Introduction

Making decisions is a frequent activity in everyday life, with the goal of selecting the best choice from among multiple alternatives. In the initial phases of social evolution, decision-makers typically provided their evaluation results using real numbers. Experts are unable to provide precise real numbers to evaluate the alternatives, because multi-attribute decision-making (MADM) situations are becoming more complex. The vagueness and imprecision of human judgments brought attention to the shortcomings of the crisp set theory. As a result, Zadeh [1] established the theoretical groundwork for the fuzzy set (FS) theory for uncertain knowledge, which enables experts to express their level of satisfaction (membership degree) with respect to a member’s performance inside the unit interval. Many operators in the fuzzy environment have been created to solve decision-making issues. Several operators in a fuzzy environment were examined by Song et al. [2].

Then, the idea of an intuitionistic fuzzy set (IFS), which has a membership degree and a non-membership degree, was first given forth by Atanassov [3]. IFS has drawn a lot of interest, since it first appeared, and many scientists have researched it from both a theoretical and practical standpoint [4,5,6]. Afterward, Yager [7] brought out the idea of a Pythagorean fuzzy set (PYFS). PYFS is more efficient and effective than IFS because of the constraint that the square sum of membership and non-membership degrees must be less than or equal to one. Owing to its features and merits, PYFS has been used in decision-making extensively [8,9,10,11]. Due to its strong capacity for describing the fuzziness and uncertainty of knowledge, multi-attribute group decision-making (MAGDM) has been widely explored and effectively implemented to both management and economics as one of the most significant components of current decision-making theory [12,13,14,15,16,17,18,19]. Decision-makers typically use their intuition and previous knowledge to make decisions in genuine decision-making situations. The requirement is to adequately represent the ambiguous and fuzzy information in the MAGDM process due to the complexity of decision-making issues. PYFSs are unable to handle a number of situations, nevertheless. For some situations where the square sum of membership and non-membership degrees is more than one, PYFSs do not apply. The notion of q-ROFS, whose constraint is the sum of the \(q\textrm{th}\) power of the membership degree and the \(q\textrm{th}\) power of the degree of non-membership is less than or equal to one, was introduced by Yager [20] as a practical solution to these instances. As a result, q-ROFSs loosen the PYFSs constraint and increase the information range. Following this, Liu et al. [21] created a few straightforward weighted averaging operators to combine q-rung orthopair fuzzy numbers (q-ROFNs), and they then used these operators to apply to MAGDM. While, Liu et al. [22] introduced a series of q-rung orthopair fuzzy Bonferroni mean operators.

Al-shami [23] adopted a new approach to cover new cases of vagueness by familiarizing the concept of (2,1)-fuzzy sets. This type of fuzzy sets addresses more situations than IFSs and offers an effective tool for real-life issues that required different ranks of importance. Then, Al-shami and Mhemdi [24] and Ibrahim et al. [25] investigated the idea of (n,m)-rung orthopair fuzzy set (n,m-ROFS), a new fuzzy set extension with the constraint that the sum of the \(n\textrm{th}\) power of the membership degree and the \(m\textrm{th}\) power of the degree of non-membership is less than or equal to one. They also developed the idea of a weighted aggregated operator over (n,m)-ROFS and implemented it to the MADM issues. In this line of research, some valuable contributions have been conducted by several researchers and scholars [26,27,28,29]. Recently, Al-shami et al. [30] have hybridized (n,m)-ROFSs with soft sets to expand the environments of fuzzy and soft sets and handled complicated problems. Hybridizations of fuzzy environments with other uncertainty tools, such as soft sets and neutrosophic sets, have been achieved in [31,32,33,34,35,36,37,38].

We may encounter the following problems, because genuine decision-making situations are too complex. The first problem is that, while q-ROFSs and n,m-ROFSs have been successfully employed in decision-making, there are some instances in which they cannot be applied. For instance, groups of human voters can include those who vote for, abstain from voting, and refuse to participate in a voting. In other sense, when voting, we must cope with more yes, abstain, and no, and refusal responses. Obviously, n,m-ROFSs and q-ROFSs are inapplicable in this situation. Therefore, Cuong [39, 40] advanced the idea of a picture fuzzy set (PFS), which is distinguished by positive, neutral, and negative membership degrees. PFSs have received a lot of academic attention and have been extensively studied since their development [41,42,43,44]. The idea of q-rung picture fuzzy set was created by Li et al. [45]. Garg [46] proposed the idea of picture fuzzy aggregation operators (PFAOs). Wei [47, 48] researched PFAOs as well and offered some opinion on how they can be used in decision-making. The framework of q-rung picture fuzzy (q-RPF) Dombi Hamy mean operators was covered by He et al. [49]. Liu et al. [50] pioneered the specific forms of q-RPF aggregation operators.

In summary, the following are the motivations and goals for this article:

  1. 1.

    To offer the \(k^{n}_{m}\)-RPFS definition and operations on \(k^{n}_{m}\)-RPFS values.

  2. 2.

    Investigation of the development of a innovative decision-making model.

  3. 3.

    The shortcomings and limits of existing operators are overcome by proposed operators, which are more general and perform admirably not only for \(k^{n}_{m}\)-RPFS data but also for q-RPF fuzzy information.

  4. 4.

    In comparison to other modeling techniques, the \(k^{n}_{m}\)-RPFS is more adaptable and effective. This enables individuals to provide more accurate outcomes when faced with decision-making issues.

The rest of this article are organized as follows. “Preliminaries” is devoted to recall the definitions of the types of fuzzy sets that we need through this manuscript. In “\({k}^{n}_{m}\)-Rung picture fuzzy sets”, the definition of \({k}^{n}_{m}\)-RPFS and operational laws for \({k}^{n}_{m}\)-RPFS values are presented. In “\({k}^{n}_{m}\)-Rung picture fuzzy weighted power average”, we discover a new \({k}^{n}_{m}\)-rung picture fuzzy aggregation operator and provide a few of the proposed operator attractive features. In “MADM application to select the best countries for expats”, it is used this operator to suggest an algorithm for a decision-making model and explain one MADM issue, which is deciding which country is best for expats. In “Comparison analysis and discussion”, we go over the comparison analysis of the suggested model with the current operators. In “Conclusions”, it is summarized the findings regarding the proposed theory.

Preliminaries

The basic model that we use in our paper is made of a number of steps, each of which is intriguing in and of itself. We start with the notion of picture fuzzy sets to minimize a longer list of existing models. Let \(\chi \) be a non-empty set and \(\rho (r), \aleph (r), \sigma (r): \chi \rightarrow [0,1]\) represent degree of positive, neutral, and negative memberships of the element \(r\in \chi \), respectively.

Definition 1

[39, 40] A PFS P defined on \(\chi \) is given by \(P = \{\left\langle r, \rho _{P}(r), \aleph _{P}(r), \sigma _{P}(r)\right\rangle : r\in \chi \}\), satisfying \(\rho _{P}(r) + \aleph _{P}(r) + \sigma _{P}(r)\le 1\), \(\forall r\in \chi \). The degree of refusal membership of \(r\in \chi \) to P defined by \(\pi _{P}(r) =1 - (\rho _{P}(r) + \aleph _{P}(r) + \sigma _{P}(r))\).

Definition 2

[51] A spherical fuzzy set (SFS) S defined on \(\chi \) is given by \(S = \{\left\langle r, \rho _{S}(r), \aleph _{S}(r), \sigma _{S}(r)\right\rangle : r\in \chi \}\), satisfying \((\rho _{S}(r))^{2} + (\aleph _{S}(r))^{2} + (\sigma _{S}(r))^{2}\le 1\), \(\forall r\in \chi \). The degree of refusal membership of \(r\in \chi \) to S defined by \(\pi _{S}(r) =\sqrt{1 - ((\rho _{S}(r))^{2} + (\aleph _{S}(r))^{2} + (\sigma _{S}(r))^{2})}\).

Definition 3

[45] A q-RPFS \(\textit{P}\) defined on \(\chi \) is given by

\(\textit{P} = \{\left\langle r, \rho _{\textit{P}}(r), \aleph _{\textit{P}}(r), \sigma _{\textit{P}}(r)\right\rangle : r\in \chi \}\), satisfying \((\rho _{\textit{P}}(r))^{q} + (\aleph _{\textit{P}}(r))^{q} + (\sigma _{\textit{P}}(r))^{q}\le 1\), \(\forall r\in \chi \). The degree of refusal membership of \(r\in \chi \) to \(\textit{P}\) defined by \(\pi _{\textit{P}}(r) =\root q \of {1 - ((\rho _{\textit{P}}(r))^{q} + (\aleph _{\textit{P}}(r))^{q} + (\sigma _{\textit{P}}(r))^{q})}\).

Definition 4

[24, 25] An (m,n)-ROFS \(\textit{P}\) defined on \(\chi \) is given by

\(\textit{P} = \{\left\langle r, \rho _{\textit{P}}(r), \aleph _{\textit{P}}(r)\right\rangle : r\in \chi \}\), satisfying \((\rho _{\textit{P}}(r))^{m} + (\aleph _{\textit{P}}(r))^{n}\le 1\), \(\forall r\in \chi \).

Table 1 Abbreviations of the main concepts presented in this manuscript

We display the main abbreviations and symbols used through this manuscript in Table 1 and 2, respectively.

Table 2 Symbols for the main concepts presented in this manuscript

\(k^{n}_{m}\)-Rung picture fuzzy sets

This section presents the \(k^{n}_{m}\)-rung picture fuzzy set, the central idea of this study, along with some of its key characteristics. Additionally, we focus on a variety of the aspects of \(k^{n}_{m}\)-rung picture fuzzy sets and propose a number of new operations on them.

Definition 5

A \(k^{n}_{m}\)-rung picture fuzzy set (\(k^{n}_{m}\)-RPFS) \(\varPsi \) defined on \(\chi \) is given by

$$\begin{aligned} \varPsi = \{\left\langle r, \rho _{\varPsi }(r), \aleph _{\varPsi }(r), \sigma _{\varPsi }(r)\right\rangle : r\in \chi \}, \end{aligned}$$

satisfying

$$\begin{aligned} 0\le (\rho _{\varPsi }(r))^{n} + (\aleph _{\varPsi }(r))^{k} + (\sigma _{\varPsi }(r))^{m}\le 1, \end{aligned}$$

\(\forall r\in \chi \) and \(n,k,m\ge 1\). The degree of refusal membership of \(r\in \chi \) to \(\varPsi \) defined by

$$\begin{aligned} \pi _{\varPsi }(r) =\root n+k+m \of {1 - [(\rho _{\varPsi }(r))^{n} + (\aleph _{\varPsi }(r))^{k} + (\sigma _{\varPsi }(r))^{m}]}. \end{aligned}$$

To keep things simple, we will mention the symbol \(\varPsi {=} (\rho _{\varPsi },\aleph _{\varPsi },\sigma _{\varPsi })\) for the \(k^{n}_{m}\)-ROFS \(\varPsi {=} \{\langle r,\rho _{\varPsi }(r),\aleph _{\varPsi }(r), \sigma _{\varPsi }(r)\rangle :r\in \chi \}\).

Remark 1

The space of \(k^{n}_{m}\)-rung picture fuzzy grades is larger than the space of the

  1. 1.

    picture fuzzy grades if \(n>1\) or \(k>1\) or \(m>1\).

  2. 2.

    spherical fuzzy grades if \(n,k\ge 2\) and \(m>2\), or \(n,m\ge 2\) and \(k>2\), or \(k,m\ge 2\) and \(n>2\).

  3. 3.

    q-rung picture fuzzy grades if \(n,k\ge q\) and \(m>q\), or \(n,m\ge q\) and \(k>q\), or \(k,m\ge q\) and \(n>q\).

Definition 6

Let \(\varPsi = (\rho _{\varPsi },\aleph _{\varPsi },\sigma _{\varPsi })\), \(\varPsi _1 = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\) and \(\varPsi _2 = (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2})\) be \(k^{n}_{m}\)-RPFSs. Then

  1. 1.

    \(\varPsi _1\bigwedge \varPsi _2= (\min \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\},\max \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\})\).

  2. 2.

    \(\varPsi _1\bigvee \varPsi _2= (\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\},\min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\})\).

  3. 3.

    \(\varPsi ^{c}= ((\sigma _{\varPsi })^\frac{m}{n},\aleph _{\varPsi },(\rho _{\varPsi })^\frac{n}{m})\).

Example 1

Assume that \(\varPsi _1=(0.62,0.85,0.45)\) and \(\varPsi _2=(0.73,0.61,0.69)\) are \(2^{4}_{3}\)-RPFSs for \(\chi = \{r\}\). Then

  1. 1.

    \(\varPsi _1\bigwedge \varPsi _2 = (\min \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}, \max \{\sigma _{\varPsi _1}, \sigma _{\varPsi _2}\}) = (\min \{0.62,0.73\},\min \{0.85,0.61\}, \max \{0.45, 0.69\}) = (0.62,0.61,0.69)\).

  2. 2.

    \(\varPsi _1\bigvee \varPsi _2 = (\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}, \min \{\sigma _{\varPsi _1}, \sigma _{\varPsi _2}\}) = (\max \{0.62,0.73\},\min \{0.85,0.61\}, \min \{0.45, 0.69\}) = (0.73,0.61,0.45)\).

  3. 3.

    \(\varPsi _{1}^{c}= ((0.45^{3})^\frac{1}{4},0.85,(0.62^{4})^\frac{1}{3}) \approx (0.5494,0.85, 0.5287), \hbox {and} \varPsi _{2}^{c}= ((0.69^{3})^\frac{1}{4},0.61,(0.73^{4})^\frac{1}{3}) \approx -z (0.7571,0.61,0.6573)\).

Remark 2

If \(\varPsi _1 = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\) and \(\varPsi _2 = (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2})\) are \(k^{n}_{m}\)-RPFSs, then \(\varPsi _1 \bigwedge \varPsi _2\) and \(\varPsi _1 \bigvee \varPsi _2\) are also \(k^{n}_{m}\)-RPFSs.

Theorem 1

If \(\varPsi = (\rho _{\varPsi },\aleph _{\varPsi },\sigma _{\varPsi })\) is a \(k^{n}_{m}\)-RPFS, then \(\varPsi ^{c}\) is also a \(k^{n}_{m}\)-RPFS, and hence \((\varPsi ^{c})^c = \varPsi \).

Proof

Since

$$\begin{aligned} 0\le \rho _{\varPsi }^{n}\le 1, 0\le \aleph _{\varPsi }^{k}{} & {} \le 1, 0\le \sigma _{\varPsi }^{m}\le 1\; \hbox {and}\, 0\le \rho _{\varPsi }^{n} + \aleph _{\varPsi }^{k}\\{} & {} \quad + \sigma _{\varPsi }^{m}\le 1, \end{aligned}$$

then

$$\begin{aligned} 0\le \left( ({\sigma _{\varPsi }})^\frac{m}{n}\right) ^{n} + \aleph _{\varPsi }^{k} + \left( (\rho _{\varPsi })^\frac{n}{m}\right) ^{m} = \sigma _{\varPsi }^{m} + \aleph _{\varPsi }^{k}+ \rho _{\varPsi }^{n}\le 1, \end{aligned}$$

and hence

$$\begin{aligned} 0\le \left( ({\sigma _{\varPsi }})^\frac{m}{n}\right) ^{n} + \aleph _{\varPsi }^{k} + \left( (\rho _{\varPsi })^\frac{n}{m}\right) ^{m}\le 1. \end{aligned}$$

Thus, \(\varPsi ^{c}\) is a \(k^{n}_{m}\)-RPFS and it is obvious that

$$\begin{aligned} (\varPsi ^{c})^{c}{} & {} = \left( (\sigma _{\varPsi })^\frac{m}{n},\aleph _{\varPsi },(\rho _{\varPsi })^\frac{n}{m}\right) ^{c} =\left( (\rho _{\varPsi })^\frac{n.m}{m.n},\aleph _{\varPsi },(\sigma _{\varPsi })^\frac{m.n}{n.m}\right) \\{} & {} = \varPsi . \end{aligned}$$

\(\square \)

Theorem 2

Let \(\varPsi _1 = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\) and \(\varPsi _2 = (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2})\) be \(k^{n}_{m}\)-RPFSs. Then

  1. 1.

    \(\varPsi _1 \bigwedge \varPsi _2 = \varPsi _2 \bigwedge \varPsi _1\).

  2. 2.

    \(\varPsi _1 \bigvee \varPsi _2 = \varPsi _2 \bigvee \varPsi _1\).

Proof

From Definition 6, we have

  1. 1.

    \(\varPsi _1\bigwedge \varPsi _2 = (\min \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}, \max \{\sigma _{\varPsi _1}, \sigma _{\varPsi _2}\}) = (\min \{\rho _{\varPsi _2},\rho _{\varPsi _1}\},\min \{\aleph _{\varPsi _2},\aleph _{\varPsi _1}\}, \max \{\sigma _{\varPsi _2}, \sigma _{\varPsi _1}\})=\varPsi _2\bigwedge \varPsi _1\).

  2. 2.

    \(\varPsi _1\bigvee \varPsi _2 = (\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}, \min \{\sigma _{\varPsi _1}, \sigma _{\varPsi _2}\}) = (\max \{\rho _{\varPsi _2},\rho _{\varPsi _1}\},\min \{\aleph _{\varPsi _2},\aleph _{\varPsi _1}\}, \min \{\sigma _{\varPsi _2}, \sigma _{\varPsi _1}\})=\varPsi _2\bigvee \varPsi _1\).

\(\square \)

Theorem 3

Let \(\varPsi _1 = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\) and \(\varPsi _2 = (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2})\) be \(k^{n}_{m}\)-RPFSs. Then

  1. 1.

    for \(\aleph _{\varPsi _1}\ge \aleph _{\varPsi _2}\), we have

    1. (a)

      \((\varPsi _1\bigwedge \varPsi _2)\bigvee \varPsi _2 = \varPsi _2\).

    2. (b)

      \((\varPsi _1\bigvee \varPsi _2)\bigwedge \varPsi _2 = \varPsi _2\).

  2. 2.

    for \(\aleph _{\varPsi _1}<\aleph _{\varPsi _2}\), we have

    1. (a)

      \((\varPsi _1\bigwedge \varPsi _2)\bigvee \varPsi _2 \ne \varPsi _2\).

    2. (b)

      \((\varPsi _1\bigvee \varPsi _2)\bigwedge \varPsi _2 \ne \varPsi _2\).

Proof

  1. 1.

    Let \(\aleph _{\varPsi _1}\ge \aleph _{\varPsi _2}\), then

    1. (a)

      \((\varPsi _1\bigwedge \varPsi _2)\bigvee \varPsi _2 =(\min \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}\), \(\max \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\})\bigvee (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2}) =(\max \{\min \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}, \rho _{\varPsi _2}\},\min \{\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}, \aleph _{\varPsi _2}\},\) \(\min \{\max \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\},\sigma _{\varPsi _2}\}) = (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2})=\varPsi _{2}\).

    2. (b)

      \((\varPsi _1\bigvee \varPsi _2)\bigwedge \varPsi _2 =(\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\},\) \(\min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\})\bigwedge (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2}) =(\min \{\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}, \rho _{\varPsi _2}\},\min \{\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}, \aleph _{\varPsi _2}\},\) \(\max \{\min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\},\sigma _{\varPsi _2}\}) = (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2})=\varPsi _{2}\).

  2. 2.

    Let \(\aleph _{\varPsi _1}<\aleph _{\varPsi _2}\), then

    1. (a)

      \((\varPsi _1\bigwedge \varPsi _2)\bigvee \varPsi _2 =(\min \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}, \) \(\max \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\})\bigvee (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2}) =(\max \{\min \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}, \rho _{\varPsi _2}\},\min \{\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}, \aleph _{\varPsi _2}\},\min \{\max \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\},\sigma _{\varPsi _2}\}) = (\rho _{\varPsi _2},\aleph _{\varPsi _1},\sigma _{\varPsi _2})\ne \varPsi _{2}\).

    2. (b)

      \((\varPsi _1\bigvee \varPsi _2)\bigwedge \varPsi _2 =(\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\},\) \( \min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\})\bigwedge (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2}) =(\min \{\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}, \rho _{\varPsi _2}\},\min \{\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}, \aleph _{\varPsi _2}\},\) \(\max \{\min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\},\sigma _{\varPsi _2}\}) = (\rho _{\varPsi _2},\aleph _{\varPsi _1},\sigma _{\varPsi _2})\ne \varPsi _{2}\). \(\square \)

Theorem 4

Let \(\varPsi _1 = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\), \(\varPsi _2 = (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2})\) and \(\varPsi _3 = (\rho _{\varPsi _3},\aleph _{\varPsi _3},\sigma _{\varPsi _3})\) be \(k^{n}_{m}\)-RPFSs. Then

  1. 1.

    \(\varPsi _1 \bigwedge (\varPsi _2\bigwedge \varPsi _3) = (\varPsi _1\bigwedge \varPsi _2) \bigwedge \varPsi _3\).

  2. 2.

    \(\varPsi _1 \bigvee (\varPsi _2\bigvee \varPsi _3) = (\varPsi _1\bigvee \varPsi _2) \bigvee \varPsi _3\).

Proof

For the three \(k^{n}_{m}\)-RPFSs \(\varPsi _1, \varPsi _2\), and \(\varPsi _3\), based on Definition 6, we have

  1. 1.

    \(\varPsi _1\bigwedge (\varPsi _2\bigwedge \varPsi _3) = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\bigwedge \) \( (\min \{\rho _{\varPsi _2},\rho _{\varPsi _3}\},\min \{\aleph _{\varPsi _2},\aleph _{\varPsi _3}\},\max \{\sigma _{\varPsi _2},\sigma _{\varPsi _3}\}) = (\min \{\rho _{\varPsi _1},\min \{\rho _{\varPsi _2},\rho _{\varPsi _3}\}\},\min \{\aleph _{\varPsi _1},\min \{\aleph _{\varPsi _2}, \aleph _{\varPsi _3}\}\},\) \(\max \{\sigma _{\varPsi _1},\max \{\sigma _{\varPsi _2},\sigma _{\varPsi _3}\}\}) = (\min \{\min \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\rho _{\varPsi _3}\}, \min \{\min \{\aleph _{\varPsi _1},\)\( \aleph _{\varPsi _2}\}, \aleph _{\varPsi _3}\},\) \( \max \{\max \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\},\sigma _{\varPsi _3}\}) = (\min \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}, \min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\},\max \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\})\bigwedge (\rho _{\varPsi _3},\aleph _{\varPsi _3},\sigma _{\varPsi _3}) =(\varPsi _1\bigwedge \varPsi _2) \bigwedge \varPsi _3\).

  2. 2.

    \(\varPsi _1\bigvee (\varPsi _2\bigvee \varPsi _3) = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\bigvee (\max \{\rho _{\varPsi _2},\rho _{\varPsi _3}\}, \min \{\aleph _{\varPsi _2},\aleph _{\varPsi _3}\},\min \{\sigma _{\varPsi _2},\sigma _{\varPsi _3}\}) =(\max \{\rho _{\varPsi _1},\max \{\rho _{\varPsi _2},\rho _{\varPsi _3}\}\}, \min \{\aleph _{\varPsi _1},\min \{\aleph _{\varPsi _2},\aleph _{\varPsi _3}\}\},\) \(\min \{\sigma _{\varPsi _1},\min \{\sigma _{\varPsi _2},\sigma _{\varPsi _3}\}\}) =(\max \{\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\rho _{\varPsi _3}\}, \min \{\min \{\aleph _{\varPsi _1}, \aleph _{\varPsi _2}\}, \aleph _{\varPsi _3}\},\) \(\min \{\min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\},\sigma _{\varPsi _3}\}){=}(\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}, \min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\},\min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\})\bigvee (\rho _{\varPsi _3},\aleph _{\varPsi _3},\sigma _{\varPsi _3}) = (\varPsi _1\bigvee \varPsi _2) \bigvee \varPsi _3\).\(\square \)

Theorem 5

Let \(\varPsi _1 = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\), \(\varPsi _2 = (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2})\) and \(\varPsi _3 = (\rho _{\varPsi _3},\aleph _{\varPsi _3},\sigma _{\varPsi _3})\) be \(k^{n}_{m}\)-RPFS. Then

  1. 1.

    \((\varPsi _1\bigvee \varPsi _2)\bigwedge \varPsi _3=(\varPsi _1\bigwedge \varPsi _3)\bigvee (\varPsi _2\bigwedge \varPsi _3)\).

  2. 2.

    \((\varPsi _1\bigwedge \varPsi _2)\bigvee \varPsi _3=(\varPsi _1\bigvee \varPsi _3)\bigwedge (\varPsi _2\bigvee \varPsi _3)\).

Proof

For the \(k^{n}_{m}\)-RPFSs \(\varPsi _1, \varPsi _2\) and \(\varPsi _3\), based on Definition 6, we have

  1. 1.

    \((\varPsi _1\bigvee \varPsi _2)\bigwedge \varPsi _3=(\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\},\min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\})\bigwedge (\rho _{\varPsi _3},\aleph _{\varPsi _3},\sigma _{\varPsi _3}) =(\min \{\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}, \rho _{\varPsi _3}\},\min \{\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}, \aleph _{\varPsi _3}\}, \max \{\min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\},\sigma _{\varPsi _3}\})\), and \((\varPsi _1\bigwedge \varPsi _3)\bigvee (\varPsi _2\bigwedge \varPsi _3)=(\min \{\rho _{\varPsi _1},\rho _{\varPsi _3}\},\min \{\aleph _{\varPsi _1}, \aleph _{\varPsi _3}\},\max \{\sigma _{\varPsi _1},\sigma _{\varPsi _3}\}) \bigvee (\min \{\rho _{\varPsi _2},\rho _{\varPsi _3}\},\min \{\aleph _{\varPsi _2},\aleph _{\varPsi _3}\},\max \{\sigma _{\varPsi _2},\sigma _{\varPsi _3}\}) =(\max \{\min \{\rho _{\varPsi _1},\rho _{\varPsi _3}\}, \min \{\rho _{\varPsi _2},\rho _{\varPsi _3}\}\}\), \(\min \{\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _3}\}, \min \{\aleph _{\varPsi _2},\aleph _{\varPsi _3}\}\}, \min \{\max \{\sigma _{\varPsi _1},\sigma _{\varPsi _3}\},\max \{\sigma _{\varPsi _2},\sigma _{\varPsi _3}\}\})\). Then

    $$\begin{aligned}{} & {} {\min }\{{\max }\{\rho _{\varPsi _1},\rho _{\varPsi _2}\}, \rho _{\varPsi _3}\}\\{} & {} \quad =\left\{ \begin{array}{lll} \rho _{\varPsi _2} &{} \text{ if }\, \rho _{\varPsi _1} \le \rho _{\varPsi _2}\le \rho _{\varPsi _3},\\ \rho _{\varPsi _1} &{} \text{ if }\, \rho _{\varPsi _2} \le \rho _{\varPsi _1}\le \rho _{\varPsi _3},\\ \rho _{\varPsi _3} &{} \text{ if }\, \rho _{\varPsi _1} \le \rho _{\varPsi _3}\le \rho _{\varPsi _2},\\ \rho _{\varPsi _3} &{} \text{ if }\, \rho _{\varPsi _3} \le \rho _{\varPsi _1}\le \rho _{\varPsi _2},\\ \rho _{\varPsi _3} &{} \text{ if }\, \rho _{\varPsi _2} \le \rho _{\varPsi _3}\le \rho _{\varPsi _1},\\ \rho _{\varPsi _3} &{} \text{ if }\, \rho _{\varPsi _3} \le \rho _{\varPsi _2}\le \rho _{\varPsi _1}, \end{array}\right. \\{} & {} {\min }\{{\min }\{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}, \aleph _{\varPsi _3}\}\\{} & {} \quad =\left\{ \begin{array}{lll} \aleph _{\varPsi _1} &{} \text{ if }\, \aleph _{\varPsi _1} \le \aleph _{\varPsi _2}\le \aleph _{\varPsi _3},\\ \aleph _{\varPsi _2} &{} \text{ if }\,\aleph _{\varPsi _2} \le \aleph _{\varPsi _1}\le \aleph _{\varPsi _3},\\ \aleph _{\varPsi _1} &{} \text{ if }\,\aleph _{\varPsi _1} \le \aleph _{\varPsi _3}\le \aleph _{\varPsi _2},\\ \aleph _{\varPsi _3} &{} \text{ if }\,\aleph _{\varPsi _3} \le \aleph _{\varPsi _1}\le \aleph _{\varPsi _2},\\ \aleph _{\varPsi _2} &{} \text{ if }\,\aleph _{\varPsi _2} \le \aleph _{\varPsi _3}\le \aleph _{\varPsi _1},\\ \aleph _{\varPsi _3} &{} \text{ if }\,\aleph _{\varPsi _3} \le \aleph _{\varPsi _2}\le \aleph _{\varPsi _1}, \end{array}\right. \\{} & {} {\max }\{{\min }\{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\},\sigma _{\varPsi _3}\}\\{} & {} \quad = \left\{ \begin{array}{lll} \sigma _{\varPsi _3} &{} \text{ if }\, \sigma _{\varPsi _1} \le \sigma _{\varPsi _2}\le \sigma _{\varPsi _3},\\ \sigma _{\varPsi _3} &{} \text{ if }\,\sigma _{\varPsi _2} \le \sigma _{\varPsi _1}\le \sigma _{\varPsi _3},\\ \sigma _{\varPsi _3} &{} \text{ if }\,\sigma _{\varPsi _1} \le \sigma _{\varPsi _3}\le \sigma _{\varPsi _2},\\ \sigma _{\varPsi _1} &{} \text{ if }\,\sigma _{\varPsi _3} \le \sigma _{\varPsi _1}\le \sigma _{\varPsi _2},\\ \sigma _{\varPsi _3} &{} \text{ if }\,\sigma _{\varPsi _2} \le \sigma _{\varPsi _3}\le \sigma _{\varPsi _1},\\ \sigma _{\varPsi _2} &{} \text{ if }\,\sigma _{\varPsi _3} \le \sigma _{\varPsi _2}\le \sigma _{\varPsi _1}, \end{array}\right. \\{} & {} {\max }\{{\min }\{\rho _{\varPsi _1},\rho _{\varPsi _3}\}, {\min }\{\rho _{\varPsi _2},\rho _{\varPsi _3}\}\}\\{} & {} \quad = \left\{ \begin{array}{lll} \rho _{\varPsi _2} &{} \text{ if }\, \rho _{\varPsi _1} \le \rho _{\varPsi _2}\le \rho _{\varPsi _3},\\ \rho _{\varPsi _1} &{} \text{ if }\,\rho _{\varPsi _2} \le \rho _{\varPsi _1}\le \rho _{\varPsi _3},\\ \rho _{\varPsi _3} &{} \text{ if }\,\rho _{\varPsi _1} \le \rho _{\varPsi _3}\le \rho _{\varPsi _2},\\ \rho _{\varPsi _3} &{} \text{ if }\,\rho _{\varPsi _3} \le \rho _{\varPsi _1}\le \rho _{\varPsi _2},\\ \rho _{\varPsi _3} &{} \text{ if }\,\rho _{\varPsi _2} \le \rho _{\varPsi _3}\le \rho _{\varPsi _1},\\ \rho _{\varPsi _3} &{} \text{ if }\,\rho _{\varPsi _3} \le \rho _{\varPsi _2}\le \rho _{\varPsi _1}, \end{array}\right. \\{} & {} {\min }\{{\min }\{\aleph _{\varPsi _1},\aleph _{\varPsi _3}\}, {\min }\{\aleph _{\varPsi _2},\aleph _{\varPsi _3}\}\}\\{} & {} \quad = \left\{ \begin{array}{lll} \aleph _{\varPsi _1} &{} \text{ if }\, \aleph _{\varPsi _1} \le \aleph _{\varPsi _2}\le \aleph _{\varPsi _3},\\ \aleph _{\varPsi _2} &{} \text{ if }\,\aleph _{\varPsi _2} \le \aleph _{\varPsi _1}\le \aleph _{\varPsi _3},\\ \aleph _{\varPsi _1} &{} \text{ if }\,\aleph _{\varPsi _1} \le \aleph _{\varPsi _3}\le \aleph _{\varPsi _2},\\ \aleph _{\varPsi _3} &{} \text{ if }\,\aleph _{\varPsi _3} \le \aleph _{\varPsi _1}\le \aleph _{\varPsi _2},\\ \aleph _{\varPsi _2} &{} \text{ if }\,\aleph _{\varPsi _2} \le \aleph _{\varPsi _3}\le \aleph _{\varPsi _1},\\ \aleph _{\varPsi _3} &{} \text{ if }\,\aleph _{\varPsi _3} \le \aleph _{\varPsi _2}\le \aleph _{\varPsi _1}, \end{array}\right. \end{aligned}$$

    and

    $$\begin{aligned}{} & {} {\min }\{{\max }\{\sigma _{\varPsi _1},\sigma _{\varPsi _3}\},{\max }\{\sigma _{\varPsi _2},\sigma _{\varPsi _3}\}\}\\{} & {} \quad = \left\{ \begin{array}{lll} \sigma _{\varPsi _3} &{} \text{ if }\, \sigma _{\varPsi _1} \le \sigma _{\varPsi _2}\le \sigma _{\varPsi _3},\\ \sigma _{\varPsi _3} &{} \text{ if }\,\sigma _{\varPsi _2} \le \sigma _{\varPsi _1}\le \sigma _{\varPsi _3},\\ \sigma _{\varPsi _3} &{} \text{ if }\,\sigma _{\varPsi _1} \le \sigma _{\varPsi _3}\le \sigma _{\varPsi _2},\\ \sigma _{\varPsi _1} &{} \text{ if }\,\sigma _{\varPsi _3} \le \sigma _{\varPsi _1}\le \sigma _{\varPsi _2},\\ \sigma _{\varPsi _3} &{} \text{ if }\,\sigma _{\varPsi _2} \le \sigma _{\varPsi _3}\le \sigma _{\varPsi _1},\\ \sigma _{\varPsi _2} &{} \text{ if }\,\sigma _{\varPsi _3} \le \sigma _{\varPsi _2}\le \sigma _{\varPsi _1}. \end{array}\right. \end{aligned}$$

    Thus, \(\min \{\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}, \rho _{\varPsi _3}\}=\max \{\min \{\rho _{\varPsi _1},\rho _{\varPsi _3}\}, \min \{\rho _{\varPsi _2},\rho _{\varPsi _3}\}\}\), \(\min \{\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}, \aleph _{\varPsi _3}\}=\min \{\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _3}\}, \min \{\aleph _{\varPsi _2},\aleph _{\varPsi _3}\}\}\), and \(\max \{\min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\},\sigma _{\varPsi _3}\}= \min \{\max \{\sigma _{\varPsi _1},\sigma _{\varPsi _3}\},\max \{\sigma _{\varPsi _2},\sigma _{\varPsi _3}\}\}\). Therefore, \((\varPsi _1\bigvee \varPsi _2)\bigwedge \varPsi _3=(\varPsi _1\bigwedge \varPsi _3)\bigvee (\varPsi _2\bigwedge \varPsi _3)\).

  2. 2.

    The evidence resembles (1). \(\square \)

Theorem 6

Let \(\varPsi _1 = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\) and \(\varPsi _2 = (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2})\) be \(k^{n}_{m}\)-RPFSs. Then

  1. 1.

    \((\varPsi _1 \bigwedge \varPsi _2)^{c} = \varPsi _1^{c} \bigvee \varPsi _2^{c}\).

  2. 2.

    \((\varPsi _1 \bigvee \varPsi _2)^{c} = \varPsi _1^{c} \bigwedge \varPsi _2^{c}\).

Proof

For the \(k^{n}_{m}\)-RPFSs \(\varPsi _1\) and \(\varPsi _2\), based on Definition 6, we have

  1. 1.

    \((\varPsi _1 \bigwedge \varPsi _2)^{c}{=}(\min \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\},\max \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\})^{c}{=}(\max \{(\sigma _{\varPsi _1})^\frac{m}{n},(\sigma _{\varPsi _2})^\frac{m}{n}\}, \min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\},\min \{(\rho _{\varPsi _1})^\frac{n}{m},(\rho _{\varPsi _2})^\frac{n}{m}\}){=}((\sigma _{\varPsi _1})^\frac{m}{n},\aleph _{\varPsi _1},(\rho _{\varPsi _1})^\frac{n}{m})\bigvee ((\sigma _{\varPsi _2})^\frac{m}{n},\aleph _{\varPsi _2},(\rho _{\varPsi _2})^\frac{n}{m}){=}\varPsi _1^{c}{\bigvee }\varPsi _2^{c}\).

  2. 2.

    \((\varPsi _1 \bigvee \varPsi _2)^{c} = (\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\},\min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\})^{c} = (\min \{(\sigma _{\varPsi _1})^\frac{m}{n},(\sigma _{\varPsi _2})^\frac{m}{n}\}, \min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\},\max \{(\rho _{\varPsi _1})^\frac{n}{m},(\rho _{\varPsi _2})^\frac{n}{m}\}) = ((\sigma _{\varPsi _1})^\frac{m}{n},\aleph _{\varPsi _1},(\rho _{\varPsi _1})^\frac{n}{m})\bigwedge ((\sigma _{\varPsi _2})^\frac{m}{n},\aleph _{\varPsi _2},(\rho _{\varPsi _2})^\frac{n}{m}) = \varPsi _1^{c} \bigwedge \varPsi _2^{c}\). \(\square \)

Definition 7

Let \(\varPsi = (\rho _{\varPsi },\aleph _{\varPsi },\sigma _{\varPsi })\), \(\varPsi _1 = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\) and \(\varPsi _2 = (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2})\) be \(k^{n}_{m}\)-RPFSs. Then

  1. 1.

    \(\varPsi _1 \oplus \varPsi _2 = \left( \frac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n})^\frac{1}{n}}, \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))^\frac{1}{k}},\right. \left. \qquad \qquad \qquad \quad \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{(1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _2}^{m}))^\frac{1}{m}}\right) \),

  2. 2.

    \(\varPsi _1 \otimes \varPsi _2 = \left( \frac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1+(1- \rho _{\varPsi _1}^{n})(1- \rho _{\varPsi _2}^{n}))^\frac{1}{n}}, \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))^\frac{1}{k}},\right. \left. \qquad \quad \qquad \qquad \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{(1+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m})^\frac{1}{m}}\right) \),

  3. 3.

    \(\ell \varPsi = \left( (\frac{(1+\rho _{\varPsi }^{n})^{\ell }- (1-\rho _{\varPsi }^{n})^{\ell }}{(1+\rho _{\varPsi }^{n})^{\ell }+ (1-\rho _{\varPsi }^{n})^{\ell }})^\frac{1}{n}, \frac{\aleph _{\varPsi }^{\ell }}{((2-\aleph _{\varPsi }^{k})^{\ell }+ (1-\aleph _{\varPsi }^{k})^{\ell })^\frac{1}{k}},\right. \left. \qquad \quad \qquad \qquad \frac{\sigma _{\varPsi }^{\ell }}{((2-\sigma _{\varPsi }^{m})^{\ell }+ (\sigma _{\varPsi }^{m})^{\ell })^\frac{1}{m}}\right) \), and

  4. 4.

    \( \varPsi ^{\ell } = \left( \frac{\rho _{\varPsi }^{\ell }}{((2-\rho _{\varPsi }^{n})^{\ell }+ (\rho _{\varPsi }^{n})^{\ell })^\frac{1}{n}}, \frac{\aleph _{\varPsi }^{\ell }}{((2-\aleph _{\varPsi }^{k})^{\ell }+ (1-\aleph _{\varPsi }^{k})^{\ell })^\frac{1}{k}},\right. \left. \qquad \qquad \qquad \quad (\frac{(1+\sigma _{\varPsi }^{m})^{\ell }- (1-\sigma _{\varPsi }^{m})^{\ell }}{(1+\sigma _{\varPsi }^{m})^{\ell }+ (1-\sigma _{\varPsi }^{m})^{\ell }})^\frac{1}{m}\right) \),

where \(\ell \) is a positive real number (\(\ell > 0\)).

Example 2

Assume that \(\varPsi _1=(0.71, 0.94, 0.57)\) and \(\varPsi _2=( 0.82, , 0.70, 0.87)\) are \(4^{5}_{7}\)-RPFSs for \(\chi = \{r\}\). Then

  1. 1.

    \(\varPsi _1 \oplus \varPsi _2 = \left( \frac{(0.71)(0.82)}{(1+ (0.71^{5})(0.82^{5}))^\frac{1}{5}}, \frac{(0.94)(0.70)}{(1+(1- 0.94^{4})(1- 0.70^{4}))^\frac{1}{4}},\right. \left. \qquad \quad \frac{(0.57)(0.87)}{(1+(1- 0.57^{7})(1- 0.87^{7}))^\frac{1}{7}}\right) \qquad \quad \approx (0.5747, 0.6331, 0.4633)\).

  2. 2.

    \(\varPsi _1 \otimes \varPsi _2 = \left( \frac{(0.71)(0.82)}{(1+(1- 0.71^{5})(1- 0.82^{5}))^\frac{1}{5}}, \right. \left. \qquad \quad \frac{(0.94)(0.70)}{(1+(1- 0.94^{4})(1- 0.70^{4}))^\frac{1}{4}}, \frac{(0.57)(0.87)}{(1+ (0.57^{7})(0.87^{7}))^\frac{1}{7}}\right) \qquad \quad \approx (0.5357, 0.6331, 0.4954)\).

  3. 3.

    \(\ell \varPsi _1 = \left( (\frac{(1+0.71^{5})^{2}- (1-0.71^{5})^{2}}{(1+0.71^{5})^{2}+ (1-0.71^{5})^{2}})^\frac{1}{5},\right. \left. \qquad \quad \frac{0.94^{2}}{((2-0.94^{4})^{2}+ (1-0.94^{4})^{2})^\frac{1}{4}}, \frac{0.57^{2}}{((2-0.57^{7})^{2}+ (0.57^{7})^{2})^\frac{1}{7}}\right) \approx (0.8104, 0.7939, 0.2673)\).

  4. 4.

    \(\varPsi ^{\ell }_1 = \left( \frac{0.71^{2}}{((2-0.71^{5})^{2}+ (0.71^{5})^{2})^\frac{1}{5}}, \frac{0.94^{2}}{((2-0.94^{4})^{2}+ (1-0.94^{4})^{2})^\frac{1}{4}}, \right. \left. \qquad \quad (\frac{(1+0.57^{7})^{2}- (1-0.57^{7})^{2}}{(1+0.57^{7})^{2}+ (1-0.57^{7})^{2}})^\frac{1}{7}\right) \approx (0.3960, 0.7939, 0.6293)\), for \(\ell = 2\).

Theorem 7

If \(\varPsi _1 = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\) and \(\varPsi _2 = (\rho _{\varPsi _2},\aleph _{\varPsi _2}, \sigma _{\varPsi _2})\) are \(k^{n}_{m}\)-RPFSs, then \(\varPsi _1 \oplus \varPsi _2\) and \(\varPsi _1 \otimes \varPsi _2\) are also \(k^{n}_{m}\)-RPFSs.

Proof

For \(k^{n}_{m}\)-RPFSs \(\varPsi _1 = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\) and \(\varPsi _2 = (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2})\), the following relations are evident:

$$\begin{aligned} 0\le & {} \rho _{\varPsi _1}^{n}, \aleph _{\varPsi _1}^{k}, \sigma _{\varPsi _1}^{m}\le 1,\\ 0\le & {} \rho _{\varPsi _1}^{n} + \aleph _{\varPsi _1}^{k} + \sigma _{\varPsi _1}^{m}\le 1,\\ 0\le & {} \rho _{\varPsi _2}^{n}, \aleph _{\varPsi _2}^{k}, \sigma _{\varPsi _2}^{m}\le 1,\\ 0\le & {} \rho _{\varPsi _2}^{n} + \aleph _{\varPsi _2}^{k} + \sigma _{\varPsi _2}^{m}\le 1,\\ \rho _{\varPsi _1}^{n}\ge & {} \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}, \rho _{\varPsi _2}^{n}\ge \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}, 1\ge \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}\ge 0,\\ \sigma _{\varPsi _1}^{m}\ge & {} \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m},\\ \sigma _{\varPsi _2}^{m}\ge & {} \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m},\\ 1\ge & {} \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}\ge 0,\\ \aleph _{\varPsi _1}^{k}\ge & {} \aleph _{\varPsi _1}^{k}\aleph _{\varPsi _2}^{k},\\ \aleph _{\varPsi _2}^{k}\ge & {} \aleph _{\varPsi _1}^{k}\aleph _{\varPsi _2}^{k}, \,\hbox {and}\, 1\ge \aleph _{\varPsi _1}^{k}\aleph _{\varPsi _2}^{k}\ge 0, \end{aligned}$$

which indicates that

$$\begin{aligned} 0\le & {} \rho _{\varPsi _1}^{n}\le 1- \aleph _{\varPsi _1}^{k}\; \hbox {and}\; 0 \le \rho _{\varPsi _2}^{n}\le 1- \aleph _{\varPsi _2}^{k} \end{aligned}$$

implies

$$\begin{aligned} \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}\le & {} \rho _{\varPsi _1}^{n}(1- \aleph _{\varPsi _2}^{k}) \le (1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}), \end{aligned}$$

and hence

$$\begin{aligned} 1+\rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}\le 1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}). \end{aligned}$$

Therefore

$$\begin{aligned} \frac{1}{1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k})}\le \frac{1}{1+\rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}}. \end{aligned}$$

Similarly

$$\begin{aligned} \frac{1}{1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _2}^{m})}\le & {} \frac{1}{1+\rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}},\\ \frac{1}{1+(1- \rho _{\varPsi _1}^{n})(1- \rho _{\varPsi _2}^{n})}\le & {} \frac{1}{1+\sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}}, \end{aligned}$$

and

$$\begin{aligned} \frac{1}{1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k})}\le \frac{1}{1+\sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}}. \end{aligned}$$

Since

$$\begin{aligned} \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}\le \rho _{\varPsi _1}^{n} \le 1, 0\le (1-\rho _{\varPsi _1}^{n})\, \hbox {and}\, 0\le (1-\rho _{\varPsi _2}^{n}), \end{aligned}$$

then

$$\begin{aligned} \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}\le 1 + (1-\rho _{\varPsi _1}^{n})(1-\rho _{\varPsi _2}^{n}), \end{aligned}$$

and hence

$$\begin{aligned} 0\le \frac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1 + (1-\rho _{\varPsi _1}^{n})(1-\rho _{\varPsi _2}^{n}))\frac{1}{n}}\le 1. \end{aligned}$$

Similarly

$$\begin{aligned} 0\le \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{(1 + (1-\aleph _{\varPsi _1}^{k})(1-\aleph _{\varPsi _2}^{k}))\frac{1}{k}}\le 1, \end{aligned}$$

and

$$\begin{aligned} 0\le \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{(1 + (1-\sigma _{\varPsi _1}^{m})(1-\sigma _{\varPsi _2}^{m}))\frac{1}{m}}\le 1. \end{aligned}$$

And also we have

$$\begin{aligned} 0\le \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n} \le \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}+ 1, \end{aligned}$$

which implies that

$$\begin{aligned} 0\le \frac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n})^\frac{1}{n}}\le 1. \end{aligned}$$

Similarly

$$\begin{aligned} 0\le \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{(1+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m})^\frac{1}{m}}\le 1. \end{aligned}$$

Then, we have

  1. 1.

    \(\left( \dfrac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n})^{\frac{1}{n}}}\right) ^{n} + \left( \dfrac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))^\frac{1}{k}}\right) ^{k}\)

    $$\begin{aligned}{} & {} \qquad + \left( \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{(1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _2}^{m}))^\frac{1}{m}}\right) ^{m}\\{} & {} \quad = \frac{\rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}}{1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}} + \frac{\aleph _{\varPsi _1}^{k}\aleph _{\varPsi _2}^{k}}{1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k})} \\{} & {} \qquad + \frac{\sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}}{1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _2}^{m})}\\{} & {} \quad \le \frac{\rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}+\rho _{\varPsi _1}^{n}}{1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}} + \frac{\aleph _{\varPsi _1}^{k}\aleph _{\varPsi _2}^{k}}{1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}} + \frac{\sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}}{1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}}\\{} & {} \quad = \frac{\rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}+\rho _{\varPsi _1}^{n} + \aleph _{\varPsi _1}^{k}\aleph _{\varPsi _2}^{k}+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}}{1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}}\\{} & {} \quad \le \frac{\rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}+\rho _{\varPsi _1}^{n} + \aleph _{\varPsi _1}^{k}+ \sigma _{\varPsi _1}^{m}}{1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}}\\{} & {} \quad \le \frac{\rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}+1}{1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}} = 1. \end{aligned}$$
  2. 2.

    \(\left( \dfrac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1+(1- \rho _{\varPsi _1}^{n})(1- \rho _{\varPsi _2}^{n}))^\frac{1}{n}}\right) ^{n}\)

    $$\begin{aligned}{} & {} \qquad + \left( \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))^\frac{1}{k}}\right) ^{k} \\{} & {} \qquad +\left( \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{(1+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m})^\frac{1}{m}}\right) ^{m}\\{} & {} \quad =\frac{\rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}}{1+(1- \rho _{\varPsi _1}^{n})(1- \rho _{\varPsi _2}^{n})} \\{} & {} \qquad + \frac{\aleph _{\varPsi _1}^{k}\aleph _{\varPsi _2}^{k}}{1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k})}+ \frac{\sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}}{1+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}}\\{} & {} \quad \le \frac{\rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}}{1+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}} + \frac{\aleph _{\varPsi _1}^{k}\aleph _{\varPsi _2}^{k}}{1+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}}+ \frac{\sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}+\sigma _{\varPsi _1}^{m}}{1+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}}\\{} & {} \quad =\frac{\rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}+ \aleph _{\varPsi _1}^{k}\aleph _{\varPsi _2}^{k}+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}+\sigma _{\varPsi _1}^{m}}{1+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}}\\{} & {} \quad \le \frac{\rho _{\varPsi _1}^{n}+ \aleph _{\varPsi _1}^{k}+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}+\sigma _{\varPsi _1}^{m}}{1+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}}\\{} & {} \quad =\frac{1+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}}{1+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}} = 1. \end{aligned}$$

These indicate that both of \(\varPsi _1 \oplus \varPsi _2\) and \(\varPsi _1 \otimes \varPsi _2\) are \(k^{n}_{m}\)-RPFSs. \(\square \)

Theorem 8

Let \(\varPsi = (\rho _{\varPsi },\aleph _{\varPsi },\sigma _{\varPsi })\) be a \(k^{n}_{m}\)-RPFS and \(\ell > 0\). Then, \(\ell \varPsi \) and \(\varPsi ^{\ell }\) are also \(k^{n}_{m}\)-RPFSs.

Proof

Since

$$\begin{aligned} 0\le \rho _{\varPsi }^{n}, \aleph _{\varPsi }^{k}, \sigma _{\varPsi }^{m}\le 1,\, \hbox {and}\, 0\le \rho _{\varPsi }^{n} + \aleph _{\varPsi }^{k} + \sigma _{\varPsi }^{m}\le 1, \end{aligned}$$

then

$$\begin{aligned} 1-\rho _{\varPsi }^{n}\ge \sigma _{\varPsi }^{m}\ge 0,\,\hbox {and}\, 1-\rho _{\varPsi }^{n}\ge \aleph _{\varPsi }^{k}\ge 0, \end{aligned}$$

which implies that

$$\begin{aligned}{} & {} \frac{1}{(1+\rho _{\varPsi }^{n})^{\ell }+(\sigma _{\varPsi }^{m})^{\ell }}\ge \frac{1}{(1+\rho _{\varPsi }^{n})^{\ell }+(1-\rho _{\varPsi }^{n})^{\ell }}\,\\{} & {} \quad \hbox {and}\, -(1-\rho _{\varPsi }^{n})^{\ell }\le -(\aleph _{\varPsi }^{k})^{\ell }. \end{aligned}$$

Again since

$$\begin{aligned} 0\le & {} \rho _{\varPsi }^{n}\le 1 - \sigma _{\varPsi }^{m}, 0\le \rho _{\varPsi }^{n}\le 1 - \aleph _{\varPsi }^{k}\, \hbox {and}\, \\ 0\le & {} \sigma _{\varPsi }^{m}\le 1 - \aleph _{\varPsi }^{k}, \end{aligned}$$

then

$$\begin{aligned} 1+\rho _{\varPsi }^{n}\le & {} 2 - \sigma _{\varPsi }^{m}, 1+\rho _{\varPsi }^{n}\le 2 - \aleph _{\varPsi }^{k}\, \hbox {and }\, \\{} & {} (1+\rho _{\varPsi }^{n})^{\ell } + (\sigma _{\varPsi }^{m})^{\ell }\le (2 - \aleph _{\varPsi }^{k})^{\ell } + (1 - \aleph _{\varPsi }^{k})^{\ell }; \end{aligned}$$

thus

$$\begin{aligned}{} & {} \frac{1}{(2 - \sigma _{\varPsi }^{m})^{\ell }+(\sigma _{\varPsi }^{m})^{\ell }}\le \frac{1}{(1+\rho _{\varPsi }^{n})^{\ell }+(\sigma _{\varPsi }^{m})^{\ell }}, \hbox {and}\\{} & {} \frac{1}{(2 - \aleph _{\varPsi }^{k})^{\ell }+(1-\aleph _{\varPsi }^{k})^{\ell }}\le \frac{1}{(1+\rho _{\varPsi }^{n})^{\ell }+(\sigma _{\varPsi }^{m})^{\ell }}. \end{aligned}$$

Similarly

$$\begin{aligned} \frac{1}{(1+\sigma _{\varPsi }^{m})^{\ell }+(\rho _{\varPsi }^{n})^{\ell }}\ge & {} \frac{1}{(1+\sigma _{\varPsi }^{m})^{\ell }+(1-\sigma _{\varPsi }^{m})^{\ell }}, \\ {}{} & {} -(1-\sigma _{\varPsi }^{m})^{\ell }\le -(\aleph _{\varPsi }^{k})^{\ell },\\ \frac{1}{(2 - \rho _{\varPsi }^{n})^{\ell }+(\rho _{\varPsi }^{n})^{\ell }}\le & {} \frac{1}{(1+\sigma _{\varPsi }^{m})^{\ell }+(\rho _{\varPsi }^{n})^{\ell }},\, \hbox {and}\\ \frac{1}{(2 - \aleph _{\varPsi }^{k})^{\ell }+(1-\aleph _{\varPsi }^{k})^{\ell }}\le & {} \frac{1}{(1+\sigma _{\varPsi }^{m})^{\ell }+(\rho _{\varPsi }^{n})^{\ell }}. \end{aligned}$$

Therefore

  1. 1.

    \( \left( \left( \dfrac{(1+\rho _{\varPsi }^{n})^{\ell }- (1-\rho _{\varPsi }^{n})^{\ell }}{(1+\rho _{\varPsi }^{n})^{\ell }+ (1-\rho _{\varPsi }^{n})^{\ell }}\right) ^\frac{1}{n}\right) ^{n}\)

    $$\begin{aligned}{} & {} \qquad + \left( \frac{\aleph _{\varPsi }^{\ell }}{((2-\aleph _{\varPsi }^{k})^{\ell }+ (1-\aleph _{\varPsi }^{k})^{\ell })^\frac{1}{k}}\right) ^{k} \\{} & {} \qquad +\left( \frac{\sigma _{\varPsi }^{\ell }}{((2-\sigma _{\varPsi }^{m})^{\ell }+ (\sigma _{\varPsi }^{m})^{\ell })^\frac{1}{m}}\right) ^{m}\\{} & {} \quad = \frac{(1+\rho _{\varPsi }^{n})^{\ell }- (1-\rho _{\varPsi }^{n})^{\ell }}{(1+\rho _{\varPsi }^{n})^{\ell }+ (1-\rho _{\varPsi }^{n})^{\ell }}\\{} & {} \qquad +\frac{(\aleph _{\varPsi }^{\ell })^{k}}{(2-\aleph _{\varPsi }^{k})^{\ell }+ (1-\aleph _{\varPsi }^{k})^{\ell }} + \frac{(\sigma _{\varPsi }^{\ell })^{m}}{(2-\sigma _{\varPsi }^{m})^{\ell }+ (\sigma _{\varPsi }^{m})^{\ell }}\\{} & {} \quad \le \frac{(1+\rho _{\varPsi }^{n})^{\ell }- (\aleph _{\varPsi }^{k})^{\ell }}{(1+\rho _{\varPsi }^{n})^{\ell }+ (\sigma _{\varPsi }^{m})^{\ell }}+ \frac{(\aleph _{\varPsi }^{\ell })^{k}}{(1+\rho _{\varPsi }^{n})^{\ell }+ (\sigma _{\varPsi }^{m})^{\ell }} \\{} & {} \qquad + \frac{(\sigma _{\varPsi }^{\ell })^{m}}{(1+\rho _{\varPsi }^{n})^{\ell }+ (\sigma _{\varPsi }^{m})^{\ell }} = 1. \end{aligned}$$
  2. 2.

    \(\left( \dfrac{\rho _{\varPsi }^{\ell }}{\left( (2-\rho _{\varPsi }^{n})^{\ell }+ (\rho _{\varPsi }^{n})^{\ell }\right) ^\frac{1}{n}}\right) ^{n}\)

    $$\begin{aligned}{} & {} \qquad + \left( \frac{\aleph _{\varPsi }^{\ell }}{\left( (2-\aleph _{\varPsi }^{k})^{\ell }+ (1-\aleph _{\varPsi }^{k})^{\ell }\right) ^\frac{1}{k}}\right) ^{k} \\{} & {} \qquad +\left( \left( \frac{(1+\sigma _{\varPsi }^{m})^{\ell }- (1-\sigma _{\varPsi }^{m})^{\ell }}{(1+\sigma _{\varPsi }^{m})^{\ell }+ (1-\sigma _{\varPsi }^{m})^{\ell }}\right) ^\frac{1}{m}\right) ^{m}\\{} & {} \quad = \frac{(\rho _{\varPsi }^{\ell })^{n}}{(2-\rho _{\varPsi }^{n})^{\ell }+ (\rho _{\varPsi }^{n})^{\ell }} +\frac{(\aleph _{\varPsi }^{\ell })^{k}}{(2-\aleph _{\varPsi }^{k})^{\ell }+ (1-\aleph _{\varPsi }^{k})^{\ell }} \\{} & {} \qquad +\frac{(1+\sigma _{\varPsi }^{m})^{\ell }- (1-\sigma _{\varPsi }^{m})^{\ell }}{(1+\sigma _{\varPsi }^{m})^{\ell }+ (1-\sigma _{\varPsi }^{m})^{\ell }}\\{} & {} \quad \le \frac{(\rho _{\varPsi }^{\ell })^{n}}{(1+\sigma _{\varPsi }^{m})^{\ell }+ (\rho _{\varPsi }^{n})^{\ell }} +\frac{(\aleph _{\varPsi }^{\ell })^{k}}{(1+\sigma _{\varPsi }^{m})^{\ell }+ (\rho _{\varPsi }^{n})^{\ell }} \\{} & {} \qquad + \frac{(1+\sigma _{\varPsi }^{m})^{\ell }- (\aleph _{\varPsi }^{k})^{\ell }}{(1+\sigma _{\varPsi }^{m})^{\ell }+ (\rho _{\varPsi }^{n})^{\ell }} = 1. \end{aligned}$$

It is obvious that

$$\begin{aligned} 0\le & {} \left( \frac{(1+\rho _{\varPsi }^{n})^{\ell }- (1-\rho _{\varPsi }^{n})^{\ell }}{(1+\rho _{\varPsi }^{n})^{\ell }+ (1-\rho _{\varPsi }^{n})^{\ell }}\right) ^\frac{1}{n}\le 1,\\ 0\le & {} \frac{\rho _{\varPsi }^{\ell }}{((2-\rho _{\varPsi }^{n})^{\ell }+ (\rho _{\varPsi }^{n})^{\ell })^\frac{1}{n}}\le 1,\\ 0\le & {} \frac{\aleph _{\varPsi }^{\ell }}{((2-\aleph _{\varPsi }^{k})^{\ell }+ (1-\aleph _{\varPsi }^{k})^{\ell })^\frac{1}{k}}\le 1,\\ 0\le & {} \frac{\sigma _{\varPsi }^{\ell }}{((2-\sigma _{\varPsi }^{m})^{\ell }+ (\sigma _{\varPsi }^{m})^{\ell })^\frac{1}{m}}\le 1,\, \hbox {and}\,\\ 0\le & {} \left( \frac{(1+\sigma _{\varPsi }^{m})^{\ell }- (1-\sigma _{\varPsi }^{m})^{\ell }}{(1+\sigma _{\varPsi }^{m})^{\ell }+ (1-\sigma _{\varPsi }^{m})^{\ell }}\right) ^\frac{1}{m}\le 1. \end{aligned}$$

Hence, \(\ell \varPsi \) and \(\varPsi ^{\ell }\) are \(k^{n}_{m}\)-RPFSs. \(\square \)

Theorem 9

Let \(\varPsi = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\) and \(\varPsi _2 = (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2})\) be \(k^{n}_{m}\)-RPFSs. Then

  1. 1.

    \(\varPsi _1 \oplus \varPsi _2 = \varPsi _2 \oplus \varPsi _1\).

  2. 2.

    \(\varPsi _1 \otimes \varPsi _2 = \varPsi _2 \otimes \varPsi _1\).

Proof

From Definition 7, we can obtain

  1. 1.

    \(\varPsi _1 \oplus \varPsi _2 = \left( \frac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n})^\frac{1}{n}}, \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))^\frac{1}{k}},\right. \left. \qquad \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{(1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _2}^{m}))^\frac{1}{m}}\right) = \left( \frac{\rho _{\varPsi _2}\rho _{\varPsi _1}}{(1+ \rho _{\varPsi _2}^{n}\rho _{\varPsi _1}^{n})^\frac{1}{n}},\right. \left. \qquad \frac{\aleph _{\varPsi _2}\aleph _{\varPsi _1}}{(1+(1- \aleph _{\varPsi _2}^{k})(1- \aleph _{\varPsi _1}^{k}))^\frac{1}{k}},\frac{\sigma _{\varPsi _2}\sigma _{\varPsi _1}}{(1+(1- \sigma _{\varPsi _2}^{m})(1- \sigma _{\varPsi _1}^{m}))^\frac{1}{m}}\right) = \varPsi _2 \oplus \varPsi _1\).

  2. 2.

    \(\varPsi _1 \otimes \varPsi _2 = \left( \frac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1+(1- \rho _{\varPsi _1}^{n})(1- \rho _{\varPsi _2}^{n}))^\frac{1}{n}}, \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))^\frac{1}{k}},\right. \left. \qquad \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{(1+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m})^\frac{1}{m}}\right) = \left( \frac{\rho _{\varPsi _2}\rho _{\varPsi _1}}{(1+(1- \rho _{\varPsi _2}^{n})(1- \rho _{\varPsi _1}^{n}))^\frac{1}{n}},\right. \left. \qquad \frac{\aleph _{\varPsi _2}\aleph _{\varPsi _1}}{(1+(1- \aleph _{\varPsi _2}^{k})(1- \aleph _{\varPsi _1}^{k}))^\frac{1}{k}}, \frac{\sigma _{\varPsi _2}\sigma _{\varPsi _1}}{(1+ \sigma _{\varPsi _2}^{m}\sigma _{\varPsi _1}^{m})^\frac{1}{m}}\right) = \varPsi _2 \otimes \varPsi _1\).

\(\square \)

Theorem 10

Let \(\varPsi _1 = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\), \(\varPsi _2 = (\rho _{\varPsi _2},\aleph _{\varPsi _2}, \sigma _{\varPsi _2})\) and \(\varPsi _3 = (\rho _{\varPsi _3},\aleph _{\varPsi _3},\sigma _{\varPsi _3})\) be \(k^{n}_{m}\)-RPFSs. Then

  1. 1.

    \(\varPsi _1\oplus \varPsi _2\oplus \varPsi _3= \varPsi _2\oplus \varPsi _1\oplus \varPsi _3\).

  2. 2.

    \(\varPsi _1\otimes \varPsi _2\otimes \varPsi _3= \varPsi _2\otimes \varPsi _1\otimes \varPsi _3\).

Proof

(1) \(\varPsi _1\oplus \varPsi _2\oplus \varPsi _3 = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\oplus (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2})\oplus \)

$$\begin{aligned}{} & {} (\rho _{\varPsi _3},\aleph _{\varPsi _3},\sigma _{\varPsi _3})\\{} & {} \quad = \left( \frac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n})^\frac{1}{n}}, \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{\left( 1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k})\right) ^\frac{1}{k}},\right. \\{} & {} \qquad \left. \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{\left( 1+\left( 1- \sigma _{\varPsi _1}^{m}\right) (1- \sigma _{\varPsi _2}^{m})\right) ^\frac{1}{m}}\right) \oplus (\rho _{\varPsi _3},\aleph _{\varPsi _3},\sigma _{\varPsi _3})\\{} & {} \quad =\left( \frac{\left( \frac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n})^\frac{1}{n}}\right) \rho _{\varPsi _3}}{(1+ \left( \frac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n})^\frac{1}{n}}\right) ^{n}(\rho _{\varPsi _3}^{n}))^\frac{1}{n}},\right. \\{} & {} \qquad \left. \frac{\left( \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{\left( 1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k})\right) ^\frac{1}{k}}\right) \aleph _{\varPsi _3}}{\left( 1+\left( 1-\left( \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))^\frac{1}{k}}\right) ^{k}\right) (1-\aleph _{\varPsi _3}^{k})\right) ^\frac{1}{k}},\right. \\{} & {} \quad \left. \frac{\left( \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{\left( 1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _2}^{m})\right) ^\frac{1}{m}}\right) \sigma _{\varPsi _3}}{\left( 1+\left( 1-\left( \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{(1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _2}^{m}))^\frac{1}{m}}\right) ^{m}\right) (1-\sigma _{\varPsi _3}^{m})\right) ^\frac{1}{m}}\right) \\{} & {} \quad =\left( \frac{\left( \frac{\rho _{\varPsi _2}\rho _{\varPsi _1}}{(1+ \rho _{\varPsi _2}^{n}\rho _{\varPsi _1}^{n})^\frac{1}{n}}\right) \rho _{\varPsi _3}}{(1+ \left( \frac{\rho _{\varPsi _2}\rho _{\varPsi _1}}{(1+ \rho _{\varPsi _2}^{n}\rho _{\varPsi _1}^{n})^\frac{1}{n}}\right) ^{n}(\rho _{\varPsi _3}^{n}))^\frac{1}{n}},\right. \\{} & {} \qquad \left. \frac{\left( \frac{\aleph _{\varPsi _2}\aleph _{\varPsi _1}}{(1+(1- \aleph _{\varPsi _2}^{k})(1- \aleph _{\varPsi _1}^{k}))^\frac{1}{k}}\right) \aleph _{\varPsi _3}}{(1+\left( 1-\left( \frac{\aleph _{\varPsi _2}\aleph _{\varPsi _1}}{(1+(1- \aleph _{\varPsi _2}^{k})(1- \aleph _{\varPsi _1}^{k}))^\frac{1}{k}}\right) ^{k}\right) (1-\aleph _{\varPsi _3}^{k}))^\frac{1}{k}},\right. \\{} & {} \quad \left. \frac{\left( \frac{\sigma _{\varPsi _2}\sigma _{\varPsi _1}}{(1+(1- \sigma _{\varPsi _2}^{m})(1- \sigma _{\varPsi _1}^{m}))^\frac{1}{m}}\right) \sigma _{\varPsi _3}}{\left( 1+\left( 1-\left( \frac{\sigma _{\varPsi _2}\sigma _{\varPsi _1}}{(1+(1- \sigma _{\varPsi _2}^{m})(1- \sigma _{\varPsi _1}^{m}))^\frac{1}{m}}\right) ^{m}\right) (1-\sigma _{\varPsi _3}^{m})\right) ^\frac{1}{m}}\right) \\{} & {} \quad = \left( \frac{\rho _{\varPsi _2}\rho _{\varPsi _1}}{(1+ \rho _{\varPsi _2}^{n}\rho _{\varPsi _1}^{n})^\frac{1}{n}}, \frac{\aleph _{\varPsi _2}\aleph _{\varPsi _1}}{(1+(1- \aleph _{\varPsi _2}^{k})(1- \aleph _{\varPsi _1}^{k}))^\frac{1}{k}},\right. \\{} & {} \quad \left. \frac{\sigma _{\varPsi _2}\sigma _{\varPsi _1}}{(1+(1- \sigma _{\varPsi _2}^{m})(1- \sigma _{\varPsi _1}^{m}))^\frac{1}{m}}\right) \oplus (\rho _{\varPsi _3},\aleph _{\varPsi _3},\sigma _{\varPsi _3})\\{} & {} \quad =\varPsi _2\oplus \varPsi _1\oplus \varPsi _3. \end{aligned}$$

where

$$\begin{aligned}{} & {} \frac{\left( \frac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n})^\frac{1}{n}}\right) \rho _{\varPsi _3}}{\left( 1+ \left( \frac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n})^\frac{1}{n}}\right) ^{n}(\rho _{\varPsi _3}^{n})\right) ^\frac{1}{n}} = \frac{\frac{\rho _{\varPsi _1}\rho _{\varPsi _2}\rho _{\varPsi _3}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n})^\frac{1}{n}}}{\left( \frac{1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}+\rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}\rho _{\varPsi _3}^{n}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n})}\right) ^\frac{1}{n}}\\{} & {} \quad = \frac{\frac{\rho _{\varPsi _2}\rho _{\varPsi _1}\rho _{\varPsi _3}}{(1+ \rho _{\varPsi _2}^{n}\rho _{\varPsi _1}^{n})^\frac{1}{n}}}{\left( \frac{1+ \rho _{\varPsi _2}^{n}\rho _{\varPsi _1}^{n}+\rho _{\varPsi _2}^{n}\rho _{\varPsi _1}^{n}\rho _{\varPsi _3}^{n}}{(1+ \rho _{\varPsi _2}^{n}\rho _{\varPsi _1}^{n})}\right) ^\frac{1}{n}} = \frac{(\frac{\rho _{\varPsi _2}\rho _{\varPsi _1}}{(1+ \rho _{\varPsi _2}^{n}\rho _{\varPsi _1}^{n})^\frac{1}{n}}) \rho _{\varPsi _3}}{\left( 1+ \left( \frac{\rho _{\varPsi _2}\rho _{\varPsi _1}}{(1+ \rho _{\varPsi _2}^{n}\rho _{\varPsi _1}^{n})^\frac{1}{n}}\right) ^{n}(\rho _{\varPsi _3}^{n})\right) ^\frac{1}{n}},\\{} & {} \quad \frac{\left( \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))^\frac{1}{k}}\right) \aleph _{\varPsi _3}}{\left( 1+\left( 1-\left( \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))^\frac{1}{k}}\right) ^{k}\right) (1-\aleph _{\varPsi _3}^{k})\right) ^\frac{1}{k}}\\{} & {} \quad \frac{\frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}\aleph _{\varPsi _3}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))^\frac{1}{k}}}{\left( \frac{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))+((1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))-\aleph _{\varPsi _1}^{k}\aleph _{\varPsi _2}^{k}) (1-\aleph _{\varPsi _3}^{k}) }{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))}\right) ^\frac{1}{k}}\\{} & {} \quad = \frac{\frac{\aleph _{\varPsi _2}\aleph _{\varPsi _1}\aleph _{\varPsi _3}}{(1+(1- \aleph _{\varPsi _2}^{k})(1- \aleph _{\varPsi _1}^{k}))^\frac{1}{k}}}{\left( \frac{(1+(1- \aleph _{\varPsi _2}^{k})(1- \aleph _{\varPsi _1}^{k}))+((1+(1- \aleph _{\varPsi _2}^{k})(1- \aleph _{\varPsi _1}^{k}))-\aleph _{\varPsi _2}^{k}\aleph _{\varPsi _1}^{k}) (1-\aleph _{\varPsi _3}^{k}) }{(1+(1- \aleph _{\varPsi _2}^{k})(1- \aleph _{\varPsi _1}^{k}))}\right) ^\frac{1}{k}}\\{} & {} \quad = \frac{\left( \frac{\aleph _{\varPsi _2}\aleph _{\varPsi _1}}{(1+(1- \aleph _{\varPsi _2}^{k})(1- \aleph _{\varPsi _1}^{k}))^\frac{1}{k}}\right) \aleph _{\varPsi _3}}{\left( 1+\left( 1-\left( \frac{\aleph _{\varPsi _2}\aleph _{\varPsi _1}}{(1+(1- \aleph _{\varPsi _2}^{k})(1- \aleph _{\varPsi _1}^{k}))^\frac{1}{k}}\right) ^{k}\right) (1-\aleph _{\varPsi _3}^{k})\right) ^\frac{1}{k}}, \end{aligned}$$

and

$$\begin{aligned}{} & {} \frac{\left( \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{(1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _2}^{m}))^\frac{1}{m}}\right) \sigma _{\varPsi _3}}{\left( 1+\left( 1-\left( \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{(1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _2}^{m}))^\frac{1}{m}}\right) ^{m}\right) (1-\sigma _{\varPsi _3}^{m})\right) ^\frac{1}{m}}\\{} & {} \quad = \frac{\frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}\sigma _{\varPsi _3}}{(1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _2}^{m}))^\frac{1}{m}}}{\left( \frac{(1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _2}^{m}))+((1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _2}^{m}))-\sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m}) (1-\sigma _{\varPsi _3}^{m}) }{(1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _2}^{m}))}\right) ^\frac{1}{m}}\\{} & {} \quad = \frac{\frac{\sigma _{\varPsi _2}\sigma _{\varPsi _1}\sigma _{\varPsi _3}}{(1+(1- \sigma _{\varPsi _2}^{m}) (1- \sigma _{\varPsi _1}^{m}))^\frac{1}{m}}}{\left( \frac{(1+(1- \sigma _{\varPsi _2}^{m}) (1- \sigma _{\varPsi _1}^{m}))+((1+(1- \sigma _{\varPsi _2}^{m})(1- \sigma _{\varPsi _1}^{m})) -\sigma _{\varPsi _2}^{m}\sigma _{\varPsi _1}^{m}) (1-\sigma _{\varPsi _3}^{m}) }{(1+(1- \sigma _{\varPsi _2}^{m})(1- \sigma _{\varPsi _1}^{m}))}\right) ^\frac{1}{m}}\\{} & {} \quad = \frac{\left( \frac{\sigma _{\varPsi _2}\sigma _{\varPsi _1}}{(1+(1- \sigma _{\varPsi _2}^{m})(1- \sigma _{\varPsi _1}^{m}))^\frac{1}{m}}\right) \sigma _{\varPsi _3}}{\left( 1+\left( 1-\left( \frac{\sigma _{\varPsi _2}\sigma _{\varPsi _1}}{(1+(1- \sigma _{\varPsi _2}^{m})(1- \sigma _{\varPsi _1}^{m}))^\frac{1}{m}}\right) ^{m}\right) (1-\sigma _{\varPsi _3}^{m})\right) ^\frac{1}{m}}. \end{aligned}$$

(2) We can perform proof similarly to (1). \(\square \)

Theorem 11

Let \(\varPsi = (\rho _{\varPsi },\aleph _{\varPsi },\sigma _{\varPsi })\), \(\varPsi _1 = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\) and \(\varPsi _2 = (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2})\) be \(k^{n}_{m}\)-RPFSs, and \(\ell > 0\). Then

  1. 1.

    \((\varPsi _1 \oplus \varPsi _2)^{c} = \varPsi _1^{c} \otimes \varPsi _2^{c}\).

  2. 2.

    \((\varPsi _1 \otimes \varPsi _2)^{c} = \varPsi _1^{c} \oplus \varPsi _2^{c}\).

  3. 3.

    \((\varPsi ^{c})^{\ell } = (\ell \varPsi )^{c}\).

  4. 4.

    \(\ell (\varPsi )^{c} = (\varPsi ^{\ell })^{c}\).

Proof

For the \(k^{n}_{m}\)-RPFSs \(\varPsi , \varPsi _1, \varPsi _2\), and \(\ell > 0\), based on Definitions 6 and 7, we have

  1. 1.

    \((\varPsi _1 \oplus \varPsi _2)^{c}\)

    $$\begin{aligned}{} & {} =\left( \frac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n})^\frac{1}{n}},\frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))^\frac{1}{k}},\right. \\{} & {} \left. \quad \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{(1+(1- \sigma _{\varPsi _1}^{m})(1-\sigma _{\varPsi _2}^{m}))^\frac{1}{m}}\right) ^{c}\\{} & {} \quad = \left( \left( \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{(1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _2}^{m}))^\frac{1}{m}}\right) ^\frac{m}{n},\right. \\{} & {} \left. \quad \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))^\frac{1}{k}}, \left( \frac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n})^\frac{1}{n}}\right) ^\frac{n}{m}\right) \\{} & {} \quad = \left( \frac{\sigma _{\varPsi _1}^\frac{m}{n}\sigma _{\varPsi _2}^\frac{m}{n}}{(1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _2}^{m}))^\frac{1}{n}},\right. \\{} & {} \left. \quad \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))^\frac{1}{k}}, \frac{\rho _{\varPsi _1}^\frac{n}{m}\rho _{\varPsi _2}^\frac{n}{m}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n})^\frac{1}{m}}\right) \\{} & {} \quad = \left( (\sigma _{\varPsi _1})^\frac{m}{n},\aleph _{\varPsi _1},(\rho _{\varPsi _1})^\frac{n}{m}\right) \otimes \left( (\sigma _{\varPsi _2})^\frac{m}{n},\aleph _{\varPsi _2},(\rho _{\varPsi _2})^\frac{n}{m}\right) \\{} & {} \quad = \varPsi _1^{c} \otimes \varPsi _2^{c}. \end{aligned}$$
  2. 2.

    \((\varPsi _1 \otimes \varPsi _2)^{c} = \left( \dfrac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1+(1- \rho _{\varPsi _1}^{n})(1- \rho _{\varPsi _2}^{n}))^\frac{1}{n}},\right. \)

    $$\begin{aligned}{} & {} \left. \quad \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))^\frac{1}{k}},\frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{(1+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m})^\frac{1}{m}}\right) ^{c}\\{} & {} \quad =\left( \left( \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _2}}{(1+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m})^\frac{1}{m}}\right) ^\frac{m}{n}, \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))^\frac{1}{k}},\right. \\{} & {} \qquad \left. \left( \frac{\rho _{\varPsi _1}\rho _{\varPsi _2}}{(1+(1- \rho _{\varPsi _1}^{n})(1- \rho _{\varPsi _2}^{n}))^\frac{1}{n}}\right) ^\frac{n}{m}\right) \\{} & {} \quad =\left( \frac{\sigma _{\varPsi _1}^\frac{m}{n}\sigma _{\varPsi _2}^\frac{m}{n}}{(1+ \sigma _{\varPsi _1}^{m}\sigma _{\varPsi _1}^{m})^\frac{1}{n}}, \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _2}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _2}^{k}))^\frac{1}{k}},\right. \\{} & {} \qquad \left. \frac{\rho _{\varPsi _1}^\frac{n}{m}\rho _{\varPsi _2}^\frac{n}{m}}{(1+(1- \rho _{\varPsi _1}^{n})(1- \rho _{\varPsi _2}^{n}))^\frac{1}{m}}\right) \\{} & {} \quad = \left( (\sigma _{\varPsi _1})^\frac{m}{n},\aleph _{\varPsi _1},(\rho _{\varPsi _1})^\frac{n}{m}\right) \oplus \left( (\sigma _{\varPsi _2})^\frac{m}{n},\aleph _{\varPsi _2},(\rho _{\varPsi _2})^\frac{n}{m}\right) \\{} & {} \quad = \varPsi _1^{c} \oplus \varPsi _2^{c}. \end{aligned}$$
  3. 3.

    \((\varPsi ^{c})^{\ell } =((\sigma _{\varPsi })^\frac{m}{n},\aleph _{\varPsi },(\rho _{\varPsi })^\frac{n}{m})^{\ell }\)

    $$\begin{aligned}{} & {} \quad =\left( \frac{(\sigma _{\varPsi }^\frac{m}{n})^{\ell }}{((2-\sigma _{\varPsi }^{m})^{\ell }+ (\sigma _{\varPsi }^{m})^{\ell })^\frac{1}{n}},\frac{\aleph _{\varPsi }^{\ell }}{((2-\aleph _{\varPsi }^{k})^{\ell }+ (1-\aleph _{\varPsi }^{k})^{\ell })^\frac{1}{k}},\right. \\{} & {} \qquad \left. \left( \frac{(1+\rho _{\varPsi }^{n})^{\ell }- (1-\rho _{\varPsi }^{n})^{\ell }}{(1+\rho _{\varPsi }^{n})^{\ell }+ (1-\rho _{\varPsi }^{n})^{\ell }}\right) ^\frac{1}{m}\right) \\{} & {} \quad =\left( \left( \frac{\sigma _{\varPsi }^{\ell }}{((2-\sigma _{\varPsi }^{m})^{\ell }+ (\sigma _{\varPsi }^{m})^{\ell })^\frac{1}{m}}\right) ^\frac{m}{n},\right. \\{} & {} \left. \quad \frac{\aleph _{\varPsi }^{\ell }}{((2-\aleph _{\varPsi }^{k})^{\ell }+ (1-\aleph _{\varPsi }^{k})^{\ell })^\frac{1}{k}},\right. \\{} & {} \qquad \left. \left( \left( \frac{(1+\rho _{\varPsi }^{n})^{\ell }- (1-\rho _{\varPsi }^{n})^{\ell }}{(1+\rho _{\varPsi }^{n})^{\ell }+ (1-\rho _{\varPsi }^{n})^{\ell }}\right) ^\frac{1}{n}\right) ^\frac{n}{m}\right) \\{} & {} \quad =\left( \left( \frac{(1+\rho _{\varPsi }^{n})^{\ell }- (1-\rho _{\varPsi }^{n})^{\ell }}{(1+\rho _{\varPsi }^{n})^{\ell }+ (1-\rho _{\varPsi }^{n})^{\ell }}\right) ^\frac{1}{n},\right. \\{} & {} \qquad \left. \frac{\aleph _{\varPsi }^{\ell }}{((2-\aleph _{\varPsi }^{k})^{\ell }+ (1-\aleph _{\varPsi }^{k})^{\ell })^\frac{1}{k}}, \frac{\sigma _{\varPsi }^{\ell }}{((2-\sigma _{\varPsi }^{m})^{\ell }+ (\sigma _{\varPsi }^{m})^{\ell })^\frac{1}{m}}\right) ^{c}\\{} & {} \quad =(\ell \varPsi )^{c}. \end{aligned}$$
  4. 4.

    \(\ell (\varPsi )^{c}= \ell \left( (\sigma _{\varPsi })^\frac{m}{n},\aleph _{\varPsi },(\rho _{\varPsi })^\frac{n}{m}\right) \)

    $$\begin{aligned}{} & {} \quad =\left( \left( \frac{(1+\sigma _{\varPsi }^{m})^{\ell }- (1-\sigma _{\varPsi }^{m})^{\ell }}{(1+\sigma _{\varPsi }^{m})^{\ell }+ (1-\sigma _{\varPsi }^{m})^{\ell }}\right) ^\frac{1}{n},\right. \\{} & {} \qquad \left. \frac{\aleph _{\varPsi }^{\ell }}{((2-\aleph _{\varPsi }^{k})^{\ell }+ (1-\aleph _{\varPsi }^{k})^{\ell })^\frac{1}{k}},\right. \\{} & {} \left. \quad \frac{(\rho _{\varPsi }^\frac{n}{m})^{\ell }}{((2-\rho _{\varPsi }^{n})^{\ell }+ (\rho _{\varPsi }^{n})^{\ell })^\frac{1}{m}}\right) \\{} & {} \quad =\left( \left( \frac{(1+\sigma _{\varPsi }^{m})^{\ell }- (1-\sigma _{\varPsi }^{m})^{\ell }}{(1+\sigma _{\varPsi }^{m})^{\ell }+ (1-\sigma _{\varPsi }^{m})^{\ell }}\right) ^\frac{1}{n},\right. \\{} & {} \qquad \left. \frac{\aleph _{\varPsi }^{\ell }}{\left( (2-\aleph _{\varPsi }^{k})^{\ell }+ (1-\aleph _{\varPsi }^{k})^{\ell }\right) ^\frac{1}{k}},\right. \\{} & {} \left. \quad \frac{(\rho _{\varPsi }^{\ell })^\frac{n}{m}}{((2-\rho _{\varPsi }^{n})^{\ell }+ (\rho _{\varPsi }^{n})^{\ell })^\frac{1}{m}}\right) \\{} & {} \quad =\left( \frac{\rho _{\varPsi }^{\ell }}{((2-\rho _{\varPsi }^{n})^{\ell }+ (\rho _{\varPsi }^{n})^{\ell })^\frac{1}{n}},\right. \\{} & {} \left. \quad \frac{\aleph _{\varPsi }^{\ell }}{((2-\aleph _{\varPsi }^{k})^{\ell }+ (1-\aleph _{\varPsi }^{k})^{\ell })^\frac{1}{k}},\right. \\{} & {} \qquad \left. \left( \frac{(1+\sigma _{\varPsi }^{m})^{\ell }- (1-\sigma _{\varPsi }^{m})^{\ell }}{(1+\sigma _{\varPsi }^{m})^{\ell }+ (1-\sigma _{\varPsi }^{m})^{\ell }}\right) ^\frac{1}{m}\right) ^{c}\\{} & {} \quad = (\varPsi ^{\ell })^{c}. \end{aligned}$$

\(\square \)

Theorem 12

Let \(\varPsi _1 = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\), \(\varPsi _2 = (\rho _{\varPsi _2},\aleph _{\varPsi _2}, \sigma _{\varPsi _2})\) and \(\varPsi _3 = (\rho _{\varPsi _3},\aleph _{\varPsi _3},\sigma _{\varPsi _3})\) be \(k^{n}_{m}\)-RPFSs. Then

  1. 1.

    \((\varPsi _1\bigwedge \varPsi _2)\oplus \varPsi _3=(\varPsi _1\oplus \varPsi _3)\bigwedge (\varPsi _2\oplus \varPsi _3)\).

  2. 2.

    \((\varPsi _1\bigvee \varPsi _2)\oplus \varPsi _3=(\varPsi _1\oplus \varPsi _3)\bigvee (\varPsi _2\oplus \varPsi _3)\).

  3. 3.

    \((\varPsi _1\bigwedge \varPsi _2)\otimes \varPsi _3=(\varPsi _1\otimes \varPsi _3)\bigwedge (\varPsi _2\otimes \varPsi _3)\).

  4. 4.

    \((\varPsi _1\bigvee \varPsi _2)\otimes \varPsi _3=(\varPsi _1\otimes \varPsi _3)\bigvee (\varPsi _2\otimes \varPsi _3)\).

Proof

We will provide proof to back up our claim (1). The other claims are verified similarly. From Definitions 6 and 7, we have

$$\begin{aligned}{} & {} \left( \varPsi _1\bigwedge \varPsi _2\right) \oplus \varPsi _3=(\min \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\},\\{} & {} \qquad \max \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\})\oplus (\rho _{\varPsi _3},\aleph _{\varPsi _3},\sigma _{\varPsi _3})\\{} & {} \quad =\left( \frac{\min \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}\rho _{\varPsi _3}}{(1+ \min \{\rho _{\varPsi _1}^{n},\rho _{\varPsi _2}^{n}\}\rho _{\varPsi _3}^{n})^\frac{1}{n}},\right. \\{} & {} \qquad \left. \frac{\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}\aleph _{\varPsi _3}}{(1+(1- \min \{\aleph _{\varPsi _1}^{k},\aleph _{\varPsi _2}^{k}\})(1- \aleph _{\varPsi _3}^{k}))^\frac{1}{k}},\right. \\{} & {} \qquad \left. \frac{\max \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\}\sigma _{\varPsi _3}}{(1+(1- \max \{\sigma _{\varPsi _1}^{m},\sigma _{\varPsi _2}^{m}\})(1- \sigma _{\varPsi _3}^{m}))^\frac{1}{m}}\right) , \end{aligned}$$

where

$$\begin{aligned}{} & {} \frac{\min \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}\rho _{\varPsi _3}}{(1+ \min \{\rho _{\varPsi _1}^{n},\rho _{\varPsi _2}^{n}\}\rho _{\varPsi _3}^{n})^\frac{1}{n}}\\{} & {} \quad =\left\{ \begin{array}{lll} \frac{\rho _{\varPsi _1}\rho _{\varPsi _3}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _3}^{n})^\frac{1}{n}} &{} \text{ for }\, \rho _{\varPsi _1} \le \rho _{\varPsi _2},\\ \frac{\rho _{\varPsi _2}\rho _{\varPsi _3}}{(1+ \rho _{\varPsi _2}^{n}\rho _{\varPsi _3}^{n})^\frac{1}{n}} &{} \text{ for }\, \rho _{\varPsi _2} \le \rho _{\varPsi _1}, \end{array}\right. \\{} & {} \frac{\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}\aleph _{\varPsi _3}}{\left( 1+(1- \min \{\aleph _{\varPsi _1}^{k},\aleph _{\varPsi _2}^{k}\})(1- \aleph _{\varPsi _3}^{k})\right) ^\frac{1}{k}}\\{} & {} \quad =\left\{ \begin{array}{lll} \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _3}}{(1+(1- \aleph _{\varPsi _1})(1- \aleph _{\varPsi _3}^{k}))^\frac{1}{k}} &{} \text{ for }\, \aleph _{\varPsi _1} \le \aleph _{\varPsi _2},\\ \frac{\aleph _{\varPsi _2}\aleph _{\varPsi _3}}{(1+(1- \aleph _{\varPsi _2})(1- \aleph _{\varPsi _3}^{k}))^\frac{1}{k}} &{} \text{ for }\, \aleph _{\varPsi _2} \le \aleph _{\varPsi _1}, \end{array}\right. \\{} & {} \frac{\max \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\}\sigma _{\varPsi _3}}{(1+(1- \max \{\sigma _{\varPsi _1}^{m},\sigma _{\varPsi _2}^{m}\})(1- \sigma _{\varPsi _3}^{m}))^\frac{1}{m}}\\{} & {} \quad =\left\{ \begin{array}{lll} \frac{\sigma _{\varPsi _2}\sigma _{\varPsi _3}}{(1+(1- \sigma _{\varPsi _2})(1- \sigma _{\varPsi _3}^{m}))^\frac{1}{m}} &{} \text{ for }\, \sigma _{\varPsi _1} \le \sigma _{\varPsi _2},\\ \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _3}}{(1+(1- \sigma _{\varPsi _1})(1- \sigma _{\varPsi _3}^{m}))^\frac{1}{m}} &{} \text{ for }\, \sigma _{\varPsi _2} \le \sigma _{\varPsi _1}. \end{array} \right. \end{aligned}$$

Now

$$\begin{aligned}{} & {} (\varPsi _1\oplus \varPsi _3)\bigwedge (\varPsi _2\oplus \varPsi _3)\\{} & {} \quad =\left( \frac{\rho _{\varPsi _1}\rho _{\varPsi _3}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _3}^{n})^\frac{1}{n}}, \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _3}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _3}^{k}))^\frac{1}{k}},\right. \\{} & {} \left. \quad \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _3}}{(1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _3}^{m}))^\frac{1}{m}}\right) \\{} & {} \qquad \bigwedge \left( \frac{\rho _{\varPsi _2}\rho _{\varPsi _3}}{(1+ \rho _{\varPsi _2}^{n}\rho _{\varPsi _3}^{n})^\frac{1}{n}}, \frac{\aleph _{\varPsi _2}\aleph _{\varPsi _3}}{(1+(1- \aleph _{\varPsi _2}^{k})(1- \aleph _{\varPsi _3}^{k}))^\frac{1}{k}}, \right. \\{} & {} \quad \times \left. \frac{\sigma _{\varPsi _2}\sigma _{\varPsi _3}}{(1+(1- \sigma _{\varPsi _2}^{m})(1- \sigma _{\varPsi _3}^{m}))^\frac{1}{m}}\right) \\{} & {} \quad =\left( \min \left\{ \frac{\rho _{\varPsi _1}\rho _{\varPsi _3}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _3}^{n})^\frac{1}{n}},\frac{\rho _{\varPsi _2}\rho _{\varPsi _3}}{(1+ \rho _{\varPsi _2}^{n}\rho _{\varPsi _3}^{n})^\frac{1}{n}}\right\} , \right. \\{} & {} \quad \left. \min \left\{ \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _3}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _3}^{k}))^\frac{1}{k}},\right. \right. \\{} & {} \quad \left. \left. \frac{\aleph _{\varPsi _2}\aleph _{\varPsi _3}}{(1+(1- \aleph _{\varPsi _2}^{k})(1- \aleph _{\varPsi _3}^{k}))^\frac{1}{k}}\right\} ,\right. \\{} & {} \quad \left. \max \left\{ \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _3}}{(1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _3}^{m}))^\frac{1}{m}} \right. \right. \\{} & {} \quad \left. \left. \frac{\sigma _{\varPsi _2}\sigma _{\varPsi _3}}{(1+(1- \sigma _{\varPsi _2}^{m})(1- \sigma _{\varPsi _3}^{m}))^\frac{1}{m}}\right\} \right) . \end{aligned}$$

If \(\rho _{\varPsi _1}\le \rho _{\varPsi _2}\), then \(\rho _{\varPsi _1}^{n}\le \rho _{\varPsi _2}^{n}\), and hence

$$\begin{aligned}{} & {} \rho _{\varPsi _1}^{n}+\rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}\rho _{\varPsi _3}^{n}\le \rho _{\varPsi _2}^{n}+\rho _{\varPsi _1}^{n}\rho _{\varPsi _2}^{n}\rho _{\varPsi _3}^{n}\\{} & {} \quad \Rightarrow \rho _{\varPsi _1}^{n}(1+\rho _{\varPsi _2}^{n}\rho _{\varPsi _3}^{n})\le \rho _{\varPsi _2}^{n}(1+\rho _{\varPsi _1}^{n}\rho _{\varPsi _3}^{n})\\{} & {} \quad \Rightarrow \frac{\rho _{\varPsi _1}^{n}}{(1+\rho _{\varPsi _1}^{n}\rho _{\varPsi _3}^{n})}\le \frac{\rho _{\varPsi _2}^{n}}{(1+\rho _{\varPsi _2}^{n}\rho _{\varPsi _3}^{n})}\\{} & {} \quad \Rightarrow \frac{\rho _{\varPsi _1}^{n}\rho _{\varPsi _3}^{n}}{(1+\rho _{\varPsi _1}^{n}\rho _{\varPsi _3}^{n})}\le \frac{\rho _{\varPsi _2}^{n}\rho _{\varPsi _3}^{n}}{(1+\rho _{\varPsi _2}^{n}\rho _{\varPsi _3}^{n})}. \end{aligned}$$

Similarly, if \(\rho _{\varPsi _2}\le \rho _{\varPsi _1}\), then

$$\begin{aligned} \frac{\rho _{\varPsi _2}^{n}\rho _{\varPsi _3}^{n}}{(1+\rho _{\varPsi _2}^{n}\rho _{\varPsi _3}^{n})}\le \frac{\rho _{\varPsi _1}^{n}\rho _{\varPsi _3}^{n}}{(1+\rho _{\varPsi _1}^{n}\rho _{\varPsi _3}^{n})}. \end{aligned}$$

If \(\aleph _{\varPsi _1}\le \aleph _{\varPsi _2}\), then \(\aleph _{\varPsi _1}^{k}\le \aleph _{\varPsi _2}^{k}\) and \(\aleph _{\varPsi _2}^{k} -\aleph _{\varPsi _1}^{k}\ge 0\). Since \(\aleph _{\varPsi _3}^{k}-1\le 1\), then

$$\begin{aligned}{} & {} (\aleph _{\varPsi _2}^{k} -\aleph _{\varPsi _1}^{k})(\aleph _{\varPsi _3}^{k}-1)\le (\aleph _{\varPsi _2}^{k} -\aleph _{\varPsi _1}^{k})\\{} & {} \quad \Rightarrow (\aleph _{\varPsi _1}^{k} -\aleph _{\varPsi _2}^{k})(1-\aleph _{\varPsi _3}^{k})\le (\aleph _{\varPsi _2}^{k} -\aleph _{\varPsi _1}^{k})\\{} & {} \quad \Rightarrow (\aleph _{\varPsi _1}^{k}(1 -\aleph _{\varPsi _2}^{k})-\aleph _{\varPsi _2}^{k}(1-\aleph _{\varPsi _1}^{k}))(1-\aleph _{\varPsi _3}^{k})\\{} & {} \quad \le (\aleph _{\varPsi _2}^{k} -\aleph _{\varPsi _1}^{k})\\{} & {} \quad \Rightarrow \aleph _{\varPsi _1}^{k} + \aleph _{\varPsi _1}^{k}(1 -\aleph _{\varPsi _2}^{k})(1-\aleph _{\varPsi _3}^{k})\le \aleph _{\varPsi _2}^{k} \\{} & {} \qquad + \aleph _{\varPsi _2}^{k}(1-\aleph _{\varPsi _1}^{k})(1-\aleph _{\varPsi _3}^{k})\\{} & {} \quad \Rightarrow \aleph _{\varPsi _1}^{k}(1 + (1 -\aleph _{\varPsi _2}^{k})(1-\aleph _{\varPsi _3}^{k}))\\{} & {} \quad \le \aleph _{\varPsi _2}^{k}(1 + (1-\aleph _{\varPsi _1}^{k})(1-\aleph _{\varPsi _3}^{k}))\\{} & {} \quad \Rightarrow \frac{\aleph _{\varPsi _1}^{k}}{(1 + (1-\aleph _{\varPsi _1}^{k})(1-\aleph _{\varPsi _3}^{k}))}\\{} & {} \quad \le \frac{\aleph _{\varPsi _2}^{k}}{(1 + (1 -\aleph _{\varPsi _2}^{k})(1-\aleph _{\varPsi _3}^{k}))} \\{} & {} \quad \Rightarrow \frac{\aleph _{\varPsi _1}^{k}\aleph _{\varPsi _3}^{k}}{(1 + (1-\aleph _{\varPsi _1}^{k})(1-\aleph _{\varPsi _3}^{k}))}\\{} & {} \quad \le \frac{\aleph _{\varPsi _2}^{k}\aleph _{\varPsi _3}^{k}}{(1 + (1 -\aleph _{\varPsi _2}^{k})(1-\aleph _{\varPsi _3}^{k}))}\\{} & {} \quad \Rightarrow \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _3}}{(1 + (1-\aleph _{\varPsi _1}^{k})(1-\aleph _{\varPsi _3}^{k}))^\frac{1}{k}}\\{} & {} \quad \le \frac{\aleph _{\varPsi _2}\aleph _{\varPsi _3}}{(1 + (1 -\aleph _{\varPsi _2}^{k})(1-\aleph _{\varPsi _3}^{k}))^\frac{1}{k}}. \end{aligned}$$

Similarly

  1. 1.

    if \(\aleph _{\varPsi _2}\le \aleph _{\varPsi _1}\), then \( \frac{\aleph _{\varPsi _2}\aleph _{\varPsi _3}}{(1 + (1-\aleph _{\varPsi _2}^{k})(1-\aleph _{\varPsi _3}^{k}))^\frac{1}{k}} \le \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _3}}{(1 + (1 -\aleph _{\varPsi _1}^{k})(1-\aleph _{\varPsi _3}^{k}))^\frac{1}{k}}\),

  2. 2.

    if \(\sigma _{\varPsi _1}\le \sigma _{\varPsi _2}\), then \(\frac{\sigma _{\varPsi _1}\sigma _{\varPsi _3}}{(1 + (1 -\sigma _{\varPsi _1}^{m})(1-\sigma _{\varPsi _3}^{m}))^\frac{1}{m}}\le \frac{\sigma _{\varPsi _2}\sigma _{\varPsi _3}}{(1 + (1-\sigma _{\varPsi _2}^{m})(1-\sigma _{\varPsi _3}^{m}))^\frac{1}{m}}\),

  3. 3.

    if \(\sigma _{\varPsi _2}\le \sigma _{\varPsi _1}\), then \( \frac{\sigma _{\varPsi _2}\sigma _{\varPsi _3}}{(1 + (1-\sigma _{\varPsi _2}^{m})(1-\sigma _{\varPsi _3}^{m}))^\frac{1}{m}} \le \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _3}}{(1 + (1 -\sigma _{\varPsi _1}^{m})(1-\sigma _{\varPsi _3}^{m}))^\frac{1}{m}}\).

Therefore

$$\begin{aligned}{} & {} \min \left\{ \frac{\rho _{\varPsi _1}\rho _{\varPsi _3}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _3}^{n})^\frac{1}{n}},\frac{\rho _{\varPsi _2}\rho _{\varPsi _3}}{(1+ \rho _{\varPsi _2}^{n}\rho _{\varPsi _3}^{n})^\frac{1}{n}}\right\} \\{} & {} \quad =\left\{ \begin{array}{lll} \frac{\rho _{\varPsi _1}\rho _{\varPsi _3}}{(1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi _3}^{n})^\frac{1}{n}} &{} \text{ for }\, \rho _{\varPsi _1} \le \rho _{\varPsi _2},\\ \frac{\rho _{\varPsi _2}\rho _{\varPsi _3}}{(1+ \rho _{\varPsi _2}^{n}\rho _{\varPsi _3}^{n})^\frac{1}{n}} &{} \text{ for }\, \rho _{\varPsi _2} \le \rho _{\varPsi _1}, \end{array}\right. \\{} & {} \min \left\{ \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _3}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _3}^{k}))^\frac{1}{k}},\right. \\{} & {} \quad \left. \frac{\aleph _{\varPsi _2}\aleph _{\varPsi _3}}{(1+(1- \aleph _{\varPsi _2}^{k})(1- \aleph _{\varPsi _3}^{k}))^\frac{1}{k}}\right\} \\{} & {} \quad =\left\{ \begin{array}{lll} \frac{\aleph _{\varPsi _1}\aleph _{\varPsi _3}}{(1+(1- \aleph _{\varPsi _1}^{k})(1- \aleph _{\varPsi _3}^{k}))^\frac{1}{k}} &{} \text{ for }\, \aleph _{\varPsi _1} \le \aleph _{\varPsi _2},\\ \frac{\aleph _{\varPsi _2}\aleph _{\varPsi _3}}{(1+(1- \aleph _{\varPsi _2}^{k})(1- \aleph _{\varPsi _3}^{k}))^\frac{1}{k}}&{} \text{ for }\,\aleph _{\varPsi _2} \le \aleph _{\varPsi _1}, \end{array}\right. \\{} & {} \max \left\{ \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _3}}{(1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _3}^{m}))^\frac{1}{m}},\right. \\{} & {} \quad \left. \frac{\sigma _{\varPsi _2}\sigma _{\varPsi _3}}{(1+(1- \sigma _{\varPsi _2}^{m})(1- \sigma _{\varPsi _3}^{m}))^\frac{1}{m}}\right\} \\{} & {} \quad =\left\{ \begin{array}{lll} \frac{\sigma _{\varPsi _2}\sigma _{\varPsi _3}}{(1+(1- \sigma _{\varPsi _2}^{m})(1- \sigma _{\varPsi _3}^{m}))^\frac{1}{m}} &{} \text{ for }\, \sigma _{\varPsi _1} \le \sigma _{\varPsi _2},\\ \frac{\sigma _{\varPsi _1}\sigma _{\varPsi _3}}{(1+(1- \sigma _{\varPsi _1}^{m})(1- \sigma _{\varPsi _3}^{m}))^\frac{1}{m}}&{} \text{ for }\, \sigma _{\varPsi _2} \le \sigma _{\varPsi _1}. \end{array}\right. \end{aligned}$$

Thus, \((\varPsi _1\bigwedge \varPsi _2)\oplus \varPsi _3=(\varPsi _1\oplus \varPsi _3)\bigwedge (\varPsi _2\oplus \varPsi _3)\). \(\square \)

Theorem 13

Let \(\varPsi _1 = (\rho _{\varPsi _1},\aleph _{\varPsi _1},\sigma _{\varPsi _1})\) and \(\varPsi _2 = (\rho _{\varPsi _2},\aleph _{\varPsi _2},\sigma _{\varPsi _2})\) be \(k^{n}_{m}\)-RPFSs, and \(\ell > 0\). Then

  1. 1.

    \(\ell (\varPsi _1\bigvee \varPsi _2) = \ell \varPsi _1\bigvee \ell \varPsi _2\).

  2. 2.

    \((\varPsi _1\bigvee \varPsi _2)^{\ell } = \varPsi _1^{\ell }\bigvee \varPsi _2^{\ell }\).

Proof

For the \(k^{n}_{m}\)-RPFSs \(\varPsi _1, \varPsi _2\), and \(\ell > 0\), based on Definitions 6 and 7, we have

  1. 1.

    \(\ell (\varPsi _1\bigvee \varPsi _2)= \ell (\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\},\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}\),

    $$\begin{aligned}{} & {} \min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\})\\{} & {} \quad = \left( \left( \frac{(1+\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}^{n})^{\ell }- (1-\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}^{n})^{\ell }}{(1+\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}^{n})^{\ell }+ (1-\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}^{n})^{\ell }}\right) ^\frac{1}{n}, \right. \\{} & {} \quad \left. \frac{\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}^{\ell }}{((2-\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}^{k})^{\ell }+ (1-\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}^{k})^{\ell })^\frac{1}{k}},\right. \\{} & {} \qquad \left. \frac{\min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\}^{\ell }}{((2-\min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\}^{m})^{\ell }+ (\min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\}^{m})^{\ell })^\frac{1}{m}}\right) , \end{aligned}$$

    where

    $$\begin{aligned}{} & {} \left( \frac{(1+\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}^{n})^{\ell }- (1-\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}^{n})^{\ell }}{(1+\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}^{n})^{\ell }+ (1-\max \{\rho _{\varPsi _1},\rho _{\varPsi _2}\}^{n})^{\ell }}\right) ^\frac{1}{n}\\{} & {} \quad =\left\{ \begin{array}{lll} \frac{(1+\rho _{\varPsi _2}^{n})^{\ell }- (1-\rho _{\varPsi _2}^{n})^{\ell }}{(1+\rho _{\varPsi _2}^{n})^{\ell }+ (1+\rho _{\varPsi _2}^{n})^{\ell }})^\frac{1}{n} &{} \text{ for }\, \rho _{\varPsi _1} \le \rho _{\varPsi _2},\\ \frac{(1+\rho _{\varPsi _1}^{n})^{\ell }- (1-\rho _{\varPsi _1}^{n})^{\ell }}{(1+\rho _{\varPsi _1}^{n})^{\ell }+ (1+\rho _{\varPsi _1}^{n})^{\ell }})^\frac{1}{n} &{} \text{ for }\, \rho _{\varPsi _2} \le \rho _{\varPsi _1}, \end{array}\right. \\{} & {} \quad \frac{\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}^{\ell }}{((2-\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}^{k})^{\ell }+ (1-\min \{\aleph _{\varPsi _1},\aleph _{\varPsi _2}\}^{k})^{\ell })^\frac{1}{k}}\\{} & {} \quad =\left\{ \begin{array}{lll} \frac{\aleph _{\varPsi _1}^{\ell }}{((2-\aleph _{\varPsi _1}^{k})^{\ell }+ (1-\aleph _{\varPsi _1}^{k})^{\ell })^\frac{1}{k}} &{} \text{ for } \aleph _{\varPsi _1} \le \aleph _{\varPsi _2},\\ \frac{\aleph _{\varPsi _2}^{\ell }}{((2-\aleph _{\varPsi _2}^{k})^{\ell }+ (1-\aleph _{\varPsi _2}^{k})^{\ell })^\frac{1}{k}} &{} \text{ for }\, \aleph _{\varPsi _2} \le \aleph _{\varPsi _1}, \end{array}\right. \\{} & {} \quad \frac{\min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\}^{\ell }}{((2-\min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\}^{m})^{\ell }+ (\min \{\sigma _{\varPsi _1},\sigma _{\varPsi _2}\}^{m})^{\ell })^\frac{1}{m}} \\{} & {} \quad =\left\{ \begin{array}{lll} \frac{\sigma _{\varPsi _1}^{\ell }}{((2-\sigma _{\varPsi _1}^{m})^{\ell }+ (\sigma _{\varPsi _1}^{m})^{\ell })^\frac{1}{m}} &{} \text{ for }\, \sigma _{\varPsi _1} \le \sigma _{\varPsi _2},\\ \frac{\sigma _{\varPsi _2}^{\ell }}{((2-\sigma _{\varPsi _2}^{m})^{\ell }+ (\sigma _{\varPsi _2}^{m})^{\ell })^\frac{1}{m}} &{} \text{ for }\, \sigma _{\varPsi _2} \le \sigma _{\varPsi _1}. \end{array}\right. \end{aligned}$$

    Now

    $$\begin{aligned} \ell \varPsi _1\bigvee \ell \varPsi _2= & {} \left( \left( \frac{(1+\rho _{\varPsi _1}^{n})^{\ell }- (1-\rho _{\varPsi _1}^{n})^{\ell }}{(1+\rho _{\varPsi _1}^{n})^{\ell }+ (1-\rho _{\varPsi _1}^{n})^{\ell }}\right) ^\frac{1}{n},\right. \\{} & {} \left. \frac{\aleph _{\varPsi _1}^{\ell }}{((2-\aleph _{\varPsi _1}^{k})^{\ell }+ (1-\aleph _{\varPsi _1}^{k})^{\ell })^\frac{1}{k}},\right. \\{} & {} \left. \frac{\sigma _{\varPsi _1}^{\ell }}{((2-\sigma _{\varPsi _1}^{m})^{\ell }+ (\sigma _{\varPsi _1}^{m})^{\ell })^\frac{1}{m}}\right) \\{} & {} \bigvee \left( \left( \frac{(1+\rho _{\varPsi _2}^{n})^{\ell }- (1-\rho _{\varPsi _2}^{n})^{\ell }}{(1+\rho _{\varPsi _2}^{n})^{\ell }+ (1-\rho _{\varPsi _2}^{n})^{\ell }}\right) ^\frac{1}{n},\right. \\{} & {} \left. \frac{\aleph _{\varPsi _2}^{\ell }}{((2-\aleph _{\varPsi _2}^{k})^{\ell }+ (1-\aleph _{\varPsi _2}^{k})^{\ell })^\frac{1}{k}},\right. \\{} & {} \left. \frac{\sigma _{\varPsi _2}^{\ell }}{((2-\sigma _{\varPsi _2}^{m})^{\ell }+ (\sigma _{\varPsi _2}^{m})^{\ell })^\frac{1}{m}}\right) \\{} & {} =\left( \max \left\{ \left( \frac{(1+\rho _{\varPsi _1}^{n})^{\ell }- (1-\rho _{\varPsi _1}^{n})^{\ell }}{(1+\rho _{\varPsi _1}^{n})^{\ell }+ (1-\rho _{\varPsi _1}^{n})^{\ell }}\right) ^\frac{1}{n},\right. \right. \\{} & {} \left. \left. \left( \frac{(1+\rho _{\varPsi _2}^{n})^{\ell }- (1-\rho _{\varPsi _2}^{n})^{\ell }}{(1+\rho _{\varPsi _2}^{n})^{\ell }+ (1-\rho _{\varPsi _2}^{n})^{\ell }}\right) ^\frac{1}{n}\right\} ,\right. \\{} & {} \left. \min \left\{ \frac{\aleph _{\varPsi _1}^{\ell }}{((2-\aleph _{\varPsi _1}^{k})^{\ell }+ (1-\aleph _{\varPsi _1}^{k})^{\ell })^\frac{1}{k}},\right. \right. \\{} & {} \left. \left. \frac{\aleph _{\varPsi _2}^{\ell }}{((2-\aleph _{\varPsi _2}^{k})^{\ell }+ (1-\aleph _{\varPsi _2}^{k})^{\ell })^\frac{1}{k}}\right\} , \right. \\{} & {} \left. \min \left\{ \frac{\sigma _{\varPsi _1}^{\ell }}{((2-\sigma _{\varPsi _1}^{m})^{\ell }+ (\sigma _{\varPsi _1}^{m})^{\ell })^\frac{1}{m}}, \right. \right. \\{} & {} \left. \left. \frac{\sigma _{\varPsi _2}^{\ell }}{((2-\sigma _{\varPsi _2}^{m})^{\ell }+ (\sigma _{\varPsi _2}^{m})^{\ell })^\frac{1}{m}}\right\} \right) . \end{aligned}$$

    If \(\rho _{\varPsi _1}\le \rho _{\varPsi _2}\), then \(2\rho _{\varPsi _1}^{n} \le 2\rho _{\varPsi _2}^{n}\), and hence

    $$\begin{aligned}{} & {} (1+\rho _{\varPsi _1}^{n}) (1-\rho _{\varPsi _2}^{n})\le (1+\rho _{\varPsi _2}^{n}) (1-\rho _{\varPsi _1}^{n})\\{} & {} \quad \Rightarrow (1+\rho _{\varPsi _1}^{n})^{\ell } (1-\rho _{\varPsi _2}^{n})^{\ell }\le (1+\rho _{\varPsi _2}^{n})^{\ell } (1-\rho _{\varPsi _1}^{n})^{\ell }\\{} & {} \quad \Rightarrow ad\le b c\\{} & {} \quad \Rightarrow 2ad\le 2b c\\{} & {} \quad \Rightarrow (a-c)(b + d)\le (b - d) (a+c)\\{} & {} \quad \Rightarrow ((1+\rho _{\varPsi _1}^{n})^{\ell }- (1-\rho _{\varPsi _1}^{n})^{\ell })((1+\rho _{\varPsi _2}^{n})^{\ell } + (1-\rho _{\varPsi _2}^{n})^{\ell })\\{} & {} \quad \le ((1+\rho _{\varPsi _2}^{n})^{\ell } - (1-\rho _{\varPsi _2}^{n})^{\ell }) ((1+\rho _{\varPsi _1}^{n})^{\ell } + (1-\rho _{\varPsi _1}^{n})^{\ell })\\{} & {} \quad \Rightarrow \left( \frac{(1+\rho _{\varPsi _1}^{n})^{\ell }- (1-\rho _{\varPsi _1}^{n})^{\ell }}{(1+\rho _{\varPsi _1}^{n})^{\ell } + (1-\rho _{\varPsi _1}^{n})^{\ell }}\right) ^\frac{1}{n} \\{} & {} \qquad \le \left( \frac{(1+\rho _{\varPsi _2}^{n})^{\ell } -(1-\rho _{\varPsi _2}^{n})^{\ell }}{(1+\rho _{\varPsi _2}^{n})^{\ell } + (1-\rho _{\varPsi _2}^{n})^{\ell }}\right) ^\frac{1}{n} . \end{aligned}$$

    Similarly, if \(\rho _{\varPsi _2}\le \rho _{\varPsi _1}\) then \( (\frac{(1+\rho _{\varPsi _2}^{n})^{\ell } - (1-\rho _{\varPsi _2}^{n})^{\ell }}{(1+\rho _{\varPsi _2}^{n})^{\ell } + (1-\rho _{\varPsi _2}^{n})^{\ell }})^\frac{1}{n} \le (\frac{(1+\rho _{\varPsi _1}^{n})^{\ell }- (1-\rho _{\varPsi _1}^{n})^{\ell }}{(1+\rho _{\varPsi _1}^{n})^{\ell } + (1-\rho _{\varPsi _1}^{n})^{\ell }})^\frac{1}{n}\), where, \(a= (1+\rho _{\varPsi _1}^{n})^{\ell }\), \(d=(1-\rho _{\varPsi _2}^{n})^{\ell }\), \(b=(1+\rho _{\varPsi _2}^{n})^{\ell }\) and \(c=(1-\rho _{\varPsi _1}^{n})^{\ell }\).

    If \(\aleph _{\varPsi _1}\le \aleph _{\varPsi _2}\), then \(\aleph _{\varPsi _1}^{k}\le \aleph _{\varPsi _2}^{k}\) and hence \(-\aleph _{\varPsi _1}^{k}\ge -\aleph _{\varPsi _2}^{k}\) implies \((2-\aleph _{\varPsi _1}^{k})^{\ell }\ge (2-\aleph _{\varPsi _2}^{k})^{\ell }\) and \((1-\aleph _{\varPsi _1}^{k})^{\ell }\ge (1-\aleph _{\varPsi _2}^{k})^{\ell }\)

    $$\begin{aligned}{} & {} \Rightarrow (2-\aleph _{\varPsi _1}^{k})^{\ell } +(1-\aleph _{\varPsi _1}^{k})^{\ell }\ge (2-\aleph _{\varPsi _2}^{k})^{\ell } + (1-\aleph _{\varPsi _2}^{k})^{\ell }\\{} & {} \quad \Rightarrow \frac{\aleph _{\varPsi _2}^{\ell }}{((2-\aleph _{\varPsi _2}^{k})^{\ell } + (1-\aleph _{\varPsi _2}^{k})^{\ell })^\frac{1}{k}}\\{} & {} \quad \ge \frac{\aleph _{\varPsi _1}^{\ell }}{((2-\aleph _{\varPsi _2}^{k})^{\ell } + (1-\aleph _{\varPsi _2}^{k})^{\ell })^\frac{1}{k}}\\{} & {} \quad \ge \frac{\aleph _{\varPsi _1}^{\ell }}{((2-\aleph _{\varPsi _1}^{k})^{\ell } +(1-\aleph _{\varPsi _1}^{k})^{\ell })^\frac{1}{k}}\\{} & {} \quad \Rightarrow \frac{\aleph _{\varPsi _1}^{\ell }}{((2-\aleph _{\varPsi _1}^{k})^{\ell }+ (1-\aleph _{\varPsi _1}^{k})^{\ell })^\frac{1}{k}}\\{} & {} \quad \le \frac{\aleph _{\varPsi _2}^{\ell }}{((2-\aleph _{\varPsi _2}^{k})^{\ell }+ (1-\aleph _{\varPsi _2}^{k})^{\ell })^\frac{1}{k}}. \end{aligned}$$

    Similarly, if \(\aleph _{\varPsi _2}\le \aleph _{\varPsi _1}\), then \( \frac{\aleph _{\varPsi _1}^{\ell }}{((2-\aleph _{\varPsi _1}^{k})^{\ell }+ (1-\aleph _{\varPsi _1}^{k})^{\ell })^\frac{1}{k}}\ge \frac{\aleph _{\varPsi _2}^{\ell }}{((2-\aleph _{\varPsi _2}^{k})^{\ell }+ (1-\aleph _{\varPsi _2}^{k})^{\ell })^\frac{1}{k}}\).

    If \(\sigma _{\varPsi _1}\le \sigma _{\varPsi _2}\), then \(\sigma _{\varPsi _1}^{m}\le \sigma _{\varPsi _2}^{m}\), and hence

    $$\begin{aligned}{} & {} (2\sigma _{\varPsi _1}^{m}-\sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m})^{\ell }\le (2\sigma _{\varPsi _2}^{m}-\sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m})^{\ell }\\{} & {} \quad \Rightarrow (\sigma _{\varPsi _1}^{m})^{\ell }(2-\sigma _{\varPsi _2}^{m})^{\ell }\le (\sigma _{\varPsi _2}^{m})^{\ell }(2-\sigma _{\varPsi _1}^{m})^{\ell }\\{} & {} \quad \Rightarrow (\sigma _{\varPsi _1}^{m})^{\ell }(2-\sigma _{\varPsi _2}^{m})^{\ell }+ (\sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m})^{\ell }\\{} & {} \quad \le (\sigma _{\varPsi _2}^{m})^{\ell }(2-\sigma _{\varPsi _1}^{m})^{\ell } + (\sigma _{\varPsi _1}^{m}\sigma _{\varPsi _2}^{m})^{\ell }\\{} & {} \quad \Rightarrow (\sigma _{\varPsi _1}^{\ell })^{m}((2-\sigma _{\varPsi _2}^{m})^{\ell }+ (\sigma _{\varPsi _2}^{m})^{\ell })\\{} & {} \quad \le (\sigma _{\varPsi _2}^{\ell })^{m}((2-\sigma _{\varPsi _1}^{m})^{\ell }+ (\sigma _{\varPsi _1}^{m})^{\ell })\\{} & {} \quad \Rightarrow \frac{\sigma _{\varPsi _1}^{\ell }}{((2-\sigma _{\varPsi _1}^{m})^{\ell }+ (\sigma _{\varPsi _1}^{m})^{\ell })^\frac{1}{m}}\\{} & {} \quad \le \frac{\sigma _{\varPsi _2}^{\ell }}{((2-\sigma _{\varPsi _2}^{m})^{\ell }+ (\sigma _{\varPsi _2}^{m})^{\ell })^\frac{1}{m}}. \end{aligned}$$

    Similarly, if \(\sigma _{\varPsi _2}\le \sigma _{\varPsi _1}\), then \(\frac{\sigma _{\varPsi _1}^{\ell }}{((2-\sigma _{\varPsi _1}^{m})^{\ell }+ (\sigma _{\varPsi _1}^{m})^{\ell })^\frac{1}{m}}\ge \frac{\sigma _{\varPsi _2}^{\ell }}{((2-\sigma _{\varPsi _2}^{m})^{\ell }+ (\sigma _{\varPsi _2}^{m})^{\ell })^\frac{1}{m}}\). Therefore, \(\ell (\varPsi _1\bigvee \varPsi _2) = \ell \varPsi _1\bigvee \ell \varPsi _2\).

  2. 2.

    We can perform proof similarly to (1).\(\square \)

To rank \(k^{n}_{m}\)-RPFSs, we offer the \(k^{n}_{m}\)-RPFS scoring function and accuracy function:

Definition 8

Let \(\varPsi = (\rho _{\varPsi },\aleph _{\varPsi },\sigma _{\varPsi })\) be a \(k^{n}_{m}\)-RPFS. Then

  1. 1.

    a score function of \(\varPsi \) is represented by the following:

    $$\begin{aligned} S(\varPsi ) = \rho _{\varPsi }^{n}-\aleph _{\varPsi }^{k}-\sigma _{\varPsi }^{m}. \end{aligned}$$
  2. 2.

    an accuracy function of \(\varPsi \) is represented by the following:

    $$\begin{aligned} A(\varPsi ) = \rho _{\varPsi }^{n}+\aleph _{\varPsi }^{k}+\sigma _{\varPsi }^{m}. \end{aligned}$$

Example 3

Consider the \(k^{n}_{m}\)-RPFS \(\varPsi = (0.63, 0.75, 0.41)\), then

$$\begin{aligned} A(\varPsi )\approx \left\{ \begin{array}{llllllllll} 0.7822 &{} \text{ for }\, n=2, k=4\, \text{ and }\, m=3,\\ 0.7475 &{} \text{ for }\, n=4, k=3\, \text{ and }\, m=2,\\ 0.6900 &{} \text{ for }\, n=5, k=2\, \text{ and }\, m=4,\\ 0.9806&{} \text{ for }\, n=3, k=2\, \text{ and }\, m=2, \end{array}\right. \end{aligned}$$

and

$$\begin{aligned} S(\varPsi )\approx \left\{ \begin{array}{llllllllll} 0.0116 &{} \text{ for }\, n=2, k=4\, \text{ and }\, m=3,\\ -0.4324 &{} \text{ for }\, n=4, k=3\,\text{ and }\, m=2,\\ -0.4915 &{} \text{ for }\, n=5, k=2\, \text{ and }\, m=4,\\ -0.4806&{} \text{ for }\, n=3, k=2\, \text{ and }\, m=2. \end{array}\right. \end{aligned}$$

Theorem 14

Let \(\varPsi = (\rho _{\varPsi },\aleph _{\varPsi },\sigma _{\varPsi })\) be any \(k^{n}_{m}\)-RPFS, then \(S(\varPsi )\in [-1, 1]\).

Proof

Since for any \(k^{n}_{m}\)-RPFS \(\varPsi \), we have \(\rho _{\varPsi }^{n}+\aleph _{\varPsi }^{k}+\sigma _{\varPsi }^{m}\le 1\). Hence, \(\rho _{\varPsi }^{n}-\aleph _{\varPsi }^{k}-\sigma _{\varPsi }^{m}\le \rho _{\varPsi }^{n}\le 1\) and \(\rho _{\varPsi }^{n}-\aleph _{\varPsi }^{k}-\sigma _{\varPsi }^{m}\ge -\rho _{\varPsi }^{n}-\aleph _{\varPsi }^{k}-\sigma _{\varPsi }^{m}\ge -1\) . Thus, \(-1\le \rho _{\varPsi }^{n}-\aleph _{\varPsi }^{k}-\sigma _{\varPsi }^{m}\le 1\), namely \(S(\varPsi )\in [-1, 1]\). In particular, if \(\varPsi = (0, 0, 1)\) or (0, 1, 0), then \(S(\varPsi ) = -1\) and if \(\varPsi = (1, 0, 0)\), then \(S(\varPsi ) = 1\). \(\square \)

Remark 3

For any \(k^{n}_{m}\)-RPFS \(\varPsi = (\rho _{\varPsi },\aleph _{\varPsi },\sigma _{\varPsi })\), we have \(A(\varPsi )\in [0, 1]\).

Below is the law that compares \(k^{n}_{m}\)-RPFSs:

Remark 4

Consider two \(k^{n}_{m}\)-RPFSs \(\varPsi _{1} = (\rho _{\varPsi _{1}},\aleph _{\varPsi _{1}},\sigma _{\varPsi _{1}})\) and \(\varPsi _{2} = (\rho _{\varPsi _{2}},\aleph _{\varPsi _{2}},\sigma _{\varPsi _{2}})\), then the comparison method is intended as

  1. 1.

    if \(S(\varPsi _{1})< S(\varPsi _{2})\), then \(\varPsi _{1} < \varPsi _{2}\),

  2. 2.

    if \(S(\varPsi _{1})> S(\varPsi _{2})\), then \(\varPsi _{1} > \varPsi _{2}\),

  3. 3.

    if \(S(\varPsi _{1}) = S(\varPsi _{2})\), then

    1. (a)

      if \(A(\varPsi _{1})< A(\varPsi _{2})\), then \(\varPsi _{1} < \varPsi _{2}\),

    2. (b)

      if \(A(\varPsi _{1})> A(\varPsi _{2})\), then \(\varPsi _{1} > \varPsi _{2}\),

    3. (c)

      if \(A(\varPsi _{1}) = A(\varPsi _{2})\), then \(\varPsi _{1}\approx \varPsi _{2}\).

\(k^{n}_{m}\)-Rung picture fuzzy weighted power average

In this section, we present the \(k^{n}_{m}\)-rung picture fuzzy weighted power average operator and highlight its key characteristics. We specifically verify this operator’s boundedness, monotonicity, and idempotency features.

Definition 9

Let \(\varPsi _{i} = (\rho _{\varPsi _{i}},\aleph _{\varPsi _{i}},\sigma _{\varPsi _{i}})\) \((i = 1, 2, ..., v)\) be a value of \(k^{n}_{m}\)-RPFSs and \(\theta = (\theta _1, \theta _2, ..., \theta _v)^{T}\) be weight vector of \(\varPsi _{i}\) with \(\theta _i > 0\) and \(\sum _{i=1}^{v}\theta _i = 1\). Then, a \(k^{n}_{m}\)-rung picture fuzzy weighted power average (\(k^{n}_{m}\)-RPFWPA) operator is a function \(k^{n}_{m}\)-RPFWPA\(: \varPsi ^{v}\rightarrow \varPsi \), where \(k^{n}_{m}\)-RPFWPA\((\varPsi _1, \varPsi _2, ..., \varPsi _v)=((\sum _{i=1}^{v}\theta _i\rho _{\varPsi _{i}}^{n})^{\frac{1}{n}},\) \( (\sum _{i=1}^{v}\theta _i\aleph _{\varPsi _{i}}^{k})^{\frac{1}{k}}, (\sum _{i=1}^{v}\theta _i\sigma _{\varPsi _{i}}^{m})^{\frac{1}{m}})\).

Example 4

Consider \(\varPsi _1 = (0.2, 0.3, 0.4), \varPsi _2 = (0.5, 0.7,\) \( 0.6), \varPsi _3 = (0.8, 0.1, 0.3)\) and \(\varPsi _4 = (0.1, 0.2, 0.5)\) are four \(k^{n}_{m}\)-RPFSs, and \(\theta = (0.3, 0.1, 0.4, 0.2)^{T}\) be a weight vector of \(\varPsi _{i}\) (i= 1, 2, 3, 4). Then, \(k^{n}_{m}\)-RPFWPA\((\varPsi _1, \varPsi _2, \varPsi _3, \varPsi _4)= ((0.3\times 0.2^{n} + 0.1 \times 0.5^{n} + 0.4 \times 0.8^{n} + 0.2 \times 0.1^{n})^{\frac{1}{n}}, (0.3\times 0.3^{k} + 0.1 \times 0.7^{k} + 0.4 \times 0.1^{k} + 0.2 \times 0.2^{k})^{\frac{1}{k}}, (0.3\times 0.4^{m} + 0.1 \times 0.6^{m} + 0.4 \times 0.3^{m} + 0.2 \times 0.5^{m})^{\frac{1}{m}}) \)

$$\begin{aligned}\approx \left\{ \begin{array}{llllllllll} (0.6036, 0.2966, 0.4367) &{} \text{ for }\, n=3, k=2\, \text{ and }\, m=4,\\ (0.4500, 0.4458, 0.4683) &{} \text{ for }\, n=1, k=5\, \text{ and }\, m=7,\\ (0.5431, 0.4046, 0.4247) &{} \text{ for }\, n=2, k=4\, \text{ and }\, m=3,\\ (0.6693, 0.2400, 0.4587) &{} \text{ for }\, n=5, k=1\, \text{ and }\, m=6,\\ (0.6427, 0.3541, 0.4123) &{} \text{ for }\, n=4, k=3\, \text{ and }\, m=2. \end{array}\right. \end{aligned}$$

Theorem 15

Let \(\varPsi _{i} = (\rho _{\varPsi _{i}},\aleph _{\varPsi _{i}},\sigma _{\varPsi _{i}})\) \((i = 1, 2, ..., v)\) be a value of \(k^{n}_{m}\)-RPFSs and \(\theta = (\theta _1, \theta _2, ..., \theta _v)^{T}\) be weight vector of \(\varPsi _{i}\) with \(\theta _i > 0\) and \(\sum _{i=1}^{v}\theta _i = 1\). Then, \(k^{n}_{m}\)-RPFWPA\((\varPsi _1, \varPsi _2, ..., \varPsi _v)\) is a \(k^{n}_{m}\)-RPFS.

Proof

For any \(k^{n}_{m}\)-RPFS \(\varPsi _i = (\rho _{\varPsi _{i}},\aleph _{\varPsi _{i}},\sigma _{\varPsi _{i}})\), we have

$$\begin{aligned} 0\le & {} \rho _{\varPsi _i}^{n}\le 1,\\ 0\le & {} \aleph _{\varPsi _i}^{k}\le 1,\\ 0\le & {} \sigma _{\varPsi _i}^{m}\le 1, \end{aligned}$$

and

$$\begin{aligned} 0\le \rho _{\varPsi _i}^{n} + \aleph _{\varPsi _i}^{k} + \sigma _{\varPsi _i}^{m}\le 1. \end{aligned}$$

Then, we get

$$\begin{aligned} 0\le & {} \theta _1\rho _{\varPsi _1}^{n} + \theta _1\aleph _{\varPsi _1}^{k} + \theta _1\sigma _{\varPsi _1}^{m}\le \theta _1\\ 0\le & {} \theta _2\rho _{\varPsi _2}^{n} + \theta _2\aleph _{\varPsi _2}^{k} + \theta _2\sigma _{\varPsi _2}^{m}\le \theta _2\\{} & {} .\\{} & {} .\\{} & {} .\\ 0\le & {} \theta _v\rho _{\varPsi _v}^{n} + \theta _v\aleph _{\varPsi _v}^{k} + \theta _v\sigma _{\varPsi _v}^{m}\le \theta _v, \end{aligned}$$

and so

$$\begin{aligned}{} & {} 0\le (\theta _1\rho _{\varPsi _1}^{n} + \theta _1\aleph _{\varPsi _1}^{k} + \theta _1\sigma _{\varPsi _1}^{m})+ (\theta _2\rho _{\varPsi _2}^{n} + \theta _2\aleph _{\varPsi _2}^{k} + \theta _2\sigma _{\varPsi _2}^{m})\\{} & {} \quad + ...+ (\theta _v\rho _{\varPsi _v}^{n} + \theta _v\aleph _{\varPsi _v}^{k} + \theta _v\sigma _{\varPsi _v}^{m})\le \theta _1 + \theta _2 + ...+\theta _v, \end{aligned}$$

implies that

$$\begin{aligned} 0\le & {} \sum _{i=1}^{v}\theta _i\rho _{\varPsi _{i}}^{n} + \sum _{i=1}^{v}\theta _i\aleph _{\varPsi _{i}}^{k} + \sum _{i=1}^{v}\theta _i\sigma _{\varPsi _{i}}^{m}\le \sum _{i=1}^{v}\theta _i = 1. \end{aligned}$$

Therefore

$$\begin{aligned} 0\le & {} \left( \left( \sum _{i=1}^{v}\theta _i\rho _{\varPsi _{i}}^{n}\right) ^{\frac{1}{n}}\right) ^{n} + \left( \left( \sum _{i=1}^{v}\theta _i\aleph _{\varPsi _{i}}^{k}\right) ^{\frac{1}{k}}\right) ^{k} \\{} & {} \quad + \left( \left( \sum _{i=1}^{v}\theta _i\sigma _{\varPsi _{i}}^{m}\right) ^{\frac{1}{m}}\right) ^{m}\\= & {} \sum _{i=1}^{v}\theta _i\rho _{\varPsi _{i}}^{n} + \sum _{i=1}^{v}\theta _i\aleph _{\varPsi _{i}}^{k} + \sum _{i=1}^{v}\theta _i\sigma _{\varPsi _{i}}^{m}\le 1. \end{aligned}$$

It is obvious that

$$\begin{aligned} 0\le & {} \left( \sum _{i=1}^{v}\theta _i\rho _{\varPsi _{i}}^{n}\right) ^{\frac{1}{n}}\le 1,\\ 0\le & {} \left( \sum _{i=1}^{v}\theta _i\aleph _{\varPsi _{i}}^{k}\right) ^{\frac{1}{k}}\le 1, \end{aligned}$$

and

$$\begin{aligned} 0\le \left( \sum _{i=1}^{v}\theta _i\sigma _{\varPsi _{i}}^{m}\right) ^{\frac{1}{m}}\le 1. \end{aligned}$$

This indicates that \(k^{n}_{m}\)-RPFWPA\((\varPsi _1, \varPsi _2, ..., \varPsi _v)\) is a \(k^{n}_{m}\)-RPFS. \(\square \)

Theorem 16

Let \(\varPsi _{i}= (\rho _{\varPsi _{i}},\aleph _{\varPsi _{i}},\sigma _{\varPsi _{i}})\) and \(L_{i} = (\rho _{L_{i}},\aleph _{L_{i}}, \sigma _{L_{i}}) (i = 1, 2, ..., v)\) be two values of \(k^{n}_{m}\)-RPFSs, and \(\theta = (\theta _1, \theta _2, ..., \theta _v)^{T}\) be a weight vector of \(\varPsi _{i}\) with \(\sum _{i=1}^{v}\theta _i = 1\).

  1. 1.

    (Idempotency) If \(\varPsi _{i} = \varPsi = (\rho _{\varPsi },\aleph _{\varPsi },\sigma _{\varPsi })\) \(\forall i\), then \(k^{n}_{m}\)-RPFWPA\((\varPsi _1, \varPsi _2, ..., \varPsi _v)= \varPsi \).

  2. 2.

    (Boundedness) Suppose that \(\rho _{\varPsi }^{-}= \min _{1\le i\le v}\{ \rho _{\varPsi _{i}}\}\), \(\rho _{\varPsi }^{+}= \max _{1\le i\le v}\{ \rho _{\varPsi _{i}}\}\), \(\aleph _{\varPsi }^{-}= \min _{1\le i\le v}\{ \aleph _{\varPsi _{i}}\}\), \(\sigma _{\varPsi }^{-}= \min _{1\le i\le v}\{ \sigma _{\varPsi _{i}}\}\), \(\sigma _{\varPsi }^{+}= \max _{1\le i\le v}\{ \sigma _{\varPsi _{i}}\}\) and \(\aleph _{\varPsi }= (\sum _{i=1}^{v}\theta _i\aleph _{\varPsi _{i}}^{k})^\frac{1}{k}\). Then

    $$\begin{aligned}{} & {} (\rho _{\varPsi }^{-}, \aleph _{\varPsi }, \sigma _{\varPsi }^{+})\le k^{n}_{m}-\textrm{RPFWPA}(\varPsi _1, \varPsi _2, ..., \varPsi _v) \\{} & {} \le (\rho _{\varPsi }^{+}, \aleph _{\varPsi }, \sigma _{\varPsi }^{-}). \end{aligned}$$
  3. 2.

    (Monotonicity) If \(S(\varPsi _{i})\le S(L_{i})\) \(\forall i\), then

    $$\begin{aligned}{} & {} k^{n}_{m}-\textrm{RPFWPA}(\varPsi _1, \varPsi _2, ..., \varPsi _v)\\{} & {} \quad \le \,k^{n}_{m}-\textrm{RPFWPA}(L_1,L_2, ..., L_v). \end{aligned}$$

Proof

  1. 1.

    Since \(\varPsi _{i} = \varPsi = (\rho _{\varPsi }, \aleph _{\varPsi },\sigma _{\varPsi })\forall i\), then \(k^{n}_{m}\)-RPFWPA \((\varPsi _1, \varPsi _2, ..., \varPsi _v)=\Big (\Big (\sum _{i=1}^{v}\theta _i\rho _{\varPsi _{i}}^{n}\Big )^{\frac{1}{n}}, \Big (\!\sum _{i=1}^{v}\theta _i\aleph _{\varPsi _{i}}^{k}\!\Big )^{\frac{1}{k}}, \Big (\!\sum _{i=1}^{v}\theta _i\sigma _{\varPsi _{i}}^{m}\!\Big )^{\frac{1}{m}}\!\Big ){=}\Big (\!\Big (\!\sum _{i=1}^{v}\theta _i\rho _{\varPsi _{}}^{n}\!\Big )^{\frac{1}{n}}, \Big (\sum _{i=1}^{v}\theta _i\aleph _{\varPsi _{}}^{k}\Big )^{\frac{1}{k}}, \Big (\sum _{i=1}^{v}\theta _i\sigma _{\varPsi _{}}^{m})^{\frac{1}{m}}\Big )= \Big (\rho _{\varPsi _{}}\Big (\sum _{i=1}^{v}\theta _i\Big )^{\frac{1}{n}}, \aleph _{\varPsi _{}}\Big (\sum _{i=1}^{v}\theta _i\Big )^{\frac{1}{k}}, \sigma _{\varPsi _{}}\Big (\sum _{i=1}^{v}\theta _i\Big )^{\frac{1}{m}}\Big )= (\rho _{\varPsi }, \aleph _{\varPsi },\sigma _{\varPsi })= \varPsi \).

  2. 2.

    For any \(\varPsi _{i} = (\rho _{\varPsi _{i}},\aleph _{\varPsi _{i}},\sigma _{\varPsi _{i}})\) \((i = 1, 2, ..., v)\), we can get \(\rho _{\varPsi }^{-}\le \rho _{\varPsi _{i}} \le \rho _{\varPsi }^{+}\) and \(\sigma _{\varPsi }^{-}\le \sigma _{\varPsi _{i}} \le \sigma _{\varPsi }^{+}\). Then, the inequalities for membership value are

    $$\begin{aligned} {\rho _{\varPsi }^{-}}= & {} \left( \sum _{i=1}^{v}\theta _i{\rho _{\varPsi }^{-}}^{n}\right) ^{\frac{1}{n}}\le \left( \sum _{i=1}^{v}\theta _i\rho _{\varPsi _{i}}^{n}\right) ^{\frac{1}{n}}\\\le & {} \left( \sum _{i=1}^{v}\theta _i{\rho _{\varPsi }^{+}}^{n}\right) ^{\frac{1}{n}} = \rho _{\varPsi }^{+}. \end{aligned}$$

    Similarly, for non-membership value

    $$\begin{aligned} {\sigma _{\varPsi }^{-}}= & {} \left( \sum _{i=1}^{v}\theta _i{\sigma _{\varPsi }^{-}}^{m}\right) ^{\frac{1}{m}}\le \left( \sum _{i=1}^{v}\theta _i\sigma _{\varPsi _{i}}^{m}\right) ^{\frac{1}{m}}\\\le & {} \left( \sum _{i=1}^{v}\theta _i{\sigma _{\varPsi }^{+}}^{m}\right) ^{\frac{1}{m}}= \sigma _{\varPsi }^{+}. \end{aligned}$$

    Now

    $$\begin{aligned}{} & {} S(k^{n}_{m}-\textrm{RPFWPA}(\varPsi _1, \varPsi _2, ..., \varPsi _v))\\{} & {} \quad = \sum _{i=1}^{v}\theta _i\rho _{\varPsi _{i}}^{n}- \sum _{i=1}^{v}\theta _i\aleph _{\varPsi _{i}}^{k}- \sum _{i=1}^{v}\theta _i\sigma _{\varPsi _{i}}^{m}\le \sum _{i=1}^{v}\theta _i{\rho _{\varPsi }^{+}}^{n} \\{} & {} \quad - \sum _{i=1}^{v}\theta _i\aleph _{\varPsi _{i}}^{k} - \sum _{i=1}^{v}\theta _i{\sigma _{\varPsi }^{-}}^{m} ={\rho _{\varPsi }^{+}}^{n} - \aleph _{\varPsi }^{k} - {\sigma _{\varPsi }^{-}}^{m}\\{} & {} \quad =S(\rho _{\varPsi }^{+}, \aleph _{\varPsi }, \sigma _{\varPsi }^{-}), \end{aligned}$$

    and

    $$\begin{aligned}{} & {} S(k^{n}_{m}-\textrm{RPFWPA}(\varPsi _1, \varPsi _2, ..., \varPsi _v))\\{} & {} \quad = \sum _{i=1}^{v}\theta _i\rho _{\varPsi _{i}}^{n}- \sum _{i=1}^{v}\theta _i\aleph _{\varPsi _{i}}^{k}- \sum _{i=1}^{v}\theta _i\sigma _{\varPsi _{i}}^{m}\\{} & {} \quad \ge \sum _{i=1}^{v}\theta _i{\rho _{\varPsi }^{-}}^{n} - \sum _{i=1}^{v}\theta _i\aleph _{\varPsi _{i}}^{k} - \sum _{i=1}^{v}\theta _i{\sigma _{\varPsi }^{+}}^{m}\\{} & {} \quad ={\rho _{\varPsi }^{-}}^{n} - \aleph _{\varPsi }^{k} - {\sigma _{\varPsi }^{+}}^{m} =S(\rho _{\varPsi }^{-}, \aleph _{\varPsi }, \sigma _{\varPsi }^{+}). \end{aligned}$$

    Therefore

    $$\begin{aligned} (\rho _{\varPsi }^{-}, \aleph _{\varPsi }, \sigma _{\varPsi }^{+})\le & {} k^{n}_{m}-\textrm{RPFWPA}(\varPsi _1, \varPsi _2, ..., \varPsi _v) \\\le & {} (\rho _{\varPsi }^{+}, \aleph _{\varPsi }, \sigma _{\varPsi }^{-}). \end{aligned}$$
  3. 3.

    Since for all i we have \(S(\varPsi _{i})\le S(L_{i})\), then

    $$\begin{aligned}{} & {} \rho _{\varPsi _{1}}^{n}- \aleph _{\varPsi _{1}}^{k}-\sigma _{\varPsi _{1}}^{m}\le \rho _{L_{1}}^{n}- \aleph _{L_{1}}^{k}-\sigma _{L_{1}}^{m}\\{} & {} \rho _{\varPsi _{2}}^{n}- \aleph _{\varPsi _{2}}^{k}-\sigma _{\varPsi _{2}}^{m}\le \rho _{L_{2}}^{n}- \aleph _{L_{2}}^{k}-\sigma _{L_{2}}^{m}\\{} & {} \quad .\\{} & {} \quad .\\{} & {} \quad .\\{} & {} \quad \rho _{\varPsi _{v}}^{n}- \aleph _{\varPsi _{v}}^{k}-\sigma _{\varPsi _{v}}^{m}\le \rho _{L_{v}}^{n}- \aleph _{L_{v}}^{k}-\sigma _{L_{v}}^{m}, \end{aligned}$$

    and so

    $$\begin{aligned}{} & {} S(k^{n}_{m}-\textrm{RPFWPA}(\varPsi _1, \varPsi _2, ..., \varPsi _v))\\{} & {} \quad = \sum _{i=1}^{v}\theta _i\rho _{\varPsi _{i}}^{n}- \sum _{i=1}^{v}\theta _i\aleph _{\varPsi _{i}}^{k}- \sum _{i=1}^{v}\theta _i\sigma _{\varPsi _{i}}^{m}\\{} & {} \quad \le \sum _{i=1}^{v}\theta _i\rho _{L_{i}}^{n}- \sum _{i=1}^{v}\theta _i\aleph _{L_{i}}^{k}- \sum _{i=1}^{v}\theta _i\sigma _{L_{i}}^{m} \\{} & {} \quad =S(k^{n}_{m}-\textrm{RPFWPA}(L_1, L_2, ..., L_v)). \end{aligned}$$

    Thus, \(k^{n}_{m}\)-RPFWPA\((\varPsi _1, \varPsi _2, ..., \varPsi _v) \le \) \(k^{n}_{m}\)-RPFWPA \((L_1, L_2, ..., L_v)\).

\(\square \)

Theorem 17

Let \(\varPsi _{i} = (\rho _{\varPsi _{i}},\aleph _{\varPsi _{i}},\sigma _{\varPsi _{i}})\) \((i = 1, 2, ..., v)\) be a value of \(k^{n}_{m}\)-RPFSs, \(\varPsi = (\rho _{\varPsi },\aleph _{\varPsi },\sigma _{\varPsi })\) be \(k^{n}_{m}\)-RPFS and \(\theta = (\theta _1, \theta _2, ..., \theta _v)^{T}\) be a weight vector of \(\varPsi _{i}\) with \(\sum _{i=1}^{v}\theta _i = 1\). Then

  1. 1.

    \(A(k^{n}_{m}\)-RPFWPA\((\varPsi _1 \oplus \varPsi , \varPsi _2 \oplus \varPsi , ..., \varPsi _v \oplus \varPsi )) \le A(k^{n}_{m}\)-RPFWPA\((\varPsi _1, \varPsi _2, ..., \varPsi _v))\).

  2. 2.

    \(A(k^{n}_{m}\)-RPFWPA\((\varPsi _1 \otimes \varPsi , \varPsi _2 \otimes \varPsi , ..., \varPsi _v \otimes \varPsi )) \le A(k^{n}_{m}\)-RPFWPA\((\varPsi _1, \varPsi _2, ..., \varPsi _v))\).

Proof

  1. 1.

    Since \(\rho _{\varPsi }^{n}\le 1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi }^{n}\), then \(\frac{\rho _{\varPsi }^{n}}{1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi }^{n}}\le 1\), and hence

    $$\begin{aligned} \theta _1\left( \frac{\rho _{\varPsi _1}^{n}\rho _{\varPsi }^{n}}{1+ \rho _{\varPsi _1}^{n}\rho _{\varPsi }^{n}}\right) \le \theta _1\rho _{\varPsi _1}^{n}. \end{aligned}$$

    Therefore, we have

    $$\begin{aligned}{} & {} \theta _1\left( \frac{\rho _{\varPsi _2}^{n}\rho _{\varPsi }^{n}}{1+ \rho _{\varPsi _2}^{n}\rho _{\varPsi }^{n}}\right) \le \theta _1\rho _{\varPsi _2}^{n}\\{} & {} \quad .\\{} & {} \quad .\\{} & {} \quad .\\{} & {} \quad \theta _v\left( \frac{\rho _{\varPsi _v}^{n}\rho _{\varPsi }^{n}}{1+ \rho _{\varPsi _v}^{n}\rho _{\varPsi }^{n}}\right) \le \theta _v\rho _{\varPsi _v}^{n}. \end{aligned}$$

    Thus

    Table 3 \(k^{n}_{m}\)-RPF values
    Table 4 Aggregated \(k^{n}_{m}\)-RPF information matrix
    $$\begin{aligned} \sum _{i=1}^{v}\theta _i \left( \frac{\rho _{\varPsi _i}^{n}\rho _{\varPsi }^{n}}{1+ \rho _{\varPsi _i}^{n}\rho _{\varPsi }^{n}}\right) \le \sum _{i=1}^{v}\theta _i\rho _{\varPsi _{i}}^{n}. \end{aligned}$$

    Similarly, we have

    $$\begin{aligned} \sum _{i=1}^{v}\theta _i \left( \frac{\aleph _{\varPsi _i}^{k}\aleph _{\varPsi }^{k}}{1+(1- \aleph _{\varPsi _i}^{k})(1- \aleph _{\varPsi }^{k})}\right) \le \sum _{i=1}^{v}\theta _i\aleph _{\varPsi _{i}}^{k}, \end{aligned}$$

    and

    $$\begin{aligned} \sum _{i=1}^{v}\theta _i \left( \frac{\sigma _{\varPsi _i}^{m}\sigma _{\varPsi }^{m}}{1+(1- \sigma _{\varPsi _i}^{m})(1- \sigma _{\varPsi }^{m})}\right) \le \sum _{i=1}^{v}\theta _i\sigma _{\varPsi _{i}}^{m}. \end{aligned}$$

    Now, we have \(k^{n}_{m}\)-RPFWPA\((\varPsi _1 \oplus \varPsi , \varPsi _2 \oplus \varPsi , ..., \varPsi _v \oplus \varPsi ) =((\sum _{i=1}^{v}\theta _i (\frac{\rho _{\varPsi _i}^{n}\rho _{\varPsi }^{n}}{1+ \rho _{\varPsi _i}^{n}\rho _{\varPsi }^{n}}))^\frac{1}{n}, (\sum _{i=1}^{v}\theta _i (\frac{\aleph _{\varPsi _i}^{k}\aleph _{\varPsi }^{k}}{1+(1- \aleph _{\varPsi _i}^{k})(1- \aleph _{\varPsi }^{k})}))^\frac{1}{k}, (\sum _{i=1}^{v}\theta _i (\frac{\sigma _{\varPsi _i}^{m}\sigma _{\varPsi }^{m}}{1+(1- \sigma _{\varPsi _i}^{m})(1- \sigma _{\varPsi }^{m})}))^\frac{1}{m})\), then \(A(k^{n}_{m}\)-RPFWPA\((\varPsi _1 \oplus \varPsi , \varPsi _2 \oplus \varPsi , ..., \varPsi _v \oplus \varPsi )) =\sum _{i=1}^{v}\theta _i (\frac{\rho _{\varPsi _i}^{n}\rho _{\varPsi }^{n}}{1+ \rho _{\varPsi _i}^{n}\rho _{\varPsi }^{n}})+ \sum _{i=1}^{v}\theta _i (\frac{\aleph _{\varPsi _i}^{k}\aleph _{\varPsi }^{k}}{1+(1- \aleph _{\varPsi _i}^{k})(1- \aleph _{\varPsi }^{k})}) + \sum _{i=1}^{v}\theta _i \left( \!\frac{\sigma _{\varPsi _i}^{m}\sigma _{\varPsi }^{m}}{1+(1- \sigma _{\varPsi _i}^{m})(1- \sigma _{\varPsi }^{m})}\!\right) {\le }\sum _{i=1}^{v}\theta _i\rho _{\varPsi _{i}}^{n}{+}\sum _{i=1}^{v}\theta _i \aleph _{\varPsi _{i}}^{k} + \sum _{i=1}^{v}\theta _i\sigma _{\varPsi _{i}}^{m} = A(k^{n}_{m}\)-RPFWPA\((\varPsi _1, \varPsi _2, ..., \varPsi _v))\).

  2. 2.

    We can proof in a similar fashion to (1).

\(\square \)

The proof of the following result is similar to the proof of Theorem 17, so we omit it.

Theorem 18

Let \(\varPsi _{i} = (\rho _{\varPsi _{i}},\aleph _{\varPsi _{i}},\sigma _{\varPsi _{i}})\) and \(L_{i} = (\rho _{L_{i}},\sigma _{L_{i}})\) \((i = 1, 2, ..., v)\) be two values of \(k^{n}_{m}\)-RPFSs, and \(\theta = (\theta _1, \theta _2, ..., \theta _v)^{T}\) be a weight vector of them with \(\sum _{i=1}^{v}\theta _i = 1\). Then

  1. 1.

    \(A(k^{n}_{m}\)-RPFWPA\((\varPsi _1 \oplus L_1, \varPsi _2 \oplus L_2, ..., \varPsi _v \oplus L_v)) \le A(k^{n}_{m}\)-RPFWPA\((\varPsi _1, \varPsi _2, ..., \varPsi _v))\).

  2. 2.

    \(A(k^{n}_{m}\)-RPFWPA\((\varPsi _1 \oplus L_1, \varPsi _2 \oplus L_2, ..., \varPsi _v \oplus L_v)) \le A(k^{n}_{m}\)-RPFWPA\((L_1, L_2, ..., L_v))\).

  3. 3.

    \(A(k^{n}_{m}\)-RPFWPA\((\varPsi _1 \otimes L_1, \varPsi _2 \otimes L_2, ..., \varPsi _v \otimes L_v)) \le A(k^{n}_{m}\)-RPFWPA\((\varPsi _1, \varPsi _2, ..., \varPsi _v))\).

  4. 4.

    \(A(k^{n}_{m}\)-RPFWPA\((\varPsi _1 \otimes L_1, \varPsi _2 \otimes L_2, ..., \varPsi _v \otimes L_v)) \le A(k^{n}_{m}\)-RPFWPA\((L_1, L_2, ..., L_v))\).

MADM application to select the best countries for expats

In this section, we use the \(k^{n}_{m}\)-RPFWPA operator to determine the best country for expats between several countries. The data in this approach are provided by the decision-makers in the form of \(k^{n}_{m}\)-rung picture fuzzy sets.

Let \(C = \{C_1, C_2, ..., C_u\}\) be a set that represents the available options. The weights of the v attributes \(K_1, K_2, ..., K_v\), explaining the key elements affecting the MADM problem, are represented by the weight vector \(\theta =\{\theta _1, \theta _2, ..., \theta _v\}\), where \(\theta _i > 0\) and \(\sum _{i=1}^{v}\theta _i = 1\). Suppose that \(\tilde{M}= (\rho _{ji},\aleph _{ji},\sigma _{ji})_{u\times v}\) is the \(k^{n}_{m}\)-RPF decision matrix, where \(\rho _{ji}\) indicates the positive membership degree to which the option \(C_j\) fulfills the attribute \(K_i\) specified by the decision maker, \(\aleph _{ji}\) indicates the neutral membership degree that the option \(C_j\) does not fulfill the attribute \(K_i\), and \(\sigma _{ji}\) indicates the negative membership degree that the option \(C_j\) does not fulfill the attribute \(K_i\) specified by the decision maker, where \((\rho _{ji})^{n} + (\aleph _{ji})^{k} + (\sigma _{ji})^{m} \le 1\). In light of this, for solving an MADM problem, we give the following Algorithm 1.

Algorithm 1
figure a

Steps to solve MADM problem by \(k^{n}_{m}\)-RPFWPA operator.

Application example

People are becoming more and more captivated by the thought of uprooting and relocating overseas as the world becomes more connected and simple to navigate. Since the beginning of civilization, people have aspired to advance, discover the world, and settle in new places. Thousands of people desire to immigrate to a new country each year, demonstrating that this attitude is still present today.

The selection of an appropriate country is an important step to move to a new country. Suppose Austria, Sweden, The Netherlands, Finland, and Norway are a possible countries for selection, and \(K = \{K_1, K_2, K_3, K_4, K_5, K_6, K_7, K_8, \) \( K_9, K_{10}, K_{11}, K_{12}, K_{13}\}\) is a set of 13 keys for the selection of countries, where

\(K_1: \) Unemployment rate,

\(K_2: \) Average income per capita,

\(K_3: \) Level of crime,

\(K_4: \) Amount of space,

\(K_5: \) Decent working hours,

\(K_6: \) Overall labor rights,

\(K_7: \) City center apartment cost,

\(K_8: \) Rural apartment cost,

\(K_9: \) Air quality,

\(K_{10}: \) Drinking water quality and accessibility,

\(K_{11}: \) Garbage disposal,

\(K_{12}: \) Quality of parks, and

\(K_{13}: \) Gender equality.

Table 3 shows how we built the \(k^{n}_{m}\)-rung picture fuzzy decision matrices. Now, we applying the \(k^{n}_{m}\)-RPFWPA operator with weight vectors \(\theta = (0.11, 0.05, 0.08, 0.08, 0.05, 0.04, 0.05, 0.09, 0.08, 0.09, 0.08, \) \( 0.09, 0.11)^{T}\), and putting \(n=m= 1, 2, k= 2, 3\), and \(n=m= 3, k= 4\) as follows in Table 4. Finally, Table 5 shows the score value for each option, and Table 6 shows their ranking.

Table 5 Score value

We have used various values of nk, and m to rank the options to explain the impact of the parameters nk and m on MADM outcomes. In Table 6, the results of the ranking of the options based on the \(k^{n}_{m}\)-RPFWPA operator are shown. The possibilities were ranked as \(C_4> C_2> C_5> C_1 > C_3\); here, Finland is the best choice and Sweden is the best second choice. Thus, the overall best rank is Finland.

Table 6 Comparison rankings for the our application
Table 7 Comparison analysis with existing operators using situation displayed in [52]

Comparison analysis and discussion

In this section, we contrast the suggested operator with other existing operators to show the benefits of the proposed operator. In this case, we use data from a particular application in accordance with the operators by which we must compare our suggested model to ensure the precision and effectiveness of our generated operator. To compare the \(k^{n}_{m}\)-RPFWPA operator with the 3-RPFEWA [52], SFWG and SFWA [53], SFDWA [54], and PFDWA [55] operators. For the sake of brevity, we have used the techniques described here on the application offered in [52]. Table  7 demonstrates that for various values of nk, and m, the proposed \(k^{n}_{m}\)-RPFWPA operator and the the various existing operators yield the same optimal decision object, and the ultimate order is \(J_2> J_3> J_1 > J_4\). It is evident that \(J_2\) is the perfect choice for business’s location. This suggests that our approach is reliable and usable in decision-making issues. The \(k^{n}_{m}\)-RPFWPA covers more MADM problems utilizing various values of the parameters nk, and m that are appropriate for MADM problems, since it is the more flexible, accomplished, and broad model. For this reason, we advocate the theory of \(k^{n}_{m}\)-RPFWPA, which has a larger variety of applications than the current operators and is therefore preferable to them.

By the above-mentioned practical example, the proposed operators overcome shortcomings and limits of existing operators, which means that they are more general and perform admirably not only for \(k^{n}_{m}\)-RPFS data but also for q-RPF fuzzy information. That is, in comparison to other modeling techniques, the \(k^{n}_{m}\)-RPFS is more adaptable and effective which enables individuals to provide more accurate outcomes when faced with decision-making issues.

Conclusions

As it is well known that all the existing extensions of PFSs are particular cases of q-RPFSs. However, there exist some situations and cases requiring evaluations with different importance (whence calibration) for the degrees of positive membership, neutral membership, and negative membership which cannot be met by the forgoing extensions of PFSs. To achieve this target, we are writing this manuscript.

First, we have suggested a novel generalized q-RPFS called \(k^{n}_{m}\)-rung picture fuzzy set and contrasted it to other types of picture fuzzy sets. Several operators on \(k^{n}_{m}\)-rung picture fuzzy sets have been presented and their features have been demonstrated. Then, the application of mathematical operations known as "aggregate operators" has been brought them to the status of vital tools for fusing several inputs into a single, practical output. As a result, we have successfully designed a novel aggregation operator for \(k^{n}_{m}\)-RPFS. We have created the \(k^{n}_{m}\)-RPFWPA operator and investigated its many features such as idempotency, boundedness, and monotonicity. Finally, we used the given operator to develop a novel technique for solving MAGDM problems. To demonstrate the validity of the proposed method, we utilized it to identify the best country for expats. In addition, we did a comparison analysis to demonstrate the efficacy and superiority of the suggested method. The proposed technique can be used to solve various real-world decision-making problems due to the strong ability of \(k^{n}_{m}\)-RPFSs to describe fuzziness and represent decision-makers’ evaluations over options, as well as the power of the \(k^{n}_{m}\)-RPFWPA operator.

Our future road encourages further studies to investigate more aggregation operators for integrating \(k^{n}_{m}\)-rung picture data in light of the benefits of \(k^{n}_{m}\)-RPFSs. Additionally, we should look at more MAGDM algorithms that use \(k^{n}_{m}\)-rung picture information. Also, \(k^{n}_{m}\)-rung picture fuzzy sets can be expanded to \(k^{n}_{m}\)-rung picture fuzzy soft set, and numerous applications can be introduced on it. Since the solutions to many complicated issues, especially with the progression of technology and communication, require resorting to more than one analytical tool, we shall integrate the current type of picture fuzzy sets with some rough sets models [56, 57] and abstract structures [58,59,60] to produce new frameworks of uncertainty.