Skip to main content
Log in

Printing of Woodpile Scaffold Using Fresnel Lens for Tissue Engineering

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Tissue engineering has played a very significant role in the medical field with an ever-growing demand for various tissue donations. One crucial factor is the fabrication of a desirable artificial three-dimensional (3D) tissue scaffold to act as the extracellular matrix (ECM), meeting the complex requirements for specific cell cultures. Existing scaffold fabrication techniques and systems used in constructing extracellular matrix are two-dimensionally limiting, expensive, and time-consuming. For instance, some simple fabrication methods cannot control fabricated structures with morphologies accurately, while others may introduce harmful organic solvents into scaffolds during the fabrication processes. To achieve an optimal scaffold for tissue engineering, we developed a novel 3D printing system capable of printing tissue scaffold structures with improved efficiency. The uniqueness of our system is the transparent diffractive optical elements (DOEs) of linear binary Fresnel lens fabricated to control the luminous intensity distribution. These DOEs of different patterns are arranged in series on a coverslip with each optical element designed to diffact and focus incident light at a particular plane within the device. Coupled with other optical components of the system, 3D woodpile scaffolds were printed in an effective and efficient one-step light exposure process to photo cross-link the polymer solution upon demand. The combination of photo cross-linking and diffractive optical technique incorporated within our system enables the patterning of polymer solutions within seconds, making large-scale fast production not only feasible, but also making printing of complex features simple. With this system, 3D two-layered woodpile structures were successfully fabricated within 3 seconds. While cell toxicity studies showed that the scaffold can be used for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lanza, R., Langer, R., & Vacanti, J. P. (2011). Principles of tissue engineering. New York: Academic.

    Google Scholar 

  2. Langer, R., & Vacanti, J. (1993). Tissue engineering. Science, 260(5110), 920–926.

    Article  Google Scholar 

  3. Boland, E. D., Espy, P. G., & Bowlin, G. L. (2004). Tissue engineering scaffolds. Encyclopedia of biomaterials and biomedical engineering (pp. 1630–8). Milton Park: Taylor and Francis.

    Google Scholar 

  4. Tsang, V. L., & Bhatia, S. N. (2004). Three-dimensional tissue fabrication. Advanced Drug Delivery Reviews, 56(11), 1635–1647.

    Article  Google Scholar 

  5. Ho, C. M. B., Mishra, A., Lin, P. T. P., Ng, S. H., Yeong, W. Y., Kim, Y. J., et al. (2017). 3D printed polycaprolactone carbon nanotube composite scaffolds for cardiac tissue engineering. Macromolecular Bioscience, 17(4), 1600250.

    Article  Google Scholar 

  6. Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 12(1), 107–124.

    Article  Google Scholar 

  7. Ikada, Y. (2006). Challenges in tissue engineering. Journal of the Royal Society Interface, 3(10), 589–601.

    Article  Google Scholar 

  8. Hou, Q., Grijpma, D. W., & Feijen, J. (2003). Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials, 24(11), 1937–1947.

    Article  Google Scholar 

  9. Mishra, A., Ferhan, A. R., Ho, C. M. B., Lee, J., Kim, D.-H., Kim, Y.-J., et al. (2020). Fabrication of plasmon-active polymer-nanoparticle composites for biosensing applications. International Journal of Precision Engineering and Manufacturing-Green Technology., 210, 1–10.

    Google Scholar 

  10. Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Materials, 4(7), 518.

    Article  Google Scholar 

  11. Kohane, D. S., & Langer, R. (2008). Polymeric biomaterials in tissue engineering. Pediatric Research, 63(5), 487.

    Article  Google Scholar 

  12. Teo, A. J., Mishra, A., Park, I., Kim, Y.-J., Park, W.-T., Yoon, Y.-J. J. A. B. S., et al. (2016). Polymeric Biomaterials for Medical Implants and Devices, 2(4), 454–472.

    Google Scholar 

  13. Sun, Z.-B., Dong, X.-Z., Chen, W.-Q., Shoji, S., Duan, X.-M., & Kawata, S. (2007). Two-and three-dimensional micro/nanostructure patterning of CdS–polymer nanocomposites with a laser interference technique and in situ synthesis. Nanotechnology, 19(3), 035611.

    Article  Google Scholar 

  14. Ho, C. M. B., Ng, S. H., & Yoon, Y.-J. (2015). A review on 3D printed bioimplants. International Journal of Precision Engineering and Manufacturing, 16(5), 1035–1046.

    Article  Google Scholar 

  15. Ho, C. M. B., Ng, S. H., Li, K. H. H., & Yoon, Y.-J. (2015). 3D printed microfluidics for biological applications. Lab on a Chip, 15(18), 3627–3637.

    Article  Google Scholar 

  16. Kwon, J., Park, H. W., Park, Y.-B., & Kim, N. (2017). Potentials of additive manufacturing with smart materials for chemical biomarkers in wearable applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 335–347.

    Article  Google Scholar 

  17. Lee, J., Kim, H.-C., Choi, J.-W., & Lee, I. H. (2017). A review on 3D printed smart devices for 4D printing. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 373–383.

    Article  Google Scholar 

  18. Shin, D.-G., Kim, T.-H., & Kim, D.-E. (2017). Review of 4D printing materials and their properties. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 349–357.

    Article  Google Scholar 

  19. Jeon, S., Han, J., Jeong, W., Son, J., Kim, J. B., & Kang, H.-W. (2019). Flexibility Enhancement of poly(lactide-co-glycolide) for fused deposition modeling technology. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(3), 465–475.

    Article  Google Scholar 

  20. Sharma, A., Mondal, S., Mondal, A. K., Baksi, S., Patel, R. K., Chu, W.-S., et al. (2017). 3D printing: It’s microfluidic functions and environmental impacts. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 323–334.

    Article  Google Scholar 

  21. Lutolf, M., & Hubbell, J. (2005). Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature biotechnology, 23(1), 47.

    Article  Google Scholar 

  22. Ma, T., Li, Y., Yang, S. T., & Kniss, D. A. (1999). Tissue engineering human placenta trophoblast cells in 3-D fibrous matrix: spatial effects on cell proliferation and function. Biotechnology Progress, 15(4), 715–724.

    Article  Google Scholar 

  23. LaVan, D. A., George, P. M., Langer, R. Simple (2003). Three-Dimensional Microfabrication of Electrodeposited Structures. Angewandte Chemie International Edition, 42(11), 1262–1265.

    Article  Google Scholar 

  24. Lee, M., Dunn, J. C., & Wu, B. M. (2005). Scaffold fabrication by indirect three-dimensional printing. Biomaterials, 26(20), 4281–4289.

    Article  Google Scholar 

  25. Pattison, M. A., Wurster, S., Webster, T. J., & Haberstroh, K. M. (2005). Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials, 26(15), 2491–2500.

    Article  Google Scholar 

  26. Wang, D., Williams, C. G., Li, Q., Sharma, B., & Elisseeff, J. H. (2003). Synthesis and characterization of a novel degradable phosphate-containing hydrogel. Biomaterials, 24(22), 3969–3980.

    Article  Google Scholar 

  27. Jenness, N. J., Wu, Y., & Clark, R. L. (2012). Fabrication of three-dimensional electrospun microstructures using phase modulated femtosecond laser pulses. Materials Letters, 66(1), 360–363.

    Article  Google Scholar 

  28. Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2–3), 151–160.

    Article  Google Scholar 

  29. Yang, S., Leong, K.-F., Du, Z., & Chua, C.-K. (2001). The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engineering, 7(6), 679–689.

    Article  Google Scholar 

  30. Matsiko, A., Gleeson, J. P., & O’Brien, F. J. (2014). Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Engineering Part A, 21(3–4), 486–497.

    Google Scholar 

  31. Chen, A. A., Tsang, V. L., Albrecht, D. R., & Bhatia, S. N. (2006). 3-D fabrication technology for tissue engineering, BioMEMS (pp. 23–38). New York: Springer.

    Google Scholar 

  32. Wang, X., Yan, Y., & Zhang, R. (2007). Rapid prototyping as a tool for manufacturing bioartificial livers. Trends in Biotechnology, 25(11), 505–513.

    Article  Google Scholar 

  33. van Wolferen, H., & Abelmann, L. (2011). Laser interference lithography. Lithography: Principles, Processes and Materials. 133–48.

  34. Lasagni, A. F., Yuan, D., Shao, P., & Das, S. (2009). Periodic micropatterning of polyethylene glycol diacrylate hydrogel by laser interference lithography using nano-and femtosecond pulsed lasers. Advanced Engineering Materials, 11(3), B20–B24.

    Article  Google Scholar 

  35. Kang, J. H., Moon, J. H., Lee, S. K., Park, S. G., Jang, S. G., Yang, S., et al. (2008). Thermoresponsive hydrogel photonic crystals by three-dimensional holographic lithography. Advanced Materials, 20(16), 3061–3065.

    Article  Google Scholar 

  36. Yuan, L. L., & Herman, P. R. (2016). Laser scanning holographic lithography for flexible 3D fabrication of multi-scale integrated nano-structures and optical biosensors. Scientific Reports, 6, 22294.

    Article  Google Scholar 

  37. Shusteff, M., Panas, R. M., Henriksson, J., Kelly, B. E., Browar, A. E., Fang, N. X., et al. (eds) (2016). Additive fabrication of 3d structures by holographic lithography. In: 27th Annual Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug; 2016.

  38. Ho, C. M. B., Mishra, A., Hu, K., An, J., Kim, Y.-J., & Yoon, Y.-J. (2017). Femtosecond-laser-based 3D printing for tissue engineering and cell biology applications. ACS Biomaterials Science & Engineering, 3(10), 2198–2214.

    Article  Google Scholar 

  39. Campbell, M., Sharp, D., Harrison, M., Denning, R., & Turberfield, A. (2000). Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature, 404(6773), 53.

    Article  Google Scholar 

  40. Fischer, J., & Wegener, M. (2013). Three-dimensional optical laser lithography beyond the diffraction limit. Laser & Photonics Reviews, 7(1), 22–44.

    Article  Google Scholar 

  41. Lin, Y., Rivera, D., & Chen, K. (2006). Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques. Optics Express, 14(2), 887–892.

    Article  Google Scholar 

  42. Vyas, S., Singh, R. K., Ghai, D. P., & Senthilkumaran, P. (2012). Fresnel lens with embedded vortices. International Journal of Optics

  43. Xia, Y., & Whitesides, G. M. (1998). Soft Lithography. Angewandte Chemie International Edition, 37(5), 550–575.

    Article  Google Scholar 

  44. Love, J. C., Wolfe, D. B., Jacobs, H. O., & Whitesides, G. M. (2001). Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography. Langmuir, 17(19), 6005–6012.

    Article  Google Scholar 

  45. Han, L.-H., Suri, S., Schmidt, C. E., & Chen, S. (2010). Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering. Biomedical Microdevices, 12(4), 721–725.

    Article  Google Scholar 

  46. Taylor, H., Boning, D., & Iliescu, C. (2011). A razor-blade test of the demolding energy in a thermoplastic embossing process. Journal of Micromechanics and Microengineering, 21(6), 067002.

    Article  Google Scholar 

  47. Wu, J., Zhao, Z., Hamel, C. M., Mu, X., Kuang, X., Guo, Z., et al. (2018). Evolution of material properties during free radical photopolymerization. Journal of the Mechanics and Physics of Solids, 112, 25–49.

    Article  MathSciNet  Google Scholar 

  48. Schildknecht, C. E. (1977). Polymerization processes. Amsterdam: Wiley.

    Google Scholar 

  49. Cavin, L., Rouge, A., Meyer, T., & Renken, A. (2000). Kinetic modeling of free radical polymerization of styrene initiated by the bifunctional initiator 2, 5-dimethyl-2, 5-bis (2-ethyl hexanoyl peroxy) hexane. Polymer, 41(11), 3925–3935.

    Article  Google Scholar 

  50. Kusuma, V. A., Roth, E. A., Clafshenkel, W. P., Klara, S. S., Zhou, X., Venna, S. R., et al. (2015). Crosslinked poly (ethylene oxide) containing siloxanes fabricated through thiol-ene photochemistry. Journal of Polymer Science Part A: Polymer Chemistry, 53(13), 1548–1557.

    Article  Google Scholar 

  51. Lee, S., Tong, X., & Yang, F. (2014). The effects of varying poly(ethylene glycol) hydrogel crosslinking density and the crosslinking mechanism on protein accumulation in three-dimensional hydrogels. Acta Biomaterialia, 10(10), 4167–4174.

    Article  Google Scholar 

  52. Drira, Z., & Yadavalli, V. K. (2013). Nanomechanical measurements of polyethylene glycol hydrogels using atomic force microscopy. Journal of the Mechanical Behavior of Biomedical Materials, 18, 20–28.

    Article  Google Scholar 

  53. Biondi, M., Ungaro, F., Quaglia, F., & Netti, P. A. (2008). Controlled drug delivery in tissue engineering. Advanced Drug Delivery Reviews, 60(2), 229–242.

    Article  Google Scholar 

  54. Benedek, I. (2004). Pressure-sensitive adhesives and applications. Boca Raton: CRC Press.

    Book  Google Scholar 

  55. Dana, S. F., Nguyen, D.-V., Kochhar, J. S., Liu, X.-Y., & Kang, L. (2013). UV-curable pressure sensitive adhesive films: effects of biocompatible plasticizers on mechanical and adhesion properties. Soft Matter, 9(27), 6270–6281.

    Article  Google Scholar 

  56. Tsige, M., & Stevens, M. J. (2004). Effect of cross-linker functionality on the adhesion of highly cross-linked polymer networks: A molecular dynamics study of epoxies. Macromolecules, 37(2), 630–637.

    Article  Google Scholar 

  57. Williams, C. G., Malik, A. N., Kim, T. K., Manson, P. N., & Elisseeff, J. H. (2005). Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, 26(11), 1211–1218.

    Article  Google Scholar 

  58. Pahoff, S., Meinert, C., Bas, O., Nguyen, L., Klein, T. J., & Hutmacher, D. W. (2019). Effect of gelatin source and photoinitiator type on chondrocyte redifferentiation in gelatin methacryloyl-based tissue-engineered cartilage constructs. Journal of Materials Chemistry B, 7(10), 1761–1772.

    Article  Google Scholar 

  59. Lin, C.-H., Lin, K.-F., Mar, K., Lee, S.-Y., & Lin, Y.-M. (2016). Antioxidant N-Acetylcysteine and glutathione increase the viability and proliferation of MG63 cells encapsulated in the gelatin methacrylate/VA-086/blue light hydrogel system. Tissue Engineering Part C: Methods, 22(8), 792–800.

    Article  Google Scholar 

Download references

Acknowledgements

Y.J.Y acknowledges the financial support supported from the Korea Institute for Advanced of Technology and funded by the Korea Ministry of Trade, Industry and Energy (P0011339, 2019 Establishment of a Customized Platform Utilizing Semiconductor Infrastructure). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C1011859). M.S.Y acknowledges the financial support by the Institute of Information & Communication Technology Planning & Evaluation (IITP) grant funded by the Korea government (MIST) (No. 2020-0-00954, Development of high efficiency high transparency HOE screen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jin Yoon.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7246 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, C.M.B., Hu, K., Mishra, A. et al. Printing of Woodpile Scaffold Using Fresnel Lens for Tissue Engineering. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 507–522 (2022). https://doi.org/10.1007/s40684-021-00322-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00322-x

Keywords

Navigation