Skip to main content
Log in

Innovative Magnetic-Field Assisted Finishing (MAF) Using Nano-Scale Solid Lubricant: A Case Study on Mold Steel

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Magnetic-field assisted finishing (MAF) is a surface finishing process that utilizes a flexible brush composed of iron and abrasive particles typically mixed in a liquid medium. This paper presents an innovative approach to enhance the MAF performance by adding nano-scale solid lubricant into the brush. In particular, exfoliated graphite nanoplatelets (xGnPs), multi-layered graphene platelets with micro-scale diameter and nano-scale thickness, have been introduced into the brush. The modified brush consisting of iron particles, abrasives (cubic boron nitride, cBN), and xGnPs in silicone oil was applied to finish the surface of mold steel. While varying magnetic flux density, cBN particle sizes, and xGnP content in the MAF brush, a series of MAF experiments was conducted to examine their impact on the achieved surface quality on a workpiece and the life of MAF brush. For a given content of xGnPs in the brush, the quality of surface finish was improved and the life of MAF brush was extended significantly with larger abrasives in the brush. Furthermore, the effect of xGnPs with respect to abrasive size was investigated with various factors such as relative number and surface area coverage of xGnPs per abrasive, the relative size of xGnP to abrasives, and depth indented by abrasives on the workpiece, which enabled us to identify the change in the underlying mechanisms in relation to the abrasive size. The new MAF brush is also expected to improve the efficiencies of the overall MAF process in terms of energy consumption and material utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Beaucamp, A., Namba, Y., & Charlton, P. (2015). Process mechanism in shape adaptive grinding (SAG). CIRP Annals, 64(1), 305–308. https://doi.org/10.1016/j.cirp.2015.04.096

    Article  Google Scholar 

  2. Beaucamp, A., & Namba, Y. (2013). Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing. CIRP Annals, 62(1), 315–318. https://doi.org/10.1016/j.cirp.2013.03.010

    Article  Google Scholar 

  3. Kwak, J.-S. (2009). Enhanced magnetic abrasive polishing of non-ferrous metals utilizing a permanent magnet. International Journal of Machine Tools and Manufacture, 49(7–8), 613–618. https://doi.org/10.1016/j.ijmachtools.2009.01.013

    Article  Google Scholar 

  4. Yamaguchi, H., Fergani, O., & Wu, P.-Y. (2017). Modification using magnetic field-assisted finishing of the surface roughness and residual stress of additively manufactured components. CIRP Annals, 66(1), 305–308. https://doi.org/10.1016/j.cirp.2017.04.084

    Article  Google Scholar 

  5. Beaucamp, A. T. H., & Namba, Y. (2014). Technological advances in super fine finishing. In: Proceedings of the 14th euspen International Conference, Dubrovnik, p 1–19

  6. Kim, U. S., & Park, J. W. (2019). High-quality surface finishing of industrial three-dimensional metal additive manufacturing using electrochemical polishing. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(1), 11–21. https://doi.org/10.1007/s40684-019-00019-2

    Article  Google Scholar 

  7. Chen, B., Li, S., Deng, Z., Guo, B., & Zhao, Q. (2017). Grinding marks on ultra-precision grinding spherical and aspheric surfaces. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(4), 419–429. https://doi.org/10.1007/s40684-017-0047-5

    Article  Google Scholar 

  8. Chang, G.-W., Yan, B.-H., & Hsu, R.-T. (2002). Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasives. International Journal of Machine Tools and Manufacture, 42(5), 575–583. https://doi.org/10.1016/S0890-6955(01)00153-5

    Article  Google Scholar 

  9. Shinmura, T., Takazawa, K., Hatano, E., Matsunaga, M., & Matsuo, T. (1990). Study on magnetic abrasive finishing. CIRP Annals, 39(1), 325–328. https://doi.org/10.1016/S0007-8506(07)61064-6

    Article  Google Scholar 

  10. Kim, S.-O., & Kwak, J.-S. (2012). Evaluations of magnetic abrasive polishing and distribution of magnetic flux density on the curvature of non-ferrous material. Transactions of the Korean Society of Mechanical Engineers A, 36(3), 259–264. https://doi.org/10.3795/KSME-A.2012.36.3.259

    Article  Google Scholar 

  11. Yamaguchi, H., Srivastava, A. K., Tan, M., & Hashimoto, F. (2014). Magnetic Abrasive Finishing of cutting tools for high-speed machining of titanium alloys. CIRP Journal of Manufacturing Science and Technology, 7(4), 299–304. https://doi.org/10.1016/j.cirpj.2014.08.002

    Article  Google Scholar 

  12. Jiang, C., Huang, J., Jiang, Z., Qian, D., & Hong, X. (2021). Estimation of energy savings when adopting ultrasonic vibration-assisted magnetic compound fluid polishing. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(1), 1–11. https://doi.org/10.1007/s40684-019-00167-5

    Article  Google Scholar 

  13. Park, C., Kim, H., Lee, S., & Jeong, H. (2015). The influence of abrasive size on high-pressure chemical mechanical polishing of sapphire wafer. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 157–162. https://doi.org/10.1007/s40684-015-0020-0

    Article  Google Scholar 

  14. Misra, A., Pandey, P. M., & Dixit, U. S. (2017). Modeling of material removal in ultrasonic assisted magnetic abrasive finishing process. International Journal of Mechanical Sciences, 131–132, 853–867. https://doi.org/10.1016/j.ijmecsci.2017.07.023

    Article  Google Scholar 

  15. Misra, A., Pandey, P. M., & Dixit, U. S. (2017). Modeling and simulation of surface roughness in ultrasonic assisted magnetic abrasive finishing process. International Journal of Mechanical Sciences, 133, 344–356. https://doi.org/10.1016/j.ijmecsci.2017.08.056

    Article  Google Scholar 

  16. Zhang, J., Chaudhari, A., & Wang, H. (2019). Surface quality and material removal in magnetic abrasive finishing of selective laser melted 316L stainless steel. Journal of Manufacturing Processes, 45, 710–719. https://doi.org/10.1016/j.jmapro.2019.07.044

    Article  Google Scholar 

  17. Mulik, R. S., & Pandey, P. M. (2011). Experimental investigations and optimization of ultrasonic assisted magnetic abrasive finishing process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(8), 1347–1362. https://doi.org/10.1177/09544054JEM2122

    Article  Google Scholar 

  18. Singh, D. K., Jain, V. K., Raghuram, V., & Komanduri, R. (2005). Analysis of surface texture generated by a flexible magnetic abrasive brush. Wear, 259(7–12), 1254–1261. https://doi.org/10.1016/j.wear.2005.02.030

    Article  Google Scholar 

  19. Mun, S.-D. (2010). Micro machining of high-hardness materials using magnetic abrasive grains. International Journal of Precision Engineering and Manufacturing, 11(5), 763–770. https://doi.org/10.1007/s12541-010-0090-4

    Article  Google Scholar 

  20. Wu, P.-Y., & Yamaguchi, H. (2018). Material removal mechanism of additively manufactured components finished using magnetic abrasive finishing. Procedia Manufacturing, 26, 394–402. https://doi.org/10.1016/j.promfg.2018.07.047

    Article  Google Scholar 

  21. Lee, P.-H., Chung, H., McCormick, P. S., Kwon, P., Nguyen, H., Yang, Y., & Shao, C. (2018). Experimental and statistical study on magnetic-field assisted finishing of mold steel using nano-scale solid lubricant and abrasive particles. In: Volume 3: Manufacturing equipment and systems (p. V003T02A012). Presented at the ASME 2018 13th International Manufacturing Science and Engineering Conference, College Station, Texas, USA: American Society of Mechanical Engineers.https://doi.org/10.1115/MSEC2018-6544

  22. Bozzi, A. C., & de Mello, J. D. B. (1999). Wear resistance and wear mechanisms of WC–12%Co thermal sprayed coatings in three-body abrasion. Wear, 233–235, 575–587. https://doi.org/10.1016/S0043-1648(99)00206-9

    Article  Google Scholar 

  23. Marinescu, I. D., Rowe, W. B., Dimitrov, B., & Ohmori, H. (2013). Loose abrasive processes. Tribology of abrasive machining processes (pp. 399–421). Elsevier. https://doi.org/10.1016/b978-1-4377-3467-6.00013-6

    Chapter  Google Scholar 

  24. Gates, J. D. (1998). Two-body and three-body abrasion: a critical discussion. Wear, 214(1), 139–146. https://doi.org/10.1016/S0043-1648(97)00188-9

    Article  MathSciNet  Google Scholar 

  25. Yoon, S., Tu, J.-F., Lee, J. H., Yang, G. E., & Mun, S. D. (2014). Effect of the magnetic pole arrangement on the surface roughness of STS 304 by magnetic abrasive machining. International Journal of Precision Engineering and Manufacturing, 15(7), 1275–1281. https://doi.org/10.1007/s12541-014-0467-x

    Article  Google Scholar 

  26. Chou, S.-H., Wang, A.-C., & Lin, Y.-C. (2016). Elucidating the rheological effect of gel abrasives in magnetic abrasive finishing. Procedia CIRP, 42, 866–871. https://doi.org/10.1016/j.procir.2016.03.010

    Article  Google Scholar 

  27. Tsai, L., Wang, A.-C., Chou, S.-H., & Zhong, C.-J. (2012). Investigating of flexible self-sharpening and optimal parameters in magnetic finishing with gel abrasive. International Journal of Precision Engineering and Manufacturing, 13(5), 655–661. https://doi.org/10.1007/s12541-012-0085-4

    Article  Google Scholar 

  28. Wang, Y., Wu, Y., & Mitsuyoshi, N. (2016). A novel magnetic field-assisted polishing method using magnetic compound slurry and its performance in mirror surface finishing of miniature V-grooves. AIP Advances, 6(5), 056602. https://doi.org/10.1063/1.4942952

    Article  Google Scholar 

  29. Sharma, A. K., Tiwari, A. K., & Dixit, A. R. (2016). Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: a comprehensive review. Journal of Cleaner Production, 127, 1–18. https://doi.org/10.1016/j.jclepro.2016.03.146

    Article  Google Scholar 

  30. Nguyen, T. K., Do, I., & Kwon, P. (2012). A tribological study of vegetable oil enhanced by nano-platelets and implication in MQL machining. International Journal of Precision Engineering and Manufacturing, 13(7), 1077–1083. https://doi.org/10.1007/s12541-012-0141-0

    Article  Google Scholar 

  31. Xu, X., Huang, S., Wang, M., & Yao, W. (2017). A study on process parameters in end milling of AISI-304 stainless steel under electrostatic minimum quantity lubrication conditions. The International Journal of Advanced Manufacturing Technology, 90(1–4), 979–989. https://doi.org/10.1007/s00170-016-9417-3

    Article  Google Scholar 

  32. Marinescu, I. D., Rowe, W. B., Dimitrov, B., & Ohmori, H. (2013). Forces, friction, and energy. Tribology of abrasive machining processes (pp. 95–136). Elsevier. https://doi.org/10.1016/b978-1-4377-3467-6.00005-7

    Chapter  Google Scholar 

  33. Rowe, W. B. (2009). Temperatures in grinding. Principles of modern grinding technology (pp. 365–398). Elsevier. https://doi.org/10.1016/b978-0-8155-2018-4.50024-0

    Chapter  Google Scholar 

  34. Nguyen, T. K., Kwon, P. Y., & Park, K.-H. (2013). A critical factor in enhancement of MQL lubricants: platelet thickness. In Volume 2: Systems; Micro and Nano Technologies; Sustainable Manufacturing (p. V002T03A014). In: Presented at the ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference, Madison, Wisconsin, USA: American Society of Mechanical Engineers. https://doi.org/10.1115/MSEC2013-1145

  35. Park, K. H., Ewald, B., & Kwon, P. Y. (2011). Effect of nano-enhanced lubricant in minimum quantity lubrication balling milling. Journal of Tribology. https://doi.org/10.1115/1.4004339

    Article  Google Scholar 

  36. Kwon, P., & Drzal, L. T. (2015). Nanoparticle graphite-based minimum quantity lubrication method and composition. Retrieved from https://patents.google.com/patent/US9080122B2/en

  37. Kien Nguyen, T., Park, K.-H., & Kwon, P. Y. (2016). Experimental results on lamellar-type solid lubricants in enhancing minimum quantity lubrication machining. Journal of Manufacturing Science and Engineering, 138(10), 101011. https://doi.org/10.1115/1.4033995

    Article  Google Scholar 

  38. World Leading Graphene Company | XG Sciences. (n.d.). Retrieved May 13, 2020, from https://xgsciences.com/

  39. Guo, J., Tan, Z. E., Au, K. H., & Liu, K. (2017). Experimental investigation into the effect of abrasive and force conditions in magnetic field-assisted finishing. The International Journal of Advanced Manufacturing Technology, 90(5–8), 1881–1888.

    Article  Google Scholar 

  40. Yang, S., & Li, W. (2018). Surface quality and finishing technology. Surface finishing theory and new technology (pp. 1–64). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-54133-3_1

    Chapter  Google Scholar 

  41. Okman, O. (2005). Free forming of locally induction heated specimens (PhD Thesis). Middle East Technical University

  42. Johnson, K. L., & Johnson, K. L. (1987). Contact mechanics. Cambridge University Press.

    MATH  Google Scholar 

  43. D’Evelyn, M. P., & Zgonc, K. (1997). Elastic properties of polycrystalline cubic boron nitride and diamond by dynamic resonance measurements. Diamond and Related Materials, 6(5–7), 812–816. https://doi.org/10.1016/S0925-9635(96)00631-0

    Article  Google Scholar 

  44. Rabinowicz, E., Dunn, L. A., & Russell, P. G. (1961). A study of abrasive wear under three-body conditions. Wear, 4(5), 345–355. https://doi.org/10.1016/0043-1648(61)90002-3

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by LG Electronics, 2020 MTRAC award, and Michigan State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haseung Chung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poudel, B., Lee, Ph., Song, G. et al. Innovative Magnetic-Field Assisted Finishing (MAF) Using Nano-Scale Solid Lubricant: A Case Study on Mold Steel. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 1411–1426 (2022). https://doi.org/10.1007/s40684-021-00404-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00404-w

Keywords

Navigation