Skip to main content
Log in

A Parametric Study on the Influence of Internal Speckle Patterning for Digital Volume Correlation in X-Ray Tomography Applications

  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

Use of the Digital Volume Correlation (DVC) technique has grown steadily in the mechanics community as a way of quantifying internal mechanical response of complex microstructures under loading. The DVC technique has been combined with internal imaging methodologies such as X-ray microcomputed tomography (X-ray microCT), confocal microscopy, and photoelasticity enabling many full field studies of bone, foam, rock, polymers, and metals. Despite all these efforts, many DVC limitations remain unknown such as those of “optimal” subset size, step size, and the quality of an internal speckle pattern. Here we investigate in detail the effects of internal speckle patterning on DVC. To help determine the optimum setup for DVC, we develop internal speckle patterns using markers ranging from 5 to 50 μm particles and study these over different resolution length scales. A correlation of pattern size and quality was determined using baseline (i.e., no deformation) and rigid body motion experiments, resulting in a recommended pattern quality parameter. We then performed a uniaxial compression experiment using the optimal pattern determined from the parametric study where we compare accuracy using DVC calculated strains and displacements with theoretical values. An in situ uniaxial compression test demonstrated DVC capabilities resulting in a 2 % error in strain computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bruck HA, McNeill SR, Sutton SR, Peters WH III (1989) Digital image correlation using newton-raphson method of partial differential correction. Exp Mech 29:261–267

    Article  Google Scholar 

  2. Sutton MA, Wolters WJ, Peters WH III, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital image correlation method. Image Vis Comput 1(3):133–139

    Article  Google Scholar 

  3. Sutton MA, Orteu J-J and Schreir H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer

  4. Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using x-ray tomography. Exp Mech 39(3):217–226

    Article  Google Scholar 

  5. Ambrose J, Hounsfield GN (1973) Computerized transverse axial tomography. Br J Radiol 46:148–149

    Article  Google Scholar 

  6. Hounsfield GN (1973) Computerized transverse axial scanning (tomography): part 1. Description of system. Br J Radiol 46:1016–1022

    Article  Google Scholar 

  7. Midgley P, Ward E, Hungria A, Thomas J (2007) Nanotomography in the chemical, biological and materials sciences. Chem Soc Rev 36:1477–1494

    Article  Google Scholar 

  8. Withers PJ (2007) X-ray nanotomography. Mater Today 10(12):26–34

    Article  Google Scholar 

  9. Baruchel J, Buffière JY, Maire E, Merle P, Peix G (2000) X-ray tomography in material sciences. Hermes Science, Paris

    Google Scholar 

  10. Kalender WA (2006) X-ray computed tomography. Phys Med Biol 51(13):R29–43

    Article  Google Scholar 

  11. Ludwig O, Dimichiel M, Salvo L, Suery M, Falus P (2005) In-situ three-dimensional microstructural investigation of solidification of an Al-Cu alloy by ultrafast x-ray microtomography. Metall Mater Trans A 36A:1515–1523

    Article  Google Scholar 

  12. Juettner T, Moertel H, Svinka V, Svinka R (2007) Structure of kaoline–alumina based foam ceramics for high temperature applications. J Eur Ceram Soc 27(2-3):1435–1441

    Article  Google Scholar 

  13. Maire E, Colombo P, Adrien J, Babout L, Biasetto L (2007) Characterization of the morphology of cellular ceramics by 3D image processing of X-ray tomography. J Eur Ceram Soc 27(4):1973–1981

    Article  Google Scholar 

  14. Maire E (2003) X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems. Compos Sci Technol 63(16):2431–2443

    Article  Google Scholar 

  15. Chotard TJ, Smith A, Boncoeur MP, Fargeot D, Gault C (2003) Characterisation of early stage calcium aluminate cement hydration by combination of non-destructive techniques: acoustic emission and X-ray tomography. J Eur Ceram Soc 23:2211–2223

    Article  Google Scholar 

  16. Liu L, Morgan EF (2007) Accuracy and precision of digital volume correlation in quantifying displacements and strains in trabecular bone. J Biomech 40(15):3516–20

    Article  Google Scholar 

  17. Lenoir N, Bornert M, Desrues J, Besuelle P, Viggiani G (2007) Volumetric digital image correlation applied to x-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 43:193–205

    Article  Google Scholar 

  18. Roux S, Hild F, Viot P, Bernard D (2008) Three-dimensional image correlation from x-ray computed tomography of solid foam. Compos A: Appl Sci Manuf 39(8):1253–1265

    Article  Google Scholar 

  19. Franck C, Hong S, Maskarinec SA, Tirrell DA, Ravichandran G (2007) Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp Mech 47(3):427–438

    Article  Google Scholar 

  20. Zauel R (2005) Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements. J Biomech Eng 128(1):1

    Article  Google Scholar 

  21. Limodin N, Réthoré J, Adrien J, Buffière JY, Hild F, Roux S (2010) Analysis and artifact correction for volume correlation measurements using tomographic images from a laboratory x-ray source. Exp Mech 51(6):959–970

    Article  Google Scholar 

  22. Hild F, Roux S, Bernard D, Hauss G and Rebai M (2013) On the use of 3D images and 3D displacement measurements for the analysis of damage mechanisms in concrete-like materials. VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures

  23. Yang Z, Ren W, Mostafavi M, McDonald S and Marrow TJ (2013) Characterization of 3D fracture evolution in concrete using in-situ X-ray computed tomography testing and digital volume correlation. VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures 1–7

  24. Benoit A, Guerard S, Gillet B, Guillot G, Hild F, Mitton D, Perie JN, Roux S (2009) 3D analysis from micro-MRI during in situ compression on cancellous bone. J Biomech 42(14):2381–6

    Article  Google Scholar 

  25. Jiroušek O, Jandejsek I, Vavřík D (2011) Evaluation of strain field in microstructures using micro-CT and digital volume correlation. J Instrum 6(01):C01039–C01039

    Google Scholar 

  26. Bay BK (2008) Methods and applications of digital volume correlation. J Strain Anal Eng Des 43(8):745–760

    Article  Google Scholar 

  27. Buffiere JY, Maire E, Adrien J, Masse JP, Boller E (2010) In situ experiments with x ray tomography: an attractive tool for experimental mechanics. Exp Mech 50(3):289–305

    Article  Google Scholar 

  28. Verhulp E, van Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech 37(9):1313–20

    Article  Google Scholar 

  29. Rannou J, Limodin N, Réthoré J, Gravouil A, Ludwig W, Baïetto-Dubourg M-C, Buffière J-Y, Combescure A, Hild F, Roux S (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Methods Appl Mech Eng 199(21-22):1307–1325

    Article  Google Scholar 

  30. Limodin N, Réthoré J, Buffière J-Y, Hild F, Ludwig W, Rannou J, Roux S (2011) 3D x-ray microtomography volume correlation to study fatigue crack growth. Adv Eng Mater 13(3):186–193

    Article  Google Scholar 

  31. Renard F, Bernard D, Desrues J, Ougier-Simonin A (2009) 3D imaging of fracture propagation using synchrotron x-ray microtomography. Earth Planet Sci Lett 286(1-2):285–291

    Article  Google Scholar 

  32. Rethore J, Limodin N, Buffiere JY, Hild F, Ludwig W, Roux S (2011) Digital volume correlation analyses of synchrotron tomographic images. J Strain Anal Eng Des 46(7):683–695

    Article  Google Scholar 

  33. Barranger Y, Doumalin P, Dupre J-C, Germaneau A, Hedan S, Valle V (2009) Evaluation of three-dimensional and two-dimensional full displacement fields of a single edge notch fracture mechanics specimen, in light of experimental data using x-ray tomography. Eng Fract Mech 76(15):2371–2383

    Article  Google Scholar 

  34. Pan B, Wu D, Wang Z (2012) Internal displacement and strain measurement using digital volume correlation: a least-squares framework. Meas Sci Technol 23(4):045002

    Article  Google Scholar 

  35. Gates M, Gonzalez J, Lambros J, Heath MT (2014) Subset refinement for digital volume correlation: numerical and experimental applications. Exp Mech 55:245–259

    Article  Google Scholar 

  36. Gates M, Lambros J, Heath MT (2010) Towards high performance digital volume correlation. Exp Mech 51(4):491–507

    Article  Google Scholar 

  37. Forsberg F, Siviour CR (2009) 3D deformation and strain analysis in compacted sugar using x-ray microtomography and digital volume correlation. Meas Sci Technol 20(9):095703

    Article  Google Scholar 

  38. Forsberg F, Sjodahl M, Mooser R, Hack E, Wyss P (2010) Full three-dimensional strain measurements on wood exposed to three-point bending: analysis by use of digital volume correlation applied to synchrotron radiation micro-computed tomography image data. Strain 46:47–60

    Article  Google Scholar 

  39. Germaneau A, Doumalin P, Dupré J-C (2008) Comparison between x-ray micro-computed tomography and optical scanning tomography for full 3D strain measurement by digital volume correlation. NDT & E Int 41(6):407–415

    Article  Google Scholar 

  40. Germaneau A, Doumalin P, Dupre JC (2007) 3D strain field measurement by correlation of volume images using scattered light: recording of images and choice of marks. Strain 43:207–218

    Article  Google Scholar 

  41. Wang X, Ma SP (2014) Mesh-based digital image correlation method using non-uniform elements for measuring displacement fields with high gradient. Exp Mech 54(9):1545–1554

    Article  Google Scholar 

  42. Pan B, Lu Z, Xie H (2010) Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation. Opt Lasers Eng 48(4):469–477

    Article  Google Scholar 

  43. Gates M, Heath MT and Lambros J (2014) High-performance hybrid CPU and GPU parallel algorithm for digital volume correlation. Int J High Perform Comput Appl

  44. Leclerc H, Périé JN, Roux S, Hild F (2010) Voxel-scale digital volume correlation. Exp Mech 51(4):479–490

    Article  Google Scholar 

  45. Gonzalez J, Sun K, Huang M, Lambros J, Dillon S, Chasiotis I (2014) Three dimensional studies of particle failure in silicon based composite electrodes for lithium ion batteries. J Power Sources 269:334–343

    Article  Google Scholar 

  46. Garcia D (2010) Robust smoothing of gridded data in one and higher dimensions with missing values. Comput Stat Data Anal 54(4):1167–1178

    Article  Google Scholar 

  47. Lambros J, Patel J (2011) Microscale digital image correlation study of irradiation induced ductile-to-brittle transition in polyethylene. J Strain Anal Eng Des 46(5):347–360

    Article  Google Scholar 

  48. Wang YQ, Sutton MA, Bruck HA, Schreir HW (2009) Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements. Strain 45:160–178

    Article  Google Scholar 

  49. Choi K, Rogers J (2003) A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. J Am Chem Soc 125(14):4060–4061

    Article  Google Scholar 

  50. Lotters JC, Oithius W, Veltink PH, Bergveld P (1997) The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J Micromech Microeng 7:145–147

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the University of Illinois at Urbana Champaign Interdisciplinary Innovation Initiative (In3) Proposal Award #12027. Joseph Gonzalez also acknowledges that this material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE- 1144245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lambros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, J., Lambros, J. A Parametric Study on the Influence of Internal Speckle Patterning for Digital Volume Correlation in X-Ray Tomography Applications. Exp Tech 40, 1447–1459 (2016). https://doi.org/10.1007/s40799-016-0145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-016-0145-2

Keywords

Navigation