Skip to main content
Log in

Physicochemical Aspects of Platinum Nanoparticles (PtNPs) from Biological Synthesis: Influence of Plant Leaf Based Extracts as the Reducing Agent

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

This study reports the biological synthesis of platinum nanoparticles (PtNPs) using leaf extracts of kaffir lime (Citrus hystrix DC), common basil (Ocimum basilicum Linn) and fragrant pandan (Pandanus amaryllifolius Roxb). These extracts contain sugars, terpenoids, polyphenols, alkaloids, phenolic acids, and proteins, which play an essential role in reducing Pt (IV) solutions to platinum nanoparticles (PtNPs). The PtNPs were extensively characterized, exhibiting spherical morphologies and particle sizes between 20 and 80 nm as indicated by TEM imaging. As shown by the UV–Visible Spectroscopy, the maximum absorption of platinum nanoparticles is at 256 nm. Furthermore, the electrochemical sensor exhibits good analytical performances in detecting glycated hemoglobin (HbA1c) in the real samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chang-xiaoLiu. (2021). Overview on development of ASEAN traditional and herbal medicines. Chinese Herbal Medicines, 13, 441–450.

    Article  Google Scholar 

  2. Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12, 908–931.

    Article  Google Scholar 

  3. Jeyaraj, M., Gurunathan, S., Qasim, M., Kang, M.-H., & Kim, J.-H. (2019). A Comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials, 9, 1719.

    Article  Google Scholar 

  4. Dhand, C., Dwivedi, N., Loh, X. J., Ying, A. N. J., Verma, N. K., Beuerman, R. W., Lakshminarayanan, R., & Ramakrishna, S. (2015). Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Advances, 5, 105003–105037.

    Article  Google Scholar 

  5. Stepanov, A. L., Golubev, A. N., Nikitin, S. I., & Osin, Y. N. (2014). A review on the fabrication and properties of platinum nanoparticles. Reviews on Advanced Materials Science, 38, 160–175.

    Google Scholar 

  6. Modan, E. M., & Plăiașu, A. G. (2020). Advantages and disadvantages of chemical methods in the elaboration of nanomaterials. The Annals of “Dunarea de Jos” University of Galati Fascicle IX, Metallurgy and Materials Science, 43(1), 53–60.

    Article  Google Scholar 

  7. Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Deepak, V., Pandian, S. R. K., Muniyandi, J., Hariharan, N., & Eom, S. H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74, 328–335.

    Article  Google Scholar 

  8. Budiarto, R., Poerwanto, R., Santosa, E., Efendi, D., & Agusta, A. (2019). Production, post-harvest and marketing of kaffir lime (Citrus hystrix DC) In Tulungagung Indonesia. Journal of Tropical Crop Science, 6, 2.

    Article  Google Scholar 

  9. Venkatachalam, K. (2019). Changes in phytochemicals and antioxidant properties of kaffir lime leaves under chilling storage. Khon Kaen Agriculture Journal, 47, 1.

    Google Scholar 

  10. Barbalho, S. M., Machado, F. M. V. F., Rodrigues, J. D. S., Silva, T. H. P. D., & Goulart, R. D. A. (2012). Sweet Basil (Ocimum basilicum): much more than a condiment. Tang, 2(1), 3–1.

    Google Scholar 

  11. Bączek, K., Kosakowska, O., Gniewosz, M., Gientka, I., & Węglarz, Z. (2019). Sweet basil (Ocimum basilicum L.) productivity and raw material quality from organic cultivation. Agronomy, 9(6), 279.

    Article  Google Scholar 

  12. Ningrum, A., & Schreiner, M. (2014). Pandan leaves: “Vanilla of the East.” Agro Food Industry Hi Tech, 25(3), 10.

    Google Scholar 

  13. Aini, R., & Mardiyaningsih, A. (2016). Pandan leaves extract (Pandanus amaryllifolius Roxb) as a food preservative. JKKI, 7(4), 166–173.

    Article  Google Scholar 

  14. Gardea-Torresdey, L., Parsons, J. G., Gomez, E., Peralta-Videa, J., Troiani, H. E., Santiago, P., & Jose Yacaman, M. (2020). Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Letters, 2(4), 397–401.

    Article  Google Scholar 

  15. Zhao, S. Y., Chen, S. H., Wang, S. Y., Li, D. G., & Ma, H. Y. (2002). Preparation, phase transfer, and self-assembled monolayers of cubic pt nanoparticles. Langmuir, 18, 3315.

    Article  Google Scholar 

  16. Patra, J. K., & Baek, K. H. (2015). Green nanobiotechnology: Factors affecting synthesis and characterization techniques. Journal of Nanomaterials, 12, 219–219. https://doi.org/10.1155/2014/417305

    Article  Google Scholar 

  17. Shaltout, A. A., Allam, M. A., & Moharram, M. A. (2011). FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources. Spectrochimica Acta Part A, 83, 56–60.

    Article  Google Scholar 

  18. Mahakham, W., Sarmah, A. K., Maensiri, S., & Theerakulpisut, P. (2017). Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports, 7, 8263.

    Article  Google Scholar 

  19. Laksono, E. W., & Aji, D. (2016). Conductivity of cellulose acetate membranes from Pandan Duri leaves (Pandanus tectorius) for li-ion battery. MATEC Web of Conferences, 64, 04001.

    Article  Google Scholar 

  20. Jeyapaul, U., Kala, M. J., Bosco, A., Piruthiviraj, P., & Easuraja, M. (2018). An Eco-friendly Approach for synthesis of platinum nanoparticles using leaf extracts of Jatropa gossypifolia and Jatropa glandulifera and their antibacterial activity. Oriental Journal of Chemistry, 34(2), 783–790.

    Article  Google Scholar 

  21. Putra, M. D., Darmawan, A., Wahdini, I., & Abasaeed, A. E. (2017). Extraction of chlorophyll from pandan leaves using ethanol and mass transfer study. Journal of the Serbian Chemical Society, 82(7–8), 921–931.

    Article  Google Scholar 

  22. Naresh Kumar, M., Govindh, B., & Annapurna, N. (2017). Green synthesis and characterization of platinum nanoparticles using Sapindus mukorossi Gaertn Fruit Pericarp. Asian Journal of Chemistry, 29(11), 2541–2544.

    Article  Google Scholar 

  23. Dzimitrowicz, A., Jamroz, P., Sergiel, I., Kozlecki, T., & Pohl, P. (2019). Preparation and characterization of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants and the effect of follow-up treatment with atmospheric pressure glow microdischarge. Arabian Journal of Chemistry, 12(8), 4118–4130.

    Article  Google Scholar 

  24. Rajasekharreddy, P., & Rani, P. U. (2014). Biosynthesis and characterization of Pd and Pt nanoparticles using Piper betle L. plant in a photoreduction method. Journal of Cluster Science, 25, 1377–1388.

    Article  Google Scholar 

  25. Singh, J., Dutta, T., Kim, K.-H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 16, 84.

    Article  Google Scholar 

  26. Baker, S., Rakshith, D., Kavitha, K. S., Santosh, P., Kavitha, H. U., Rao, Y., & Satish, S. (2013). Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. BioImpacts: BI3(3), 111. https://doi.org/10.5681/bi.2013.012. http://bi.tbzmed.ac.ir/.

  27. Huang, Q., Li, W., Pi, Q. L. D., Chao, Hu., Shao, C., & Zhang, H. (2016). A review of significant factors in the synthesis of hetero-structured dumbbell-like nanoparticles. Chinese Journal of Catalysis, 37, 681–691. https://doi.org/10.1016/S1872-2067(15)61069-5

    Article  Google Scholar 

  28. Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green Synthesis of metallic nanoparticles via biological entities. Materials, 8, 7278–7308. https://doi.org/10.3390/ma8115377

    Article  Google Scholar 

  29. Veerasamy, R., Xin, T. Z., Gunasagaran, S., Xiang, T. F. W., Yang, E. F. C., Jeyakumar, N., & Dhanaraj, S. A. (2011). Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society, 15, 113–120. https://doi.org/10.1016/j.jscs.2010.06.004

    Article  Google Scholar 

  30. Jameel, M. S., Aziz, A. A., & Dheyab, M. A. (2020). Green synthesis: Proposed mechanism and factors influencing the synthesis of platinum Nanoparticles. Green Processing and Synthesis, 9, 386–398. https://doi.org/10.1515/gps-2020-0041

    Article  Google Scholar 

  31. Nishanthi, R., Malathi, S., John Paul, S., & Palani, P. (2019). Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Materials Science & Engineering C, 96, 693–707.

    Article  Google Scholar 

  32. Yazdanpanah, S., Rabiee, M., Tahriri, M., Abdolrahim, M., & Tayebi, L. (2015). Glycated hemoglobin-detection methods based on electrochemical biosensors. Trends in Analytical Chemistry, 72, 53–67.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support provided by the National Research Council of Thailand (Genetic markers and Point-of-care test for Healthy Aging No. 169/2563), and a Ph.D. scholarship from Thammasat University. We also acknowledge support from the Chulabhorn International College of Medicine and the Faculty of Science and Technology, Thammasat University. This work was funded by the Chulabhorn International College of Medicine Research Fund for giving “General Research Fund Innovation and invention development cate-gory of the year 2019” (F1/2562). This work was supported by the Thailand Science Research and Innovation Fundamental Fund fiscal year 2023 (TUFF 27/2566) and Thammasat University Research Fund, Contract No. TUFT 14/2564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiravoot Pechyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponsanti, K., Tangnorawich, B., Natphopsuk, S. et al. Physicochemical Aspects of Platinum Nanoparticles (PtNPs) from Biological Synthesis: Influence of Plant Leaf Based Extracts as the Reducing Agent. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2024). https://doi.org/10.1007/s40684-023-00592-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-023-00592-7

Keywords

Navigation