Skip to main content
Log in

Acoustically Excited Oscillating Bubble on a Flexible Structure and Its Energy-Harvesting Capability

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

When a bubble oscillates under the action of an acoustic field, it generates a cavitational microstreaming flow around it. We here explore oscillation dynamics of a bubble hanging on a flexible structure (i.e., piezocantilever) by acoustic excitation, and assess the suitability of the proposed method to micro-energy harvesting systems. We preferentially investigate the characteristics of bubble oscillation, such as the maximum amplitude and resonant frequency by varying the applied frequency and bubble size. The amplitude of the oscillating bubble is found to be maximized at the resonant frequency depending on the bubble size. Additionally, we measured the electrical outcome generated from bubble oscillation-induced microstreaming and resultant vibration of the piezocantilever, as functions of the applied frequency, bubble size, and distance between the bubble and piezoactuator. The generated voltage is considerably dependent of the applied frequency and bubble size. Meanwhile, it is inversely proportional to the distance between the bubble and piezoactuator. Finally, we found that the electrical output can be can be improved by increasing the number of bubbles. This work will provide a new framework for the fundamental design of bubble-mediated micro-energy harvesters and microsensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Plesset, M. S., & Prosperetti, A. (1977). Bubble dynamics and cavitation. Annual Review, 9(1), 145–185.

    MATH  Google Scholar 

  2. Lauterborn, W., & Kurz, T. (2010). Physics of bubble oscillations. Reports on Progress in Physics, 73(10), 106501.

    Article  Google Scholar 

  3. Milne, A. J. B., Defez, B., Cabrerizo-Vilchez, M., & Amirfazli, A. (2014). Understanding (sessile/constrained) bubble and drop oscillations. Advances in Colloid and Interface Science, 203, 22–36.

    Article  Google Scholar 

  4. Hashmi, A., Yu, G., Reilly-Collette, M., Heimana, G., & Xu, J. (2012). Oscillating bubbles: A versatile tool for lab on a chip applications. Lab on a Chip, 12(21), 4216–4227.

    Article  Google Scholar 

  5. Lindner, J. R. (2004). Microbubbles in medical imaging: current applications and future directions. Nature Review Drug Discovery, 3(6), 527–532.

    Article  Google Scholar 

  6. Brennen, C. E. (1995). Cavitation and bubble dynamics. New York: Oxford University Press.

    MATH  Google Scholar 

  7. Leighton, T. (1994). The acoustic bubble. London: Academic Press.

    Google Scholar 

  8. Coakley, W. T., & Nyborg, W. L (1978). Cavitation: Dynamics of gas bubbles; applications. In F. J. Fry (Ed.), Ultrasound: Its applications in medicine and biology (pp. 77–159). Holland: Elsevier.

    Google Scholar 

  9. Tovar, A. R., & Lee, A. P. (2009). Lateral cavity acoustic transducer. Lab on a Chip, 9(1), 41–43.

    Article  Google Scholar 

  10. Ryu, K., Chung, S. K., & Cho, S. K. (2010). Micropumping by an acoustically excited oscillating bubble for automated implantable microfluidic devices. Journal of the Association for Laboratory Automation, 15(3), 163–171.

    Article  Google Scholar 

  11. Tovar, A. R., Patel, M. V., & Lee, A. P. (2011). air cavities for microfluidic pumping with the use of acoustic energy. Microfluidics and Nanofluidics, 10(6), 1269–1278.

    Article  Google Scholar 

  12. Patel, M. V., Nanayakkara, I. A., Simona, M. G., & Lee, A. P. (2014). Cavity-induced microstreaming for simultaneous on-chip pumping and size-based separation of cells and particles. Lab on a Chip, 14(19), 3860–3872.

    Article  Google Scholar 

  13. Chung, S. K., Zhao, Y., & Cho, S. K. (2008). On-chip creation and elimination of microbubbles for a micro-object manipulator. Journal of Micromechanics and Microengineering, 18(9), 095009.

    Article  Google Scholar 

  14. Chung, S. K., & Cho, S. K. (2008). On-chip manipulation of objects using mobile oscillating bubbles. Journal of Micromechanics and Microengineering, 18(12), 125024.

    Article  Google Scholar 

  15. Chung, S. K., & Cho, S. K. (2009). 3-D manipulation of millimeter-and micro-sized objects using an acoustically excited oscillating bubble. Microfluidics and Nanofluidics, 6(2), 261–265.

    Article  Google Scholar 

  16. Kwon, J. O., Yang, J. S., Lee, S. J., Rhee, K., & Chung, S. K. (2011). Electromagnetically actuated micromanipulator using an acoustically oscillating bubble. Journal of Micromechanics and Microengineering, 21(11), 115023.

    Article  Google Scholar 

  17. Chung, S. K., Kwon, J. O., & Cho, S. K. (2012). Manipulation of micro/mini-objects by AC-electrowetting-actuated oscillating bubbles: capturing, carrying and releasing. Journal of Adhesion Science and Technology, 26(12–17), 1965–1983.

    Google Scholar 

  18. Lee, K. H., Won, J. H., Rhee, K., & Chung, S. K. (2012). Micromanipulation using cavitational microstreaming generated by acoustically oscillating twin bubbles. Sensors Actuators A-Physical, 188, 442–449.

    Article  Google Scholar 

  19. Lee, J. H., Lee, K. H., Chae, J. B., Rhee, K., & Chung, S. K. (2013). On-chip micromanipulation by AC-EWOD driven twin bubbles. Sensors Actuators A-Physical, 195, 167–174.

    Article  Google Scholar 

  20. Won, J. M., Lee, J. H., Rhee, K. H., & Chung, S. K. (2011). Propulsion of water-floating objects by acoustically oscillating microbubbles. International Journal of Precision Engineering Manufacturing, 12(3), 577–580.

    Article  Google Scholar 

  21. Liu, R., Yang, J., Pindera, M., Athavale, M., & Grodzinski, P. (2002). Bubble-induced acoustic micromixing. Lab on a Chip, 2(3), 151–157.

    Article  Google Scholar 

  22. Ahmed, D., Mao, X., Shi, J., Juluri, B., & Huang, T. (2009). A millisecond micromixer via single-bubble-based acoustic streaming. Lab on a Chip, 9(18), 2738–2741.

    Article  Google Scholar 

  23. Dong, Z., Yao, C., Zhang, X., Xu, J., Chen, G., Zhao, Y., & Yuan, Q. (2015). A high-power ultrasonic microreactor and its application in gas–liquid mass transfer intensification. Lab on a Chip, 15(4), 1145–1152.

    Article  Google Scholar 

  24. Wang, X. L., Attinger, D., & Moraga, F. (2006). A micro-rotor driven by an acoustic bubble. Nanoscale and Microscale Thermophysical Engineering, 10(4), 379–385.

    Article  Google Scholar 

  25. Feng, J., Yuan, J., & Cho, S. K. (2015). Micropropulsion by an acoustic bubble for navigating microfluidic space. Lab on a Chip, 15(6), 1554–1562.

    Article  Google Scholar 

  26. Chen, Y., & Lee, S. (2014). Manipulation of biological objects using acoustic bubbles: a review. Integrative and Comparative Biology, 54(6), 959–968.

    Article  Google Scholar 

  27. Oh, J. S., Kwon, Y. S., Lee, K. H., Jeong, W., Chung, S. K., & Rhee, K. (2014). Drug perfusion enhancement in tissue model by steady streaming induced by oscillating microbubbles. Computers in Biology and Medicine, 44, 37–43.

    Article  Google Scholar 

  28. Marmottant, P., & Hilgenfeldt, S. (2003). Controlled vesicle deformation and lysis by single oscillating bubbles. Nature, 44(6936), 153–156.

    Article  Google Scholar 

  29. Gac, S. L., Zwaan, E., van den Berg, A., & Ohl, C. D. (2007). Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement. Lab on a Chip, 7(12), 1666–1672.

    Article  Google Scholar 

  30. Ahmed, D., Ozcelik, A., Bojanala, N., Nama, N., Upadhyay, A., Chen, Y., Hanna-Rose, W., & Huang, T. J. (2016). Rotational manipulation of single cells and organisms using acoustic waves. Nature Communications, 7, 11085.

    Article  Google Scholar 

  31. Feng, J., Yuan, J., & Cho, S. K. (2016). 2-D steering and propelling of acoustic bubble-powered microswimmers. Lab on a Chip, 16(12), 2317–2325.

    Article  Google Scholar 

  32. Chen, Y., Fang, Z., Merritt, B., Strack, D., Xu, J., & Lee, S. (2016). Onset of particle trapping and release via acoustic bubbles. Lab on a Chip, 16, 3024–3032.

    Article  Google Scholar 

  33. Chung, S. K., Rhee, K., & Cho, S. K. (2010). Bubble actuation by electrowetting-on-dielectric (EWOD) and its applications: A review. International Journal of Precision Engineering and Manufacturing, 11(6), 991–1006.

    Article  Google Scholar 

  34. Kim, J. E., Kim, H., Yoon, H., Kim, Y. Y., & Youn, B. D. (2015). A review of piezoelectric energy harvesting based on vibration. International Journal of Precision Engineering Manufacturing-Green Technology, 2(1), 51–57.

    Article  Google Scholar 

  35. Park, J. H., Lim, T. W., Kim, S. D., & Park, S. H. (2016). Design and experimental verification of flexible plate-type piezoelectric vibrator for energy harvesting system. International Journal of Precision Engineering Manufacturing-Green Technology, 3(3), 253–259.

    Article  Google Scholar 

  36. Usharani, R., Uma, G., & Umapathy, M. (2016). Design of high output broadband piezoelectric energy harvester with double tapered cavity beam. International Journal of Precision Engineering Manufacturing-Green Technology, 3(4), 343–351.

    Article  Google Scholar 

  37. Kim, G. W., Kim, J., & Kim, J. H. (2014). Flexible piezoelectric vibration energy harvester using a trunk-shaped beam structure inspired by an electric fish fin. International Journal of Precision Engineering Manufacturing, 15(9), 1967–1971.

    Article  Google Scholar 

  38. Kim, H. S., Kim, J. H., & Kim, J. (2011). A review of piezoelectric energy harvesting based on vibration. International Journal of Precision Engineering Manufacturing, 12(6), 1129–1141.

    Article  Google Scholar 

  39. Lee, J., & Choi, B. (2012). A study on the piezoelectric energy conversion system using motor vibration. International Journal of Precision Engineering Manufacturing, 13(4), 573–579.

    Article  Google Scholar 

  40. Kim, C., & Shin, J. W. (2013). Topology optimization of piezoelectric materials and application to the cantilever beams for vibration energy harvesting. International Journal of Precision Engineering Manufacturing, 14(11), 1925–1931.

    Article  Google Scholar 

  41. Sang, C. M., Dayou, J., & Liew, W. Y. (2013). Increasing the output from piezoelectric energy harvester using width-split method with verification. International Journal of Precision Engineering Manufacturing, 14(12), 2149–2155.

    Article  Google Scholar 

  42. Yoon, Y. J., Park, W. T., Li, K. H., Ng, Y. Q., & Song, Y. (2013). A study of piezoelectric harvesters for low-level vibrations in wireless sensor networks. International Journal of Precision Engineering Manufacturing, 14(7), 1257–1262.

    Article  Google Scholar 

  43. Li, W., Torres, D., Díaz, R., Wang, Z., Wu, C., Wang, C., Wang, Z. L., & SepCúlveda, N. (2017). Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics. Nature Communications, 8, 15310.

    Article  Google Scholar 

  44. Li, W., Torres, D., Wang, T., Wang, C., & SepCúlveda, N. (2016). Li, WFlexible and biocompatible polypropylene ferroelectret nanogenerator (FENG): on the path toward wearable devices powered by human motion. Nano Energy, 30, 649–657.

    Article  Google Scholar 

  45. Cao, Y., Li, W., Figueroa, J., Wang, T., Torres, D., Wang, C., Wang, Z. L., & SepCúlveda, N. (2018). Impact-activated programming of electro-mechanical resonators through ferroelectret nanogenerator (FENG) and vanadium dioxide. Nano Energy, 43, 278–284.

    Article  Google Scholar 

  46. XVI Minnaert, M. (1933). On musical air-bubbles and the sounds of running water. Philosophical Magazine, 16(104), 235–248.

    Google Scholar 

  47. Feng, Z., & Leal, L. G. (1997). Nonlinear bubble dynamics. Annual Review of Fluid Mechanicss, 29(1), 201–243.

    Article  MathSciNet  Google Scholar 

  48. Matsumoto, K., & Ueno, I. (2009). Oscillating bubbles in ultrasonic acoustic field. Journal of Physics Conference Series, 147(1), 201. (J. Phys. Conf. Ser).

    Google Scholar 

  49. Kim, D., Park, J. K., Kang, I. S., & Kang, K. H. (2013). Mechanism of bubble detachment from vibrating walls. Physics of Fluids, 25(11), 112108.

    Article  Google Scholar 

  50. Ko, S. H., Lee, S. J., & Kang, K. H. (2009). A synthetic jet produced by electrowetting-driven bubble oscillations in aqueous solution. Applied Physics Letter, 94(19), 194102.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2017-2018 research fund of Myongji University in Korea. This work was also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20174010201160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Kug Chung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, J., Hong, J., Lee, S.J. et al. Acoustically Excited Oscillating Bubble on a Flexible Structure and Its Energy-Harvesting Capability. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 531–537 (2019). https://doi.org/10.1007/s40684-019-00057-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00057-w

Keywords

Navigation