Skip to main content
Log in

Modelling the current and future distribution of Kigelia africana under climate change in Benin, West Africa

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Kigelia africana (Bignoniaceae), is an indigenous species widely recognised for its medicinal, magic uses and therapeutic virtue used throughout Africa and especially in Benin Republic. Distribution of the species coincides with that of the intermediate hosts as determined by environmental factors. This study aimed to model the present-day and future distribution of Kigelia africana in Benin. Maximum Entropy (MaxEnt) modelling technique was used to predict the distribution of suitable habitats of Kigelia africana using presence data combined with two future forescats: CNRM-CM5and HadGEM2-ES. Results showed that Annual Temperature range, precipitation seasonality, soil, temperature seasonality, maximum temperature of the warmest month were most significant variables. Which mean that the excellent of the model. Likewise, must of the distribution of the species will be find mostly stable. The different model used identified different areas as highest conservation priority although the highest priority areas keeping most of Kigelia africana species are located in the Guineo-Congolian and Sudano-Guinean region. Additional analyses could help to have more information about the distribution and population and cultivation of Kigelia africana species, which in future will help us to improve operative conservation strategies for this medicinal species. MaxEnt model is robust in Kigelia africana species habitat modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adomou CA, Agbani OP, Sinsin B (2011) Nature conservation in West Africa: red list for Benin. International Institute of Tropical Agriculture (IITA). Ibadan, Nigeria

    Google Scholar 

  • Araújo MB (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33(10):1677–1688

    Article  Google Scholar 

  • Austin MP, Van Niel KP (2011) Improving species distribution models for climate change studies: variable selection and scale. J Biogeogr 38:1–8

    Article  Google Scholar 

  • Atawodi SE, Olowoniyi OD (2015a) Pharmacological and therapeutic Activities of Kigelia africana (Lam.) Benth. Ann Res Rev Biol 5(1):1–17. https://doi.org/10.9734/ARRB/2015/8632

    Article  Google Scholar 

  • Atawodi S, Olowoniyi O (2015b) Pharmacological and therapeutic activities of Kigelia africana (Lam.) Benth. Ann Res Rev Biol 5(1):1–17. https://doi.org/10.9734/ARRB/2015/8632

    Article  Google Scholar 

  • Azu OO (2013) The sausage plant (Kigelia africana): have we finally discovered a male sperm booster? J Med Plant Res 7(15):903–910. https://doi.org/10.5897/JMPR12.0746

    Google Scholar 

  • Badeau V, Dupouey JL, Cluzeau C, Drapier J (2005) Aires potentielles de répartition des essences forestières d’ici 2100. Forêt Entreprise 162(162):25–29

    Google Scholar 

  • Baldwin RA (2009) Use of maximum entropy modeling in wildlife research. Entropy 11(4):854–866. https://doi.org/10.3390/e11040854

    Article  Google Scholar 

  • Barve N (2008) Tool for Partial-ROC ver 1.0, Biodiversity Institute, Lawrence, KS, USA

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222(11):1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011

    Article  Google Scholar 

  • Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species’ distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecological Modelling 186:250–269

    Article  Google Scholar 

  • Beaumont LJ, Pitman AJ, Poulsen M, Hughes L (2007) Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Glob Change Biol 13(7):1368–1385. https://doi.org/10.1111/j.1365-2486.2007.01357.x

    Article  Google Scholar 

  • Bello I, Shehu MW, Musa M, Asmawi Z, M., & Mahmud R (2016) Kigelia africana (Lam.) Benth. (Sausage tree): Phytochemistry and pharmacological review of a quintessential African traditional medicinal plant. J Ethnopharmacol 189(May):253–276. https://doi.org/10.1016/j.jep.2016.05.049

    Article  Google Scholar 

  • Berry PM, Jones AP, Nicholls RJ, VOS, C. C. (2007). Assessment of the vulnerability of terrestrial and coastal habitats and species in Europe to climate change, Annex 2 of Planning for biodiversity in a changing climate - BRANCH: project Final Report. Natural England, UK

  • Blach-overgaard A, Svenning J, Dransfield J, Greve M, Balslev H (2010) Determinants of palm species distributions across Africa : the relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 33(3):380–391. https://doi.org/10.1111/j.1600-0587.2010.06273.x

    Google Scholar 

  • Bourou S, Bowe C, Diouf M, Van Damme P (2012) Ecological and human impacts on stand density and distribution of tamarind (Tamarindus indica L.) in Senegal. Afr J Ecol 50(3):253–265. https://doi.org/10.1111/j.1365-2028.2012.01319.x

    Google Scholar 

  • Busby JW, Smith TG, White KL, Strange SM (2012). Locating climate insecurity: where are the most vulnerable places in Africa ? Clim Change. https://doi.org/10.1007/978-3-642-28626-1

    Google Scholar 

  • De Roeck E, Van Coillie F, De Wulf R, Soenen K, Charlier J, Vercruysse J et al (2014) Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study. Geospat Health 8(3):671–683

    Article  Google Scholar 

  • Dotchamou FT, Atindogbe G, Sode AI, Fonton HN (2016) Density and spatial distribution of Parkia biglobosa pattern in Benin under climate change. J Agric Environ Int Dev (JAEID) 110(1):173–194. https://doi.org/10.12895/JAEID.20161.447

    Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40(1):677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1(4):330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57

    Article  Google Scholar 

  • Estallo EL, Lamfri MA, Scavuzzo CM, Almeida FFL, Introini MV, Zaidenberg M et al (2008) Models for predicting Aedes aegypti larval indices based on satellite images and climatic variables. J Am Mosquito Contr 24(3):368–376

    Article  Google Scholar 

  • Eyong KO, Foyet HS, Eyong CA, Sidjui LS, Yimdjo MC, Nwembe SN, … Nastasa V (2013) Neurological activities of lapachol and its furano derivatives from Kigelia africana. Med Chem Res 22(6):2902–2911. https://doi.org/10.1007/s00044-012-0284-7

    Article  Google Scholar 

  • Fandohan, B., Gouwakinnou, G. N., Fonton, N. H., Sinsin, B., & Liu, J. (2013). Impacts des changements climatiques sur la répartition géographique des aires favorablesà la culture et à la conservation des fruitiers sous-utilisés: cas du tamarinier au Bénin. Biotechnologie, Agronomie, Société et Environnement, 17(3), 450–462. Retrieved from http://popups.ulg.ac.be/Base/document.php?id=10186&format=print

  • Fandohan AB, Oduor AMO, Sodé AI, Wu L, Cuni-Sanchez A, Assédé E, Gouwakinnou GN (2015) Modeling vulnerability of protected areas to invasion by Chromolaena odorata under current andfuture climates. Ecosyst Health Sustain 1(6):1–12. https://doi.org/10.1890/EHS15-0003.1

    Article  Google Scholar 

  • Gbesso FHG, Tenté BHA, Gouwakinnou NG, Sinsin BA (2013) Influence des changements climatiquessur la distribution géographique de Chrysophyllum albidum G. Don (Sapotaceae) au Benin. IntJ Biol Chem Sci 7(5): 2007–2018

    Article  Google Scholar 

  • Gouwakinnou GN, Lykke A, Assogbadjo AE, Sinsin B (2011) Local knowledge, pattern anddiversity of use of Sclerocarya birrea. J Ethnobiol Ethnomed 7(1):8. https://doi.org/10.1186/1746-4269-7-8

    Article  Google Scholar 

  • Guibert H, Alle UC, Dimon RO, Vissoh PV, Vodouhe SD, Tossou RC, Agbossou EK (2010). Correspondances entre savoirs locaux et scientifiques: perceptions des changements climatiques et adaptations, étude en région cotonnière du Bird du Benin. Isda, p 10

  • Guisan A, Thuiller W (2009) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  • Guisan A, Zimmerman N, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2–3):147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • Heubes J, Heubach K, Schmidt M, Wittig R, Zizka G, Nuppenau E-Aa, Hahn K (2012). Impact of future climate and land use change on non-timber forest product provision in Benin, West Africa: linking niche-based modeling with ecosystem service values. Econ Bot, 66(4), 383–397. https://doi.org/10.1007/s12231-012-9216-1

    Article  Google Scholar 

  • Hijmans RJ, Susan Cameron JP (2005). Bioclim|WorldClim—Global Climate Data. http://www.worldclim.org

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  • Idohou R, Assogbadjo AE, Kakaï RG, Peterson AT (2017a) Spatio-temporal dynamic of suitable areas for species conservation in West Africa: eight economically important wild palms under present and future climates. Agrofor Syst 91(3):527–540. https://doi.org/10.1007/s10457-016-9955-6

    Article  Google Scholar 

  • Idohou R, Peterson T, Assogbadjo A, Vihotogbe AE, Padonou RL, E., & Glèlè Kakaï R (2017b) Identification of potential areas for wild palm cultivation in the Republic of Benin through remote sensing and ecological niche modeling. Genet Resour Crop Evol 64(6):1383–1393. https://doi.org/10.1007/s10722-016-0443-7

    Article  Google Scholar 

  • Ijmans ROJH., Tu M (2001) Geography distribution of wild potato species. Am J Bot 88(11):2101–2112

    Article  Google Scholar 

  • IPCC (2007). Climate change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel. Genebra, Suíça. https://doi.org/10.1256/004316502320517344

  • Jennings AP, Mathai J, Brodie J, Giordano AJ, Veron G (2013) Predicted distributions and conservation status of two threatened Southeast Asian small carnivores: the banded civet and Hose’s civet. Mammalia 77(3):261–271. https://doi.org/10.1515/mammalia-2012-0110

    Article  Google Scholar 

  • Jubb AI, Canadell P, Dix M (2013). Representative Concentration Pathways (RCPs). Australian Climate Change Science Program, pp 5–7

  • Kumar S, Stohlgren TJ (2009) Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Sci 1(4):1(4), 094–098. https://doi.org/10.3390/d1020118

    Google Scholar 

  • Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40(4):778–789. https://doi.org/10.1111/jbi.12058

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Loiselle BA, Howell CA, Graham CH, Goerck JM, Brooks T, Smith KG, Williams PH (2003) Avoiding pitfalls of using species distribution models in conservation planning. Conserv Biol 17:1591–1600

    Article  Google Scholar 

  • Lugina KM, Groisman PYa, Vinnikov KYa, Koknaeva VV, Speranskaya NA (2006) Monthly surface air temperature time series area-averaged over the 30-degree latitudinal belts of the globe, 1881–2005. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge. https://doi.org/10.3334/CDIAC/cli.003

    Google Scholar 

  • Martínez-Meyer E, Peterson AT, Hargrove WW (2004) Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob Ecol Biogeogr 13(4):305–314. https://doi.org/10.1111/j.1466-822X.2004.00107.x

    Article  Google Scholar 

  • Mahapatra AK, Albers HJ, Robinson EJZ (2005) The impact of NTFP sales on rural households' cash income in India's dry deciduous forest. Environ Manage 35(3):258–65

    Article  Google Scholar 

  • Olatunji G, Olubunmi A (2009) Comprehensive scientific demystification of Kigelia africana: a review. Pure Appl Chem 3(9):158–164

    Google Scholar 

  • Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S (2009) Vitex doniana Sweet. Agroforestree Database:a Tree Reference Selection Guide 0(4.0):1–5

    Google Scholar 

  • Ortega-Huerta MA, Peterson AT (2004) Modelling spatial patterns of biodiversity for conservation prioritization in north-eastern Mexico. Divers. Distrib 10:39–54

    Article  Google Scholar 

  • Owolabi OJ, Omogbai EKI, Obasuyi O (2007) Antifungal and antibacterial activities of the ethanolic and aqueous extract of Kigelia africana (Bignoniaceae) stem bark. Afr J Biotech 6(14):1677–1680. https://doi.org/10.4314/ajb.v6i14.57749

    Google Scholar 

  • Panitz H, Schubert-frisius M, Meier-fleischer K, Lenzen P, Keuler K, Luethi D, … Dosio A (2013). CORDEX climate simulations for Africa using COSMO-CLM (CCLM). Geophys Res Abstracts, 15(Cclm), 2013

  • Papeş M, Gaubert P (2007) Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Divers Distrib 13(6):890–902. https://doi.org/10.1111/j.1472-4642.2007.00392.x

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102e117

    Google Scholar 

  • Peterson AT (2003) Predicting the Geography of species’ invasions via ecological niche modeling. Q Rev Biol 78(4):419–433. https://doi.org/10.1086/378926

    Article  Google Scholar 

  • Peterson AT (2006). Ecologic niche modeling and spatial patterns of disease transmission. Emerg Infect Dis. https://doi.org/10.3201/eid1212.060373

    Google Scholar 

  • Peterson AT, Soberón J (2012) Species distribution modeling and ecological niche modeling: getting the concepts right. Natureza a Conservacao 10(2):102–107. https://doi.org/10.4322/natcon.2012.019

    Article  Google Scholar 

  • Phillips SJ, Anderson RP (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008a). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography; 31(2):pp 161–175

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008b) Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31(2):161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  • Phillips SJ, Dudik M, Schapire RE (2004). Maxent software for species distribution modeling. In: Proceedings of the twenty-first international conference on machine learning, 655–662. https://doi.org/10.1016/j.ecolmodel.2005.03.026

  • Phillips SB, Aneja VP, Kang D, Arya SP (2006) Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. Int J Global Environ Issues 6(2–3):231–252. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Piedallu C, Perez V, Gégout J-C, Lebourgeois F, Bertrand R (2009) Impact potentiel du changement climatique sur la distribution de l’Epicéa, du Sapin, du Hêtre et du Chêne sessile en France. Revue Forestière Française LXI(6):567–593. https://doi.org/10.4267/2042/32924

    Google Scholar 

  • Scoones I (1995) Exploiting heterogeneity: habitat use by cattle in dryland Zimbabwe. J Arid Environ 29:221–237

    Article  Google Scholar 

  • Simoonga C, Kazembe LN, Kristensen TK, Olsen A, Appleton CC, Mubita P et al. (2009). Remote sensing, geographical information system and spatial analysis for schistosomiasis epidemiology and ecology in Africa. Parasitology; 136(13):pp 1683–1693

  • Stigall AL (2012) Using ecological niche modelling to evaluate niche stability in deep time. J Biogeogr 39(4):772–781. https://doi.org/10.1111/j.1365-2699.2011.02651.x

    Article  Google Scholar 

  • Stockman AK, Beamer DA, Bond JE (2006) An evaluation of a GARP model as an approach to predicting the spatial distribution of non-vagile invertebrate species. Divers Distrib 12(1):81–89. https://doi.org/10.1111/j.1366-9516.2006.00225.x

    Article  Google Scholar 

  • Thorn JS, Nijman V, Smith D, Nekaris KAI (2009) Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Divers Distrib 15(2):289–298. https://doi.org/10.1111/j.1472-4642.2008.00535.x

    Article  Google Scholar 

  • Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R (2007). A comparative evaluation of presence- only methods for modelling species distribution. Divers Distrib. https://doi.org/10.1111/j.1472-4642.2007.00346.x

    Google Scholar 

  • van Vuuren DP, Carter TR (2014) Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the ol. Clim Change 122(3):415–429. https://doi.org/10.1007/s10584-013-0974-2

    Article  Google Scholar 

  • van Zonneveld M, Koskela J, Vinceti B, Jarvis A (2009) Impact of climate change on the distribution of tropical pines in Southeast Asia. Unasylva 60(January 2009):24–29

    Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, … Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109(1):5–31. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21(2):335–342. https://doi.org/10.1890/10-1171.1

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62(11):2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010a). Ecography\rENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010b) ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 33(3):607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x

    Google Scholar 

Download references

Acknowledgements

This study was supported by the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL) and the German Ministry of Education and Research (BMBF). Thanks to the management of the Federal University of Technology (FUT) Minna for offering enabling learning environment necessary for the success of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meminvegni Landry Gildas Guidigan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guidigan, M.L.G., Azihou, F., Idohou, R. et al. Modelling the current and future distribution of Kigelia africana under climate change in Benin, West Africa. Model. Earth Syst. Environ. 4, 1225–1238 (2018). https://doi.org/10.1007/s40808-018-0491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-018-0491-4

Keywords

Navigation