Skip to main content

Advertisement

Log in

Treatment of Immune-Mediated Necrotizing Myopathy

  • Other CTD: Inflammatory Myopathies (J Milisenda, Section Editor)
  • Published:
Current Treatment Options in Rheumatology Aims and scope Submit manuscript

Abstract

Purpose of Review

Immune-mediated necrotizing myositis (IMNM) is a rare autoimmune disorder characterized by proximal muscle weakness, elevated creatine kinase levels, and necrosis of muscle fibers. While the exact pathogenesis of IMNM remains unknown, anti-HMGCR and anti-SRP autoantibodies are associated with different predisposing factors, clinical manifestations, and severity of the disease and are believed to correspond to two pathogenically distinct entities. The cornerstone treatment for IMNM is a combination of glucocorticoids and steroid-sparing agents. Therapeutic strategies aimed at decreasing the half-life of endogenous autoantibodies, such as intravenous immunoglobulin (IVIG), or reducing their production, such as rituximab, have shown promise as powerful treatments. In severe cases, combining IVIG and rituximab can have synergistic effects.

Recent Findings

Previous studies suggested that complement dysregulation may be involved in the pathogenesis of IMNM. However, a recent phase 2 clinical trial evaluating the effectiveness of zilucoplan, a C5 inhibitor, failed to show efficacy in IMNM.

Summary

In this review, we aim to provide a comprehensive review of IMNM focusing on the current evidence regarding treatment options for this condition. Our goal is to present an up-to-date overview of the current state of therapeutics on IMNM and highlight potential areas for future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Selva-O’Callaghan A, Pinal-Fernandez I, Trallero-Araguas E, Milisenda JC, Grau-Junyent JM, Mammen AL. Classification and management of adult inflammatory myopathies. Lancet Neurol. 2018;17(9):816–28.

    Article  PubMed  Google Scholar 

  2. Pinal-Fernandez I, Mammen AL. Spectrum of immune-mediated necrotizing myopathies and their treatments. Curr Opin Rheumatol. 2016;28(6):619–24.

    Article  CAS  PubMed  Google Scholar 

  3. Casal-Dominguez M, Pinal-Fernandez I, Pak K, Huang W, Selva-O’Callaghan A, Albayda J, et al. Performance of the 2017 European Alliance of Associations for Rheumatology/American College of Rheumatology classification criteria for idiopathic inflammatory myopathies in patients with myositis-specific autoantibodies. Arthritis Rheumatol. 2022;74(3):508–17. Study demonstrating therelevance of autoantibodies for myositis classification and proposing autoantibody-based classificationcriteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pinal-Fernandez I, Casal-Dominguez M, Mammen AL. Immune-mediated necrotizing myopathy. Curr Rheumatol Rep. 2018;20(4):21.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Christopher-Stine L, Casciola-Rosen LA, Hong G, Chung T, Corse AM, Mammen AL. A novel autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing myopathy. Arthritis Rheum. 2010;62(9):2757–66. Original description of anti-HMGCR autoantibodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reeves WH, Nigam SK, Blobel G. Human autoantibodies reactive with the signal-recognition particle. Proc Natl Acad Sci USA. 1986;83(24):9507–11. Original description of anti-SRP autoantibodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pinal-Fernandez I, Casciola-Rosen LA, Christopher-Stine L, Corse AM, Mammen AL. The prevalence of individual histopathologic features varies according to autoantibody status in muscle biopsies from patients with dermatomyositis. J Rheumatol. 2015;42(8):1448–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pinal-Fernandez I, Casal-Dominguez M, Carrino JA, Lahouti AH, Basharat P, Albayda J, et al. Thigh muscle MRI in immune-mediated necrotising myopathy: extensive oedema, early muscle damage and role of anti-SRP autoantibodies as a marker of severity. Ann Rheum Dis. 2017;76(4):681–7.

    Article  PubMed  Google Scholar 

  9. Tiniakou E, Pinal-Fernandez I, Lloyd TE, Albayda J, Paik J, Werner JL, et al. More severe disease and slower recovery in younger patients with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Rheumatology (Oxford). 2017;56(5):787–94.

    CAS  PubMed  Google Scholar 

  10. Pinal-Fernandez I, Parks C, Werner JL, Albayda J, Paik J, Danoff SK, et al. Longitudinal course of disease in a large cohort of myositis patients with autoantibodies recognizing the signal recognition particle. Arthritis Care Res (Hoboken). 2017;69(2):263–70. Utility of rituximab in anti-SRP IMNM.

    Article  CAS  PubMed  Google Scholar 

  11. Hou Y, Shao K, Yan Y, Dai T, Li W, Zhao Y, et al. Anti-HMGCR myopathy overlaps with dermatomyositis-like rash: a distinct subtype of idiopathic inflammatory myopathy. J Neurol. 2022;269(1):280–93.

    Article  PubMed  Google Scholar 

  12. Mohassel P, Foley AR, Donkervoort S, Fequiere PR, Pak K, Bonnemann CG, et al. Anti-3-hydroxy-3-methylglutaryl-coenzyme a reductase necrotizing myopathy masquerading as a muscular dystrophy in a child. Muscle Nerve. 2017;56(6):1177–81.

    Article  CAS  PubMed  Google Scholar 

  13. Mohassel P, Landon-Cardinal O, Foley AR, Donkervoort S, Pak KS, Wahl C, et al. Anti-HMGCR myopathy may resemble limb-girdle muscular dystrophy. Neurol Neuroimmunol Neuroinflamm. 2019;6(1): e523.

    Article  PubMed  Google Scholar 

  14. Aggarwal R, Moghadam-Kia S, Lacomis D, Malik A, Qi Z, Koontz D, et al. Anti-hydroxy-3-methylglutaryl-coenzyme A reductase (anti-HMGCR) antibody in necrotizing myopathy: treatment outcomes, cancer risk, and role of autoantibody level. Scand J Rheumatol. 2020;49(5):405–11.

    Article  CAS  PubMed  Google Scholar 

  15. Allenbach Y, Keraen J, Bouvier AM, Jooste V, Champtiaux N, Hervier B, et al. High risk of cancer in autoimmune necrotizing myopathies: usefulness of myositis specific antibody. Brain. 2016;139(Pt 8):2131–5.

    Article  PubMed  Google Scholar 

  16. Basharat P, Lahouti AH, Paik JJ, Albayda J, Pinal-Fernandez I, Bichile T, et al. Statin-induced anti-HMGCR-associated myopathy. J Am Coll Cardiol. 2016;68(2):234–5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Alshehri A, Choksi R, Bucelli R, Pestronk A. Myopathy with anti-HMGCR antibodies: perimysium and myofiber pathology. Neurol Neuroimmunol Neuroinflamm. 2015;2(4): e124.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Allenbach Y, Drouot L, Rigolet A, Charuel JL, Jouen F, Romero NB, et al. Anti-HMGCR autoantibodies in European patients with autoimmune necrotizing myopathies: inconstant exposure to statin. Medicine (Baltimore). 2014;93(3):150–7.

    Article  CAS  PubMed  Google Scholar 

  19. Ge Y, Lu X, Peng Q, Shu X, Wang G. Clinical characteristics of anti-3-hydroxy-3-methylglutaryl coenzyme A reductase antibodies in Chinese patients with idiopathic inflammatory myopathies. PLoS ONE. 2015;10(10): e0141616.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Watanabe Y, Suzuki S, Nishimura H, Murata KY, Kurashige T, Ikawa M, et al. Statins and myotoxic effects associated with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase autoantibodies: an observational study in Japan. Medicine (Baltimore). 2015;94(4): e416.

    Article  CAS  PubMed  Google Scholar 

  21. Lo YC, Lin SY, Ulziijargal E, Chen SY, Chien RC, Tzou YJ, et al. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. Int J Med Mushrooms. 2012;14(4):357–63.

    Article  CAS  PubMed  Google Scholar 

  22. Klimek M, Wang S, Ogunkanmi A. Safety and efficacy of red yeast rice (Monascus purpureus) as an alternative therapy for hyperlipidemia. P T. 2009;34(6):313–27.

    PubMed  PubMed Central  Google Scholar 

  23. Jeng KC, Chen CS, Fang YP, Hou RC, Chen YS. Effect of microbial fermentation on content of statin, GABA, and polyphenols in Pu-Erh tea. J Agric Food Chem. 2007;55(21):8787–92.

    Article  CAS  PubMed  Google Scholar 

  24. Tiniakou E, Rivera E, Mammen AL, Christopher-Stine L. Use of proprotein convertase subtilisin/kexin type 9 inhibitors in statin-associated immune-mediated necrotizing myopathy: a case series. Arthritis Rheumatol. 2019;71(10):1723–6.

    Article  CAS  PubMed  Google Scholar 

  25. Mammen AL, Chung T, Christopher-Stine L, Rosen P, Rosen A, Doering KR, et al. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis Rheum. 2011;63(3):713–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pinal-Fernandez I, Casal-Dominguez M, Derfoul A, Pak K, Plotz P, Miller FW, et al. Identification of distinctive interferon gene signatures in different types of myositis. Neurology. 2019;93(12):e1193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pinal-Fernandez I, Casal-Dominguez M, Derfoul A, Pak K, Miller FW, Milisenda JC, et al. Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis. Ann Rheum Dis. 2020;79(9):1234–42.

    Article  CAS  PubMed  Google Scholar 

  28. Amici DR, Pinal-Fernandez I, Christopher-Stine L, Mammen AL, Mendillo ML. A network of core and subtype-specific gene expression programs in myositis. Acta Neuropathol. 2021;142(5):887–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Akopian D, Shen K, Zhang X, Shan SO. Signal recognition particle: an essential protein-targeting machine. Annu Rev Biochem. 2013;82:693–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suzuki S, Nishikawa A, Kuwana M, Nishimura H, Watanabe Y, Nakahara J, et al. Inflammatory myopathy with anti-signal recognition particle antibodies: case series of 100 patients. Orphanet J Rare Dis. 2015;13(10):61.

    Article  Google Scholar 

  31. Targoff IN, Johnson AE, Miller FW. Antibody to signal recognition particle in polymyositis. Arthritis Rheum. 1990;33(9):1361–70.

    Article  CAS  PubMed  Google Scholar 

  32. Benveniste O, Drouot L, Jouen F, Charuel JL, Bloch-Queyrat C, Behin A, et al. Correlation of anti-signal recognition particle autoantibody levels with creatine kinase activity in patients with necrotizing myopathy. Arthritis Rheum. 2011;63(7):1961–71.

    Article  CAS  PubMed  Google Scholar 

  33. Ohnuki Y, Suzuki S, Shiina T, Uruha A, Watanabe Y, Suzuki S, et al. HLA-DRB1 alleles in immune-mediated necrotizing myopathy. Neurology. 2016;87(18):1954–5.

    Article  PubMed  Google Scholar 

  34. Mammen AL, Tiniakou E. Intravenous immune globulin for statin-triggered autoimmune myopathy. N Engl J Med. 2015;373(17):1680–2. Case series indicating the utility of IVIG in anti-HMGCR IMNM.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Allenbach Y, Mammen AL, Benveniste O, Stenzel W. 224th ENMC International Workshop: Clinico-sero-pathological classification of immune-mediated necrotizing myopathies Zandvoort, The Netherlands, 14–16 October 2016. Neuromuscul Disord. 2018;28(1):87–99. Latest ENMC classification criteria for IMNM.

    Article  PubMed  Google Scholar 

  36. Valiyil R, Casciola-Rosen L, Hong G, Mammen A, Christopher-Stine L. Rituximab therapy for myopathy associated with anti-signal recognition particle antibodies: a case series. Arthritis Care Res (Hoboken). 2010;62(9):1328–34. Utility of rituximab in anti-SRP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mecoli CA, Lahouti AH, Brodsky RA, Mammen AL, Christopher-Stine L. High-dose cyclophosphamide without stem cell rescue in immune-mediated necrotizing myopathies. Neurol Neuroimmunol Neuroinflamm. 2017;4(5): e381.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bae S, Charles-Schoeman C. Oral cyclophosphamide in treatment of patients with refractory idiopathic inflammatory myopathies: a retrospective observational study. Clin Rheumatol. 2018;37(8):2113–23.

    Article  PubMed  Google Scholar 

  39. Kruse RL, Albayda J, Vozniak SO, Lawrence CE, Goel R, Lokhandwala PM, et al. Therapeutic plasma exchange for the treatment of refractory necrotizing autoimmune myopathy. J Clin Apher. 2022;37(3):253–62.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Allenbach Y, Arouche-Delaperche L, Preusse C, Radbruch H, Butler-Browne G, Champtiaux N, et al. Necrosis in anti-SRP+ and anti-HMGCR+myopathies: Role of autoantibodies and complement. Neurology. 2018;90(6):e507–17.

    Article  CAS  PubMed  Google Scholar 

  41. Bergua C, Chiavelli H, Allenbach Y, Arouche-Delaperche L, Arnoult C, Bourdenet G, et al. In vivo pathogenicity of IgG from patients with anti-SRP or anti-HMGCR autoantibodies in immune-mediated necrotising myopathy. Ann Rheum Dis. 2019;78(1):131–9.

    Article  CAS  PubMed  Google Scholar 

  42. Mammen AL, Amato AA, Dimachkie MM, Chinoy H, Hussain Y, Lilleker JB, et al. Zilucoplan in immune-mediated necrotising myopathy: a phase 2, randomised, double-blind, placebo-controlled, multicentre trial. Lancet Rheumatol. 2023;5(2):e67–76. Clinical trial demonstrating that complement inhibition has no therapeutic effect in IMNM.

    Article  CAS  PubMed  Google Scholar 

  43. Heo YA. Efgartigimod: first approval. Drugs. 2022;82(3):341–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Muller F, Boeltz S, Knitza J, Aigner M, Volkl S, Kharboutli S, et al. CD19-targeted CAR T cells in refractory antisynthetase syndrome. Lancet. 2023;401(10379):815–8.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded, in part, by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew L. Mammen or Iago Pinal-Fernandez.

Ethics declarations

Conflict of Interest

Sandra Amara Ogbonnaya-Whittlesey declares that she has no conflict of interest. Dale Kobrin declares that he has no conflict of interest. Maria Casal-Dominguez declares that she has no conflict of interest. Andrew L. Mammen declares that he has no conflict of interest. Iago Pinal-Fernandez declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogbonnaya-Whittlesey, S.A., Kobrin, D., Casal-Dominguez, M. et al. Treatment of Immune-Mediated Necrotizing Myopathy. Curr Treat Options in Rheum 9, 168–178 (2023). https://doi.org/10.1007/s40674-023-00210-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40674-023-00210-2

Keywords

Navigation