Skip to main content
Log in

Silver Nanoparticles-Polyurea Composite Coatings on ASTM A194 Steel: A Study of Corrosion Behavior in Chloride Medium

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

ASTM A194 steel is one of the standard steels used in the manufacture of steel nuts used in high temperature and pressure conditions in the oil and gas industry. In this study, the effect of polyurea coating on improving the corrosion resistance of this alloy and the effect of Ag nanoparticles on the corrosion properties of polyurea coating in 3.5% sodium chloride solution was investigated. Corrosion resistance of the samples was evaluated by potentiodynamic polarization test. Scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (EDS) analyses were used to qualitatively evaluate the surface of the samples coated with polyurea and Ag nanoparticles. The obtained results showed that applying polyurea coating on ASTM A194 steel improved its corrosion resistance significantly. It was also found that addition of Ag nanoparticles had a positive effect on the protective properties of polyurea coating. The results of potentiodynamic polarization tests showed that adding silver nanoparticles to the polyurea coating improved the protective behavior of the coating in the short and long term. This improvement in corrosion behavior can be attributed to the barrier properties and chemical properties of silver nanoparticles in contact with destructive species present in corrosive electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roberge PR (2008) Corrosion engineering: principles and practice, vol 2. McGraw-Hill, New York

    Google Scholar 

  2. Yabuki A, Fathona IW (2019) Recent trends in nanofiber-based anticorrosion coatings. In: Barhoum A, Bechelany M, Makhlouf ASH (eds) Handbook of nanofibers. Springer International Publishing, Cham, pp 905–936. https://doi.org/10.1007/978-3-319-53655-2_38

    Chapter  Google Scholar 

  3. Sapkota R, Zou J, Dawka S, Bobak JE, Papadopoulos C (2018) Multi-functional thin film coatings formed via nanogrinding. Appl Nanosci 8(6):1437–1444. https://doi.org/10.1007/s13204-018-0812-y

    Article  CAS  Google Scholar 

  4. Sai Pavan AS, Ramanan SR (2016) A study on corrosion resistant graphene films on low alloy steel. Appl Nanosci 6(8):1175–1181. https://doi.org/10.1007/s13204-016-0530-2

    Article  CAS  Google Scholar 

  5. Ashraf PM, Anuradha R (2018) Corrosion resistance of BIS 2062-grade steel coated with nano-metal-oxide mixtures of iron, cerium, and titanium in the marine environment. Appl Nanosci 8(1):41–51. https://doi.org/10.1007/s13204-018-0650-y

    Article  CAS  Google Scholar 

  6. Li DG, Wang JD, Chen DR, Liang P (2015) Influence of molybdenum on tribo-corrosion behavior of 316L stainless steel in artificial saliva. J Bio Tribo Corros 1(2):14. https://doi.org/10.1007/s40735-015-0014-z

    Article  Google Scholar 

  7. Manoj A, Ramachandran R, Menezes PL (2020) Self-healing and superhydrophobic coatings for corrosion inhibition and protection. Int J Adv Manuf Technol 106(5):2119–2131. https://doi.org/10.1007/s00170-019-04758-z

    Article  Google Scholar 

  8. McCafferty E (2010) Introduction to corrosion science. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  9. Indira K, Nishimura T (2017) In situ study of effect of chromium content and epoxy coating on localized corrosion behavior of low-alloy steel using localized electrochemical impedance spectroscopy. J Bio Tribo Corros 3(3):28. https://doi.org/10.1007/s40735-017-0088-x

    Article  Google Scholar 

  10. Hemmati AR, Soltanieh SM, Masoudpanah SM (2018) On the interaction between erosion and corrosion in chromium carbide coating. J Bio Tribo Corros 4(1):10. https://doi.org/10.1007/s40735-018-0128-1

    Article  Google Scholar 

  11. Vijayasarathi P (2019) Characterization and corrosion studies of TiAlN PVD coating by using the polarization test method. J Bio Tribo Corros 5(1):29. https://doi.org/10.1007/s40735-019-0220-1

    Article  Google Scholar 

  12. Ma Y, Zhang Y, Liu J, Ge Y, Yan X, Sun Y, Wu J, Zhang P (2020) GO-modified double-walled polyurea microcapsules/epoxy composites for marine anticorrosive self-healing coating. Mater Des 189:108547. https://doi.org/10.1016/j.matdes.2020.108547

    Article  CAS  Google Scholar 

  13. Feng L, Iroh JO (2014) Corrosion resistance and lifetime of polyimide-b-polyurea novel copolymer coatings. Prog Org Coat 77(3):590–599

    Article  CAS  Google Scholar 

  14. Orlov V (2016) Computer simulation of optimal thickness of polyurea coating using for trenchless renovation of potable water pipes. Proc Eng 165:1168–1175

    Article  CAS  Google Scholar 

  15. Gauch E, LeBlanc J, Shukla A (2018) Near field underwater explosion response of polyurea coated composite cylinders. Compos Struct 202:836–852. https://doi.org/10.1016/j.compstruct.2018.04.048

    Article  Google Scholar 

  16. Beiki H, Keramati M (2019) Improvement of methane production from sugar beet wastes using TiO2 and Fe3O4 nanoparticles and chitosan micropowder additives. Appl Biochem Biotechnol 189(1):13–25. https://doi.org/10.1007/s12010-019-02987-2

    Article  CAS  Google Scholar 

  17. Talbert R (2007) Paint technology handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  18. Alarcon EI, Griffith M, Udekwu KI (2015) Silver nanoparticle applications. Springer, New York

    Book  Google Scholar 

  19. Qian X, Song L, Tai Q, Hu Y, Yuen RKK (2013) Graphite oxide/polyurea and graphene/polyurea nanocomposites: a comparative investigation on properties reinforcements and mechanism. Compos Sci Technol 74:228–234

    Article  CAS  Google Scholar 

  20. Nantasetphong W, Jia Z, Amirkhizi AV, Nemat-Nasser S (2016) Dynamic properties of polyurea-milled glass composites Part I: experimental characterization. Mech Mater 98:142–153

    Article  Google Scholar 

  21. Zhao Z, Meng F, Tang J, Liu H, Liu H, Yang L, Wang J, Xiong T (2019) A novel method of fabricating an antibacterial aluminum-matrix composite coating doped graphene/silver-nanoparticles. Mater Lett 245:211–214. https://doi.org/10.1016/j.matlet.2019.02.121

    Article  CAS  Google Scholar 

  22. Torrico RFAO, Harb SV, Trentin A, Uvida MC, Pulcinelli SH, Santilli CV, Hammer P (2018) Structure and properties of epoxy-siloxane-silica nanocomposite coatings for corrosion protection. J Colloid Interface Sci 513:617–628. https://doi.org/10.1016/j.jcis.2017.11.069

    Article  CAS  Google Scholar 

  23. Rahmani S, Omrani A, Hosseini SR (2019) Effects of silica nanoparticles content on the properties and corrosion behavior of electroless Ni-Ba-B alloy coatings. Silicon. https://doi.org/10.1007/s12633-019-00162-0

    Article  Google Scholar 

  24. Manjumeena R, Venkatesan R, Duraibabu D, Sudha J, Rajendran N, Kalaichelvan PT (2016) Green nanosilver as reinforcing eco-friendly additive to epoxy coating for augmented anticorrosive and antimicrobial behavior. Silicon 8(2):277–298. https://doi.org/10.1007/s12633-015-9327-2

    Article  CAS  Google Scholar 

  25. Kundan N, Parida B, Keshri AK, Soni PR (2019) Synthesis and characterization of the nanostructured solid solution with extended solubility of graphite in nickel by mechanical alloying. Int J Miner Metall Mater 26(8):1031–1037. https://doi.org/10.1007/s12613-019-1816-7

    Article  CAS  Google Scholar 

  26. Coutinho TC, Tardioli PW, Farinas CS (2019) Phytase immobilization on hydroxyapatite nanoparticles improves its properties for use in animal feed. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-019-03116-9

    Article  Google Scholar 

  27. Jiang L, Chen D, Wang Z, Zhang Z, Xia Y, Xue H, Liu Y (2019) Preparation of an electrically conductive graphene oxide/chitosan scaffold for cardiac tissue engineering. Appl Biochem Biotechnol 188(4):952–964. https://doi.org/10.1007/s12010-019-02967-6

    Article  CAS  Google Scholar 

  28. Fard MM, Beiki H (2017) Experimental measurement of solid solutes solubility in nanofluids. Heat Mass Transfer 53(4):1257–1263. https://doi.org/10.1007/s00231-016-1894-2

    Article  CAS  Google Scholar 

  29. Shahmohammadi P, Beiki H (2016) A numerical investigation of γ-Al2O3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger. Transp Phenom Nano Micro Scales 4(1):29–35

    Google Scholar 

  30. Manouchehrian Fard M, Beiki H (2016) Experimental investigation of benzoic acid diffusion coefficient in γ-Al2O3 nanofluids at different temperatures. Heat Mass Transfer 52(10):2203–2211. https://doi.org/10.1007/s00231-015-1734-9

    Article  CAS  Google Scholar 

  31. Hojjat M, Nayebzadeh H, Khadangi-Mahrood M, Rahmani-Vahid B (2017) Optimization of process conditions for biodiesel production over CaO–Al2O3/ZrO2 catalyst using response surface methodology. Chem Pap 71(3):689–698. https://doi.org/10.1007/s11696-016-0096-1

    Article  CAS  Google Scholar 

  32. Nasehi P, Mahmoudi B, Abbaspour SF, Moghaddam MS (2019) Cadmium adsorption using novel MnFe2O4-TiO2-UIO-66 magnetic nanoparticles and condition optimization using a response surface methodology. RSC Adv 9(35):20087–20099. https://doi.org/10.1039/C9RA03430G

    Article  CAS  Google Scholar 

  33. Beiki H, Soukhtanlou E (2019) Improvement of salt gradient solar ponds’ performance using nanoparticles inside the storage layer. Appl Nanosci 9(2):243–254. https://doi.org/10.1007/s13204-018-0906-6

    Article  CAS  Google Scholar 

  34. Abdel-Gaber AM, Awad R, Rahal HT, Moussa D (2019) Electrochemical behavior of composite nanoparticles on the corrosion of mild steel in different media. J Bio Tribo Corros 5(2):49. https://doi.org/10.1007/s40735-019-0241-9

    Article  Google Scholar 

  35. Chintada VB, Koona R (2018) Influence of SiC nano particles on microhardness and corrosion resistance of electroless Ni–P coatings. J Bio Tribo Corros 4(4):68. https://doi.org/10.1007/s40735-018-0186-4

    Article  Google Scholar 

  36. El-Nour KMMA, Eftaiha AA, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3(3):135–140

    Article  Google Scholar 

  37. ASTM G1–03 (2003) Standard practice for preparing, cleaning, and evaluating corrosion test specimens. ASTM International, West Conshohocken, PA

    Google Scholar 

  38. Boomadevi Janaki G, Xavier JR (2019) Evaluation of mechanical properties and corrosion protection performance of surface modified nano-alumina encapsulated epoxy coated mild steel. J Bio Tribo Corros 6(1):20. https://doi.org/10.1007/s40735-019-0316-7

    Article  Google Scholar 

  39. Jain P, Patidar B, Bhawsar J (2020) Potential of nanoparticles as a corrosion inhibitor: a review. J Bio Tribo Corros 6(2):1–12

    Article  Google Scholar 

  40. Verma S, Mohanty S, Nayak SK (2019) A review on protective polymeric coatings for marine applications. J Coat Technol Res 16(2):307–338. https://doi.org/10.1007/s11998-018-00174-2

    Article  CAS  Google Scholar 

  41. Abioye OP, Loto CA, Fayomi OSI (2019) Evaluation of anti-biofouling progresses in marine application. J Bio Tribo Corros 5(1):22

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Beiki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beiki, H., Mosavi, S.J. Silver Nanoparticles-Polyurea Composite Coatings on ASTM A194 Steel: A Study of Corrosion Behavior in Chloride Medium. J Bio Tribo Corros 6, 66 (2020). https://doi.org/10.1007/s40735-020-00364-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-020-00364-9

Keywords

Navigation