Skip to main content

Advertisement

Log in

On-line Water Contents Diagnosis of PEMFC Based on Measurements

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

The polymer electrolyte membrane fuel cell has been widely studied in many fields and is being commercialized through various applications such as automobiles or distributed power generation. However, there are some fuel-cell operation stability and durability issues yet to be solved. One such problem is how to monitor the hydration condition within a fuel cell quickly and precisely for fault detection during operation. This study presents a method for monitoring the water management status in the fuel cell on-line. The relationship between equivalent circuit elements, voltage and current is described mathematically, and based on this equation, the equivalent circuit elements are estimated on-line through the voltage and current values measured in the experiment. The experiment is performed in three pre-defined states: normal, dry-out, and flooding. The parameter values of the equivalent circuit estimated by the least square method show different behaviors for each state, and it is confirmed that it is possible to implement fault isolation related to water management of a polymer electrolyte membrane fuel cell through parameter estimation, showing different behaviors in each state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

PEMFC:

Polymer electrolyte membrane fuel cell

ARX model:

Autoregressive with exogenous model

FDI:

Fault diagnosis and isolation

\({\text{C}}_{dl}\) :

Double-layer capacitance

E:

Electromotive force

\({\text{R}}_{\text{a}}\) :

Activation resistance (polarization resistance)

\({\text{R}}_{\text{m}}\) :

Membrane resistance (ohmic resistance)

\({\text{V}}_{\text{a}}\) :

Voltage drop by parallel circuit of activation resistance and double-layer capacitance

\({\text{V}}_{\text{m}}\) :

Voltage drop by membrane resistance

\({\text{V}}_{\text{fc}}\) :

Output voltage of fuel-cell stack

\({\text{q}}^{ - 1}\) :

Backward shift operator

\({{\varphi }}\) :

Known parameter vector

\({{\theta }}\) :

Unknown parameter vector

\(\widehat{\theta }\) :

\({{\theta }}\) estimated by least square method

References

  1. Riascos, L. A. M., Piovani, J. T., & Silveira, J. L. (2014). Sizing an extra-humidification system for mobile applications in PEMFC. International Journal of Mechanical Engineering and Automation, 1(2), 83–92.

    Google Scholar 

  2. Alberro, M., Marzo, F. F., Manso, A. P., Dominguez, V., Barranco, J., & Garikano, X. (2015). Electronic modeling of a PEMFC with logarithmic amplifiers. International Journal of Hydrogen Energy, 40(9), 3708–3718.

    Article  Google Scholar 

  3. Merida, W., Harrington, D. A., Le Canut, J. M., & McLean, G. (2006). Characterization of proton exchange membrane fuel cell, (PEMFC) failures via electrochemical impedance, spectroscopy. Journal of Power Sources, 161(1), 264–274.

    Article  Google Scholar 

  4. Min, L., Wang, J., Wang, S., Xie, X., Zhou, T., & Mathur, V. K. (2010). On-line measurement for ohmic resistance in direct methanol fuel cell by current interrupt method, Chines. Journal of Chemical Engineering, 18(5), 843–847.

    Google Scholar 

  5. Lee, Y.-H., Kim, J., & Yoo, S. (2016). On-line and real-time diagnosis method for proton membrane fuel cell (PEMFC) stack by the superposition principle. Journal of Power Sources, 326, 264–269.

    Article  Google Scholar 

  6. Lee, Y.-H., Yoo, S., & Kim, J. H. (2014). Development of real-time diagnosis method for PEMFC stack via intermodulation method. Transactions of the KSAE, 22(7), 76–83.

    Article  Google Scholar 

  7. Mainka, J., Maranzana, G., Thoaq, A., Dillet, J., Didierjean, S., & Lottin, O. (2012). One-dimensional model of oxygen transport impedance accounting for convection perpendicular to the electrode. Fuel Cells, 12(5), 848–861.

    Article  Google Scholar 

  8. Buchholz, M., & Brebs, V. (2007). Dynamic modelling of a polymer electrolyte membrane fuel cell stack by nonlinear system identification. Fuel Cells, 7(5), 392–401.

    Article  Google Scholar 

  9. Saadi, A., Becherif, M., Hissel, D., & Ramadan, H. S. (2017). Dynamic modeling and experimental analysis of PEMFCs: A comparative study. International Journal of Hydrogen Energy, 42(2), 1544–1557.

    Article  Google Scholar 

  10. Chevalier, S., Auvity, B., Olivier, J. C., Josset, C., Trichet, D., & Machmoum, M. (2013). Multiphysics DC and AC models of a PEMFC for the detection of degraded cell parameters. International Journal of Hydrogen Energy, 38(26), 11609–11618.

    Article  Google Scholar 

  11. Petrone, R., Zheng, Z., Hissel, D., Péra, M. C., Pianese, C., Sorrentino, M., et al. (2013). A review on model-based diagnosis methodologies for PEMFCs. International Journal of Hydrogen Energy, 38, 7077–7091.

    Article  Google Scholar 

  12. Shin, D.-H., Yoo, S.-R., & Lee, Y.-H. (2019). Real time water contents measurement based on Step response for PEM fuel cell. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(5), 884–892.

    Article  Google Scholar 

  13. Lebreton, C., Benne, M., Damour, C., Yousfi-Steiner, N., Grondin-Perez, B., Hissel, D., et al. (2015). Fault tolerant control strategy applied to PEMFC water management. International Journal of Hydrogen Energy, 40(33), 10636–10646.

    Article  Google Scholar 

  14. Manimala, K., Selvi, K., & Ahila, R. (2008). Artificial intelligence techniques applications for power disturbances classification. World Academy of Science, International Journal of Electrical and Computer Engineering, 2(10), 2309–2316.

    Google Scholar 

  15. Mechefske, C. K. (1998). Objective machinery fault diagnosis using fuzzy logic. Mechanical Systems and Signal Processing, 12(6), 855–862.

    Article  Google Scholar 

  16. Lei, Y., He, Z., & Zi, Y. (2008). A new approach to intelligent fault diagnosis of rotating machinery. Expert Systems with Applications, 35(4), 1593–1600.

    Article  Google Scholar 

  17. Placca, L., Kouta, R., Candusso, D., Blachot, J.-F., & Charon, W. (2010). Analysis of PEM fuel cell experimental data using principal component analysis and multi linear regression. International Journal of Hydrogen Energy, 35(10), 4582–4591.

    Article  Google Scholar 

  18. Zhao, X., Xu, L., Li, J., Fang, C., & Ouyang, M. (2017). Faults diagnosis for PEM fuel cell system based on multi-sensor signals and principle component analysis method. International Journal of Hydrogen Energy, 42, 18524–18531.

    Article  Google Scholar 

  19. He, X. B., Wang, W., Yang, Y. P., & Yang, Y. H. (2009). Variable-weighted fisher discriminant analysis for process fault diagnosis. Journal of Process Control, 19(6), 923–931.

    Article  Google Scholar 

  20. Du, Z., & Jin, X. (2008). Multiple faults diagnosis for sensors in air handling unit using fisher discriminant analysis. Energy Convers Management, 49(12), 3654–3665.

    Article  Google Scholar 

  21. Wasterlain, S., Candusso, D., Harel, F., Francois, X., & Hissel, D. (2010). Diagnosis of a fuel cell stack using electrochemical impedance spectroscopy and Bayesian networks. In: IEEE vehicle power and propulsion conference (VPPC), pp. 1–6.

  22. Liu, Y., & Jin, S. (2013). Application of Bayesian networks for diagnostics in the assembly process by considering small measurement data sets. The International Journal of Advanced Manufacturing Technology, 65(9–12), 1229–1237.

    Article  Google Scholar 

  23. Chen, J., & Zhou, B. (2008). Diagnosis of PEM fuel cell stack dynamic behaviors. International Journal of Power Sources, 177(1), 83–95.

    Article  Google Scholar 

  24. Yu, F. T., & Lu, G. (1994). Short-time Fourier transform and wavelet transform with Fourier-domain processing. Applied Optics, 33(23), 5262–5270.

    Article  Google Scholar 

  25. Pahon, E., Yousfi Steiner, N., Jemei, S., Hissel, D., & Moçoteguy, P. (2016). A signal-based method for fast PEMFC diagnosis. Applied Energy, 165, 748–758.

    Article  Google Scholar 

  26. Riascos, L. A. M., & Pereira, D. D. (2016). Fault diagnosis in PEMFC based on patterns of tolerance. IET Renewable Power Generation, 11(2), 304–312.

    Article  Google Scholar 

  27. Zheng, Z., Petrone, R., Péra, M. C., Hissel, D., Becherif, M., Pianese, C., et al. (2013). A review on non-model based diagnosis methodologies for PEM fuel cell stacks and systems. International Journal of Hydrogen Energy, 38(21), 8914–8926.

    Article  Google Scholar 

  28. Chen, C.-S., Chiu, Y.-J., Lee, C.-T., Lin, J.-M. (2013). Calculation of weighted geometric dilution of precision. Journal of Applied Mathematics, 2013, 953048. https://doi.org/10.1155/2013/953048.

    Google Scholar 

  29. Owejan, J. P., Gagliardo, J. J., Reid, R. C., & Trabold, T. A. (2012). Proton transport resistance correlated to liquid water content of gas diffusion layers. Journal of Power Sources, 209, 147–151.

    Article  Google Scholar 

  30. Cooper, K. R., & Simith, M. (2006). Electrical test methods for on-line fuel cell ohmic resistance measurement. Journal of Power Sources, 160, 1088–1095.

    Article  Google Scholar 

  31. Fouquet, N., Doulet, C., Nouillant, C., Dauphin-Tanguy, G., & Ould-Bouamama, B. (2006). Model based PEM fuel cell state-of-health monitoring via ac impedance measurements. Journal of Power Sources, 159, 905–913.

    Article  Google Scholar 

  32. Asghari, S., Mokmeli, A., & Samavati, M. (2010). Study of PEM fuel cell performance by electrochemical impedance spectroscopy. International Journal of Hydrogen Energy, 35, 9283–9290.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungryeol Yoo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, D., Yoo, S. & Lee, YH. On-line Water Contents Diagnosis of PEMFC Based on Measurements. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 1085–1093 (2020). https://doi.org/10.1007/s40684-020-00232-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00232-4

Keywords

Navigation