Skip to main content
Log in

Improvement of Methane Production from Sugar Beet Wastes Using TiO2 and Fe3O4 Nanoparticles and Chitosan Micropowder Additives

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An experimental study was performed to measure biogas production from sugar beet waste, which is, in fact, the chopped parts of the sugar beet not going through the sugar extraction process, at different additive concentrations. Medium molecular weight chitosan in microsize and TiO2 and Fe3O4 nanoparticles were added to ten experimental reactors to investigate their effect on the anaerobic digestion process. Three different concentrations of 0.01, 0.04, and 0.12% w/w were used for each additive. Biogas production and methane content were compared with a control sample containing no additive. Adding chitosan in powder form did not help the process nor improved methanogenic activities. The results showed no effect on anaerobic digestion by the addition of TiO2 nanoparticles in the mentioned concentrations, whereas adding Fe3O4 nanoparticles led to a slight increase in methane production and in volatile solid and total solid reduction. The maximum enhancement in methane and biogas production in the sample containing 0.04% Fe3O4, as compared with the control sample, reached 19.77% and 15.09%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beiki, H., Dadvar, M., & Halladj, R. (2009). Pore network model for catalytic dehydration of methanol at particle level. AICHE Journal, 55(2), 442–449.

    Article  CAS  Google Scholar 

  2. Beiki, H., Soukhtanlou, E. (2018) Improvement of salt gradient solar ponds’ performance using nanoparticles inside the storage layer. J Applied Nanoscience, 9(2), 243–254.

  3. Arora, L., Gupta, P., Chhikara, N., Singh, O. P., Muhunthan, N., Singh, V. N., Singh, B. P., Jain, K., Chand, S. J. A. N. (2015) Green synthesis of wurtzite copper zinc tin sulfide nanocones for improved solar photovoltaic utilization. J Applied Nanoscience, 5:163–167.

  4. Cheng, J.-R., Liu, X.-M., Chen, Z.-Y., Zhang, Y.-S., & Zhang, Y.-H. (2016). A novel mesophilic anaerobic digestion system for biogas production and in situ methane enrichment from coconut shell pyroligneous. Applied Biochemistry and Biotechnology, 178(7), 1303–1314.

    Article  CAS  PubMed  Google Scholar 

  5. Li, N., Yang, F., Xiao, H., Zhang, J., & Ping, Q. (2017). Effect of feedstock concentration on biogas production by inoculating rumen microorganisms in biomass solid waste. Applied Biochemistry and Biotechnology, 1–13.

  6. Weiland, P. (2003). Production and energetic use of biogas from energy crops and wastes in Germany. Applied Biochemistry and Biotechnology, 109(1-3), 263–274.

    Article  CAS  PubMed  Google Scholar 

  7. Keramati, M., & Beiki, H. (2017). The effect of pH adjustment together with different substrate to inoculum ratios on biogas production from sugar beet wastes in an anaerobic digester. Journal of Energy Management and Technology, 1, 6–11.

    Google Scholar 

  8. Montañés, R., Solera, R., & Pérez, M. (2015). Anaerobic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: effect of temperature. Bioresource Technology, 180, 177–184.

    Article  CAS  PubMed  Google Scholar 

  9. Angelidaki, I., & Ellegaard, L. (2003). Codigestion of manure and organic wastes in centralized biogas plants. Applied Biochemistry and Biotechnology, 109(1-3), 95–105.

    Article  CAS  PubMed  Google Scholar 

  10. Li, L., Kong, X., Yang, F., Li, D., Yuan, Z., & Sun, Y. (2012). Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass. Applied Biochemistry and Biotechnology, 166(5), 1183–1191.

    Article  CAS  PubMed  Google Scholar 

  11. Hutnan, M., Drtil, M., & Mrafkova, L. (2000). Anaerobic biodegradation of sugar beet pulp. Biodegradation, 11(4), 203–211.

    Article  CAS  PubMed  Google Scholar 

  12. Iranian Sugar Factories Syndicate 2015. Available from: www.isfs.ir. Accessed 1.11.2016.

  13. Wong, M., & Cheung, Y. (1995). Gas production and digestion efficiency of sewage sludge containing elevated toxic metals. Bioresource Technology, 54(3), 261–268.

    Article  CAS  Google Scholar 

  14. Agani, I. C., Suanon, F., Dimon, B., Ifon, E. B., Yovo, F., Wotto, V. D., Abass, O. K., & Kumwimba, M. N. (2016). Enhancement of fecal sludge conversion into biogas using iron powder during anaerobic digestion process. American Journal of Environmental Protection, 5(6), 179–186.

    Article  Google Scholar 

  15. Clark, P., & Hillman, P. (1996). Enhancement of anaerobic digestion using duckweed (Lemna minor) enriched with iron. Water Environment Journal, 10(2), 92–95.

    Article  CAS  Google Scholar 

  16. Preeti Rao, P., & Seenayya, G. (1994). Improvement of methanogenesis from cow dung and poultry litter waste digesters by addition of iron. World Journal of Microbiology and Biotechnology, 10(2), 211–214.

    Article  CAS  PubMed  Google Scholar 

  17. Suanon, F., Sun, Q., Li, M., Cai, X., Zhang, Y., Yan, Y., & Yu, C.-P. (2017). Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: impact on methane yield and pharmaceutical and personal care products degradation. Journal of Hazardous Materials, 321, 47–53.

    Article  CAS  PubMed  Google Scholar 

  18. Kaseamchochoung, C., Lertsutthiwong, P., & Phalakornkule, C. (2006). Influence of chitosan characteristics and environmental conditions on flocculation of anaerobic sludge. Water Environment Research, 78(11), 2210–2216.

    Article  CAS  PubMed  Google Scholar 

  19. Nuntakumjorn, B., Khumsalud, W., Vetsavas, N., Sujjaviriyasup, T., & Phalakornkule, C. (2008). Comparison of sludge granule and UASB performance by adding chitosan in different forms. Chiang Mai Journal of Science, 35, 95.

    CAS  Google Scholar 

  20. Khemkhao, M., Nuntakumjorn, B., Techkarnjanaruk, S., & Phalakornkule, C. (2011). Effect of chitosan on UASB treating POME during a transition from mesophilic to thermophilic conditions. Bioresource Technology, 102(7), 4674–4681.

    Article  CAS  PubMed  Google Scholar 

  21. Lertsittichai, S., Lertsutthiwong, P., & Phalakornkule, C. (2007). Improvement of upflow anaerobic sludge bed performance using chitosan. Water Environment Research, 79(7), 801–807.

    Article  CAS  PubMed  Google Scholar 

  22. Casals, E., Barrena, R., García, A., González, E., Delgado, L., Busquets-Fité, M., Font, X., Arbiol, J., Glatzel, P., & Kvashnina, K. (2014). Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production. Small, 10(14), 2801–2808.

    Article  CAS  PubMed  Google Scholar 

  23. Suanon, F., Sun, Q., Mama, D., Li, J., Dimon, B., & Yu, C.-P. (2016). Effect of nanoscale zero-valent iron and magnetite (Fe 3 O 4) on the fate of metals during anaerobic digestion of sludge. Water Research, 88, 897–903.

    Article  CAS  PubMed  Google Scholar 

  24. Zaidi, A. A., RuiZhe, F., Shi, Y., Khan, S. Z., & Mushtaq, K. (2018). Nanoparticles augmentation on biogas yield from microalgal biomass anaerobic digestion. International Journal of Hydrogen Energy, 43(31), 14202–14213.

    Article  CAS  Google Scholar 

  25. Mu, H., Chen, Y., & Xiao, N. (2011). Effects of metal oxide nanoparticles (TiO 2, Al 2 O 3, SiO 2 and ZnO) on waste activated sludge anaerobic digestion. Bioresource Technology, 102(22), 10305–10311.

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez-Estrella, J., Sierra-Alvarez, R., & Field, J. A. (2013). Toxicity assessment of inorganic nanoparticles to acetoclastic and hydrogenotrophic methanogenic activity in anaerobic granular sludge. Journal of Hazardous Materials, 260, 278–285.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, Y., Mu, H., & Zheng, X. (2014). Chronic response of waste activated sludge fermentation to titanium dioxide nanoparticles. Chinese Journal of Chemical Engineering, 22(10), 1162–1167.

    Article  CAS  Google Scholar 

  28. García, A., Delgado, L., Torà, J. A., Casals, E., González, E., Puntes, V., Font, X., Carrera, J., & Sánchez, A. (2012). Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. Journal of Hazardous Materials, 199, 64–72.

    Article  CAS  PubMed  Google Scholar 

  29. Yadav, T., Mungray, A. A., & Mungray, A. K. (2017). Effect of TiO2 nanoparticles on UASB biomass activity and dewatered sludge. Environmental Technology, 38(4), 413–423.

    Article  CAS  PubMed  Google Scholar 

  30. Aboudi, K., Álvarez-Gallego, C. J., & Romero-García, L. I. (2015). Improvement of exhausted sugar beet cossettes anaerobic digestion process by co-digestion with pig manure. Energy & Fuels, 29(2), 754–762.

    Article  CAS  Google Scholar 

  31. Demirel, B., & Scherer, P. (2008). Production of methane from sugar beet silage without manure addition by a single-stage anaerobic digestion process. Biomass and Bioenergy, 32(3), 203–209.

    Article  CAS  Google Scholar 

  32. Ohuchi, Y., Ying, C., Lateef, S. A., Ihara, I., Iwasaki, M., Inoue, R., & Umetsu, K. (2015). Anaerobic co-digestion of sugar beet tops silage and dairy cow manure under thermophilic condition. Journal of Material Cycles and Waste Management, 17(3), 540–546.

    Article  CAS  Google Scholar 

  33. Poh, P., & Chong, M. (2009). Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment. Bioresource Technology, 100(1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  34. Chen, G., Chang, Z., & Zheng, Z. (2014). Feasibility of NaOH-treatment for improving biogas production of digested Spartina alterniflora. International Biodeterioration & Biodegradation, 93, 131–137.

    Article  CAS  Google Scholar 

  35. Manouchehrian Fard, M., & Beiki, H. (2016). Experimental investigation of benzoic acid diffusion coefficient in γ-Al2O3 nanofluids at different temperatures. Heat and Mass Transfer, 52(10), 2203–2211.

    Article  CAS  Google Scholar 

  36. Fard, M. M., & Beiki, H. (2017). Experimental measurement of solid solutes solubility in nanofluids. Heat and Mass Transfer, 53(4), 1257–1263.

    Article  CAS  Google Scholar 

  37. Federation, W. E. and Association, A. (2005). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association (APHA).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Beiki.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Unprocessed chopped parts of sugar beet have been used as substrate

• Chitosan powder in microsize and TiO2 and Fe3O4 nanoparticles were used as additives

• Chitosan powder did not help the process nor improved methanogenic activities

• No effect on anaerobic digestion by addition of TiO2 NPs

• Adding 0.04% Fe3O4 has led to a 19.77% increase in methane production

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beiki, H., Keramati, M. Improvement of Methane Production from Sugar Beet Wastes Using TiO2 and Fe3O4 Nanoparticles and Chitosan Micropowder Additives. Appl Biochem Biotechnol 189, 13–25 (2019). https://doi.org/10.1007/s12010-019-02987-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-02987-2

Keywords

Navigation