y, Wei Y, He J, Wang C (2022) Assessing the impact of climate change on potential distribution of Meconopsis punicea and its influence on ecosystem services supply in the southeastern margin of Qinghai-Tibet Plateau. Front Plant Sci 12:830119. https://doi.org/10.3389/fpls.2021.830119

    Article  Google Scholar 

  • Soberόn J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species distribution areas. Biodiver Inform 2:1–10

    Google Scholar 

  • Stevens DL Jr, Olsen AR (2004) Spatially balanced sampling of natural resources. J Am Stat Assoc 99:262–278. https://doi.org/10.1198/016214504000000250

    Article  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araujo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Google Scholar 

  • Toffa Y, Fandohan AB (2021) Evaluation of the performance of algorithms and the complexity of models for the prediction of the biogeographical distribution of the genus Cochlospermum kunth. Rev Ivory Sci Technol 37(2021):123–142

    Google Scholar 

  • Tosso FD (2013) Modelling the distribution of six multipurpose tree species in Africa and assessing the effect of climate change. Complementary Master's thesis in Environmental Sciences and Management in developing countries/Degradation of the environment

  • Wang G, Wang C, Guo ZR, Dai LJ, Wu YQ, Liu HY, Li YF, Chen H, Zhang YN, Zhao YX, Cheng H, Ma TW, Xue F (2020) Integrating Maxent model and landscape ecology theory for studying spatiotemporal dynamics of habitat: suggestions for conservation of endangered Red-crowned crane. Ecol Indic 116:106472

    Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62(11):2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) Ecography\rENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611

    Google Scholar 

  • Wei B, Wang R, Hou K, Wang X, Wu W (2018) Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Glob Ecol Conserv 16:e00477

    Google Scholar 

  • Wisz MS, Guisan A (2009) Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecol 9(8):1472–6785

    Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14(5):763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x

    Article  Google Scholar 

  • Worthington TA, Zhang T, Logue DR, Mittelstet AR, Brewer SK (2016) Landscape and flow metrics affecting the distribution of a federally-threatened fish: improving management, model fit, and model transferability. Ecol Model 342:1–18

    Google Scholar 

  • Wouyou HG, Lokonon BE, Idohou R, Zossou-Akete AG, Assogbadjo AE, Kakaï RG (2022) Predicting the potential impacts of climate change on the endangered Caesalpinia bonduc (L.) Roxb in Benin (West Africa). Heliyon 8:09022

    Google Scholar 

  • Zhang G, Zhu AX, Windels SK, Qin CZ (2018) Modelling species habitat suitability from presence only data using kernel density estimation. Ecol Indic 93:387–396

    Google Scholar 

Download references

Acknowledgements

Authors thank the African-German Network of Excellence in Science (AGNES) for granting a Mobility Grant in 2021; the Grant is generously sponsored by the German Federal Ministry of Education and Research and supported by the Alexander von Humboldt Foundation. We are grateful to the Islamic Development Bank (IsBD) for its support and for giving us this PhD opportunity through Small-holder Agricultural Production Enhancement Program (SAPEP). We are also very grateful to Council Soil Institute Research—Soil Institute Research in Kumasi (Ghana) for they hosted during the mobility internship. The authors would like to thank Agonha Parfait and Akouété Pathmos for their contribution to data collection in the field.

Author information

Authors and Affiliations

Authors

Contributions

ARK, ECA and GHD conceived the ideas and designed the methodology; ARK and MJV collected the data; ARK and MJV analyzed the data; ARK, MJV, ECA, GHD, DGD, GLA, MMB and RGK led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Angeline Reine Kakpo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakpo, A.R., Vodounnon, M.J., Agbangba, E.C. et al. Vulnerability of Parkia biglobosa, Vitellaria paradoxa and Vitex doniana to climate change: wild indigenous agroforestry species in Benin. Model. Earth Syst. Environ. 10, 1599–1614 (2024). https://doi.org/10.1007/s40808-023-01856-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-023-01856-6

Keywords

Navigation