Skip to main content

Advertisement

Log in

Global Review of Modification, Optimization, and Improvement Models for Aquifer Vulnerability Assessment in the Era of Climate Change

  • Published:
Current Climate Change Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to examine the methods used to date in assessing aquifer vulnerability over the last three decades (1993-2023). In addition to a comprehensive review of prior AVA research, the novelty of this study lies in its specific focus on these methods and their application to the widely used DRASTIC and GALDIT models. We particularly emphasize statistical analysis, multicriteria decision-making, optimization techniques, machine learning algorithms, and deep learning (DL) models.

Recent findings

The most widely used modification, optimization, and improvement-based methods for DRASTIC indices are the analytic hierarchy process, genetic algorithm, and fuzzy logic. In contrast, single-parameter sensitivity analysis, genetic algorithm, and support vector machine are commonly applied to modify, optimize, and improve GALDIT indices.

Summary

The results of this study are important especially in the era of global warming and climate change/variability when the need and demand for aquifers and groundwater resources is increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data is available from the corresponding author upon reasonable request.

References

  1. Katyal D, Tapasya T, Varun J. Recent trends in groundwater vulnerability assessment techniques: A review. Int J Appl Res. 2017;3:646–55.

    Google Scholar 

  2. Du Plessis, A.: Evaluation of southern and South Africa’s freshwater resources, in: Water as an Inescapable Risk, Current Global Water Availability, Quality and Risks with a Specific Focus on South Africa, Springer Water, Springer Cham, Switzerland, 147–172, 2019. https://doi.org/10.1007/978-3-030-03186-2_7

  3. Flörke M, Schneider C, McDonald RI. Water competition between cities and agriculture driven by climate change and urban growth. Nature Sus. 2018;1(1):51–8.

    Google Scholar 

  4. Busico G, Buffardi C, Ntona MM, Vigliotti M, Colombani N, Mastrocicco M, Ruberti D. Actual and forecasted vulnerability assessment to seawater intrusion via GALDIT-SUSI in the Volturno river mouth (Italy). Remote Sens-Basel. 2021;13(18):3632.

    Article  Google Scholar 

  5. Lapworth DJ, Boving TB, Kreamer DK, Kebede S, Smedley PL. Groundwater quality: Global threats, opportunities and realising the potential of groundwater. Sci Total Environ. 2022;811: 152471.

    Article  CAS  Google Scholar 

  6. Salaj SS, Ramesh D, Babu DS, Seenipandi K, Nainarpandian C. Appraisal of urban growth impacts on seawater intrusion vulnerability using GIS-based modified GALDIT-U model: A case study of Kozhikode coastal stretch, Kerala, South India. J Appl Remote Sens. 2022;16(1): 012014.

    Article  Google Scholar 

  7. Hamamin DF, Nadiri AA. Supervised committee fuzzy logic model to assess groundwater intrinsic vulnerability in multiple aquifer systems. Arabian J Geosci. 2018;11(8):1–14.

    Article  Google Scholar 

  8. Khosravi K, Bordbar M, Paryani S, Saco PM, Kazakis N. New hybrid-based approach for improving the accuracy of coastal aquifer vulnerability assessment maps. Sci Total Environ. 2021;767: 145416.

    Article  CAS  Google Scholar 

  9. Idowu TE, Lasisi KH. Seawater intrusion in the coastal aquifers of East and Horn of Africa: A review from a regional perspective. Sci African. 2020;8: e00402.

    Google Scholar 

  10. Bordbar M, Neshat A, Javadi S. A new hybrid framework for optimization and modification of groundwater vulnerability in coastal aquifer. Environ Sci Pollut R. 2019;26:21808–27.

    Article  Google Scholar 

  11. Rezaei F, Safavi HR, Ahmadi A. Groundwater vulnerability assessment using fuzzy logic: A case study in the Zayandehrood aquifers, Iran. Environ Manage. 2013;51(1):267–77.

    Article  Google Scholar 

  12. Albinet M, Margat J. Cartographie de la vulnéra bilitéa la pollution des nappes d’eau souterraines, (Mapping aquifer vulnerability to pollution) in French. Bull BRGM. 1970;2(3–4):13–22.

    Google Scholar 

  13. Nadiri AA, Gharekhani M, Khatibi R, Moghaddam AA. Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models. Environ Sci Pollut R. 2017;24(9):8562–77.

    Article  CAS  Google Scholar 

  14. Rama F, Busico G, Arumi JL, Kazakis N, Colombani N, Marfella L, Hirata R, Kruse EE, Sweeney P, Mastrocicco M. Assessment of intrinsic aquifer vulnerability at continental scale through a critical application of the drastic framework: The case of South America. Sci Total Environ. 2022;823: 153748.

    Article  CAS  Google Scholar 

  15. Zare M, Nikoo MR, Nematollahi B, Gandomi AH, Al-Wardy M, Al-Rawas GA. Progressive improvement of DRASTICA and SI models for groundwater vulnerability assessment based on evolutionary algorithms. Environ Sci Pollut R. 2022;29(37):55845–65.

  16. National Research Council Ground Water Vulnerability Assessment: Predicting Relative Contamination Potential under Conditions of Uncertainty.  Washington D.C., USA: National Academies Press; 1993. p 210.

  17. Tesoriero, A. J., Inkpen, E. L., and Voss, F. D. Assessing ground-water vulnerability using logistic regression, In Proceedings for the Source Water Assessment and Protection 98 Conference, Dallas, TX (Vol. 157165), Dallas, TX, USA, 28–30 April 1998, 157–165, 1998.

  18. Jafari SM, Nikoo MR. Groundwater risk assessment based on optimization framework using DRASTIC method. Arabian J Geosci. 2016;9(20):1–14.

    Article  CAS  Google Scholar 

  19. Nadiri AA, Gharekhani M, Khatibi R. Mapping aquifer vulnerability indices using artificial intelligence-running multiple frameworks (AIMF) with supervised and unsupervised learning. Water Resour Manag. 2018;32(9):3023–40.

    Article  Google Scholar 

  20. Torkashvand M, Neshat A, Javadi S, Pradhan B. New hybrid evolutionary algorithm for optimizing index-based groundwater vulnerability assessment method. J Hydrol. 2021;598: 126446.

    Article  Google Scholar 

  21. Bordbar M, Khosravi K, Murgulet D, Tsai FTC, Golkarian A. The use of hybrid machine learning models for improving the GALDIT model for coastal aquifer vulnerability mapping. Environ Earth Sci. 2022;81(15):402.

    Article  Google Scholar 

  22. Gharekhani M, Nadiri AA, Khatibi R, Sadeghfam S, Moghaddam AA. A study of uncertainties in groundwater vulnerability modelling using Bayesian model averaging (BMA). J Environ Manage. 2022;303: 114168.

    Article  CAS  Google Scholar 

  23. Patel P, Mehta D, Sharma N. A review on the application of the DRASTIC method in the assessment of groundwater vulnerability. Water Supp. 2022;22(5):5190–205.

    Article  CAS  Google Scholar 

  24. Liggett JE, Talwar S. Groundwater vulnerability assessments and integrated water resource management. Streaml Watersh Manage Bull. 2009;13(1):18–29.

    Google Scholar 

  25. Chakraborty B, Roy S, Bera A, Adhikary PP, Bera B, Sengupta D, Bhunia GS, Shit PK. Groundwater vulnerability assessment using GIS-based DRASTIC model in the upper catchment of Dwarakeshwar river basin, West Bengal, India. Environ Earth Sci. 2022;81(1):1–15.

    Article  Google Scholar 

  26. Taghavi, N., Niven, R. K., Paull, D. J., and Kramer, M.: Groundwater vulnerability assessment: A review including new statistical and hybrid methods, Sci Total Environ., 153486, 2022. https://doi.org/10.1016/j.scitotenv.2022.153486

  27. Rahnama MB, Zamzam A. Quantitative and qualitative simulation of groundwater by mathematical models in Rafsanjan aquifer using MODFLOW and MT3DMS. Arabian J Geosci. 2013;6(3):901–12.

    Article  Google Scholar 

  28. Ghoraba SM, Zyedan BA, Rashwan IMH. Solute transport modeling of the groundwater for quaternary aquifer quality management in Middle Delta, Egypt. Alexandria Eng J. 2013;52(2):197–207.

    Article  Google Scholar 

  29. Mastrocicco M, Busico G, Colombani N, Vigliotti M, Ruberti D. Modelling actual and future seawater intrusion in the Variconi coastal wetland (Italy) due to climate and landscape changes. Water. 2019;11(7):1502.

    Article  Google Scholar 

  30. Boufekane A, Maizi D, Madene E, Busico G, Zghibi A. Hybridization of GALDIT method to assess actual and future coastal vulnerability to seawater intrusion. J Environ Manage. 2022;318: 115580.

    Article  Google Scholar 

  31. Machiwal D, Jha MK, Singh VP, Mohan C. Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth-Sci Rev. 2018;185:901–27.

    Article  Google Scholar 

  32. Machiwal D, Cloutier V, Güler C, Kazakis N. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environ Earth Sci. 2018;77(19):1–30.

    Article  Google Scholar 

  33. Barbulescu A. Assessing groundwater vulnerability: DRASTIC and DRASTIC-like methods: A review. Water. 2020;12(5):1356.

    Article  Google Scholar 

  34. Goyal D, Haritash AK, Singh SK. A comprehensive review of groundwater vulnerability assessment using index-based, modelling, and coupling methods. J Environ Manage. 2021;296: 113161.

    Article  Google Scholar 

  35. Tesoriero AJ, Voss FD. Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin: Implications for aquifer susceptibility and vulnerability. Groundwater. 1997;35(6):1029–39.

    Article  CAS  Google Scholar 

  36. Kazakis N, Voudouris KS. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. J Hydrol. 2015;525:13–25.

    Article  CAS  Google Scholar 

  37. Busico G, Kazakis N, Colombani N, Mastrocicco M, Voudouris K, Tedesco D. A modified SINTACS method for groundwater vulnerability and pollution risk assessment in highly anthropized regions based on NO3 and SO42− concentrations. Sci Total Environ. 2017;609:1512–23.

    Article  Google Scholar 

  38. Lad S, Ayachit R, Kadam A, Umrikar B. Groundwater vulnerability assessment using DRASTIC model: A comparative analysis of conventional, AHP, Fuzzy logic and Frequency ratio method. Model Earth Sys Environ. 2019;5:543–53.

    Article  Google Scholar 

  39. Barzegar R, Asghari Moghaddam A, Adamowski J, Nazemi AH. Delimitation of groundwater zones under contamination risk using a bagged ensemble of optimized DRASTIC frameworks. Environ Sci Pollut R. 2019;26(8):8325–39.

    Article  CAS  Google Scholar 

  40. Khosravi K, Sartaj M, Karimi M, Levison J, Lotfi A. A GIS-based groundwater pollution potential using DRASTIC, modified DRASTIC, and bivariate statistical models. Environ Sci Pollut R. 2021;28(36):50525–41.

    Article  CAS  Google Scholar 

  41. Simi MR, Bindhu BK, Varghese A, Rani MR. Optimization of DRASTICA vulnerability assessment model by Wilcoxon rank sum non parametrical statistical test. Mater Today-Proc. 2022;58:121–7.

    Article  Google Scholar 

  42. Elzain HE, Chung SY, Park KH, Senapathi V, Sekar S, Sabarathinam C, Hassan M. ANFIS-MOA models for the assessment of groundwater contamination vulnerability in a nitrate contaminated area. J Environ Manage. 2021;286: 112162.

    Article  CAS  Google Scholar 

  43. Elzain HE, Chung SY, Senapathi V, Sekar S, Park N, Mahmoud AA. Modeling of aquifer vulnerability index using deep learning neural networks coupling with optimization algorithms. Environ Sci Pollut R. 2021;28(40):57030–45.

    Article  Google Scholar 

  44. Bordbar M, Nikoo MR, Sana A, Nematollahi B, Al-Rawas G, Gandomi AH. Assessment of the vulnerability of hybrid coastal aquifers: Application of multi-attribute decision-making and optimization models. Hydrolog Sci J. 2023;68(8):1095–108.

    Article  Google Scholar 

  45. Barzegar R, Razzagh S, Quilty J, Adamowski J, Pour HK, Booij MJ. Improving GALDIT-based groundwater vulnerability predictive mapping using coupled resampling algorithms and machine learning models. J Hydrol. 2021;598: 126370.

    Article  Google Scholar 

  46. Nadiri AA, Moazamnia M, Sadeghfam S, Gnanachandrasamy G, Venkatramanan S. Formulating convolutional neural network for mapping total aquifer vulnerability to pollution. Environ Pollut. 2022;304: 119208.

    Article  CAS  Google Scholar 

  47. Cuevas SC. Climate change, vulnerability, and risk linkages. Int J Clim Chang Str. 2011;3(1):29–60.

    Article  Google Scholar 

  48. Moraru C, Hannigan R, Moraru C, Hannigan R. Overview of groundwater vulnerability assessment methods. Analysis of Hydrogeochemical Vulnerability. 2018; 1–16. https://doi.org/10.1007/978-3-319-70960-4_1

  49. Margat, J. Groundwater Vulnerability to Contamination. Bureau de Recherches Géologiques et Minières (BRGM), Orleans, France, 12 pp., 1968.

  50. Olmer M, Rezac B. Methodical principles of maps for protection of groundwater in Bohemia and Moravia scale 1/200.000. Mem IAH. 1974;10(1):105–7.

    Google Scholar 

  51. Foster SS, Hirata RC. Groundwater pollution risk assessment; a methodology using available data. InGroundwater pollution risk assessment; a methodology using available data. 1988; 86.

  52. Vrba, J., and Zaporozec, A. (Eds.) Guidebook on Mapping Groundwater Vulnerability, IAH International Contribution for Hydrogeology, Heise, Hannover, Germany, 131 pp., 1994.

  53. Mádl-Szőnyi J, Füle L. Groundwater vulnerability assessment of the SW Trans-Danubian central range, Hungary. Environ Geol. 1998;35(1):9–18.

    Article  Google Scholar 

  54. Villumsen A, Jacobsen OS, Sønderskov C. Mapping the vulnerability of ground water reservoirs with regard to surface pollution. Arbog-Dan Geol Unders. 1984;2:17–38.

    Google Scholar 

  55. Bachmat Y, Collin M. Mapping to assess groundwater vulnerability to pollution, in: Vulnerability of Soil and Groundwater to Pollutants, Proceedings and Information no 38. In: Duijvenbooden van W, editor. Waegeningh HG, TNO Committee on Hydrogeological Research, 297–307. The Netherlands: The Hague; 1987.

    Google Scholar 

  56. Aller, L., Bennett, T., Lehr, J., Petty, R. J., and Hackett, G. DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings, US Environmental Protection Agency, Washington, DC, USA, 455 pp., 1987. https://doi.org/10.1021/bk-1986-0315.ch008

  57. Chachadi AG, Lobo-Ferreira JP. Sea water intrusion vulnerability mapping of aquifers using GALDIT method. Coastin. 2001;4:7–9.

    Google Scholar 

  58. Chachadi AG. Seawater intrusion mapping using modified GALDIT indicator model: A case study in Goa. Jalvigyan Sameksha. 2005;20:29–45.

    Google Scholar 

  59. Javadi S, Kavehkar N, Mousavizadeh MH, Mohammadi K. Modification of DRASTIC model to map groundwater vulnerability to pollution using nitrate measurements in agricultural areas. J Agric Sci Technol. 2011;13(2):239–49.

    Google Scholar 

  60. Aller, L. DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings, Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Washington, DC, USA, 1985.

  61. Foster SSD. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy, in Vulnerability of Soil and Groundwater to Pollutants, Proceedings and Information no 38, edited by: Duijvenbooden W van Waegeningh HG TNO Committee on Hydrogeological Research. The Netherlands: The Hague; 1987.

  62. Daly D, Drew D. Irish methodologies for karst aquifer protection. In Hydrogeology and engineering geology of sinkholes and karst. Multidisciplinary Conference on Sinkholes and the engineering and environmental impacts of karst. 1999; 267–72.

  63. Moore JS, John S. SEEPAGE: A system for early evaluation of the pollution potential of agricultural groundwater environments. Geology technical note. 1988;5.

  64. Stempvoort DV, Ewert L, Wassenaar L. Aquifer vulnerability index: A GIS-compatible method for groundwater vulnerability mapping. Can Water Resour J. 1993;18(1):25–37.

    Article  Google Scholar 

  65. Hölting B, Haertlé T, Hohberger KH, Eckl H, Hahn J, Koldehoff C. Konzept zur Ermittlung der Schutzfunktion der-Grundwasserüberdeckung. 1995; 66.

  66. Malik P, Svasta J. REKS: An alternative method of Karst groundwater vulnerability estimation. In: Proceedings of the XXIX Congress of the International Association of Hydrogeologists, Bratislava, Slovakia. 1999; 6–10.

  67. Doerfliger N, Jeannin PY, Zwahlen F. Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol. 1999;39(2):165–76.

    Article  CAS  Google Scholar 

  68. Petelet-Giraud E, Dörfliger N, Crochet P. RISKE: méthode d'évaluation multicritère de la cartographie de la vulnérabilité des aquifères karstiques. Application aux systèmes des Fontanilles et Cent-Fonts (Hérault, Sud de la France). Hydrogéologie (Orléans). 2000(4):71–88.

  69. Goldscheider NICO, Klute M, Sturm S, Hötzl H. The PI method–a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z Angew Geol. 2000;46(3):157–66.

    Google Scholar 

  70. Davis A, Long A, Wireman M. KARSTIC: A sensitivity method for carbonate aquifers in karst terrain. Environ Geol. 2002;42(1):65–72.

    Article  CAS  Google Scholar 

  71. Daly D, Dassargues A, Drew D, Dunne S, Goldscheider N, Neale S, Popescu I, Zwahlen F. Main concepts of the “European approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeol J. 2002;10(2):340–5.

    Article  Google Scholar 

  72. Civita M, De Maio M. Assessing and mapping groundwater vulnerability to contamination: The Italian combined approach. Geofís Int. 2004;43(4):513–32.

    CAS  Google Scholar 

  73. Ball, D., Macdonald, A., Dochartaigh, B., del Rio, M., Fitzsimons, V., Auton, C., and Lilly, A.: Development of a groundwater vulnerability screening methodology for the water framework directive, final report, project WFD28, SNIFFER, online, https://lwecext.rl.ac.uk/PDF/SNIFFER_WFD28.pdf, accessed 27 September 2019, 2004.

  74. Laimer HJ. Die Erfassung der Karstgrundwasser-Vulnerabilität mit der Methode „VURAAS “. Grundwasser. 2005;10(3):167–76.

    Article  CAS  Google Scholar 

  75. Ravbar N, Goldscheider N. Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta Carsologica. 2007;36(3):397–411.

    Article  Google Scholar 

  76. Dörfliger N, Plagnes V, Kavouri K. PaPRIKa a multicriteria vulnerability method as a tool for sustainable management of karst aquifers, example of application on a test site in SW France. In: International interdisciplinary scientific conference “Sustainability of the Karst Environment: Dinaric Karst and other karst regions”, Plitvice Lakes, Croatia 2009; 23–6.

  77. Koutsi, R., and Stournaras, G.: Groundwater vulnerability assessment in the Loussi polje area, N Peloponessus: The PRESK method, In Advances in the Research of Aquatic Environment Volume 2, edited by: Lambrakis, N., Stournaras, G., and Katsanou, K., Springer, Berlin, Heidelberg, Germany, 335–342, 2011. https://doi.org/10.1007/978-3-642-24076-8_39

  78. Jiménez-Madrid A, Carrasco F, Martínez C, Gogu RC. DRISTPI, a new groundwater vulnerability mapping method for use in karstic and non-karstic aquifers. Q J Eng Geol Hydroge. 2013;46(2):245–55.

    Article  Google Scholar 

  79. Motevalli A, Moradi HR, Javadi S. A comprehensive evaluation of groundwater vulnerability to saltwater up-coning and sea water intrusion in a coastal aquifer (case study: Ghaemshahr-juybar aquifer). J Hydrol. 2018;557:753–73.

    Article  CAS  Google Scholar 

  80. Tziritis E, Pisinaras V, Panagopoulos A, Arampatzis G. RIVA: A new proposed method for assessing intrinsic groundwater vulnerability. Environ Sci Pollut R. 2021;28(6):7043–67.

    Article  Google Scholar 

  81. Javadi S, Kardan Moghaddam H, Neshat A. A new approach for vulnerability assessment of coastal aquifers using combined index. Geocarto Int. 2022;37(6):1681–703.

    Article  Google Scholar 

  82. Fannakh A, Farsang A. DRASTIC, GOD, and SI approaches for assessing groundwater vulnerability to pollution: A review. Environ Sci Europe. 2022;34(1):1–16.

    Article  Google Scholar 

  83. Kumar P, Sharma R, Bhaumik S. MCDA techniques used in optimization of weights and ratings of DRASTIC model for groundwater vulnerability assessment. Data Sci Manage. 2022;5:28–41.

    Article  Google Scholar 

  84. Putranto, T. T.: Determining the groundwater vulnerability using the aquifer vulnerability index (AVI) in the Salatiga groundwater basin in Indonesia, In AIP Conference Proceedings Vol. 2021, No. 1, AIP Publishing LLC, 17 October 2018, 030016, 2018.

  85. Moreno-Gómez M, Martínez-Salvador C, Moulahoum AW, Liedl R, Stefan C, Pacheco J. First steps into an integrated karst aquifer vulnerability approach (IKAV). intrinsic groundwater vulnerability analysis of the Yucatan karst Mexico. Water. 2019;11(8):1610.

    Article  Google Scholar 

  86. Setiawan I. Assessing seawater intrusion vulnerability associated with sea level rise in Christchurch, New Zealand using GIS-based methods (Doctoral dissertation, Lincoln University). 2018; 113.

  87. Polemio M, Casarano D, Limoni PP. Karstic aquifer vulnerability assessment methods and results at a test site (Apulia, southern Italy). Nat Hazard Earth Sys. 2009;9(4):1461–70.

    Article  Google Scholar 

  88. Vrouhakis I, Tziritis E, Stamatis G, Panagopoulos A. Groundwater vulnerability analysis of Tirnavos Basin Central Greece: An application of RIVA method. Water. 2022;14(4):534.

    Article  CAS  Google Scholar 

  89. Gorgij AD, Moghaddam AA. Vulnerability Assessment of saltwater intrusion using simplified GAPDIT method: A case study of Azarshahr Plain Aquifer, East Azerbaijan, Iran. Arabian J Geosci. 2016;9(2):1–13.

    Article  CAS  Google Scholar 

  90. Parizi E, Hosseini SM, Ataie-Ashtiani B, Simmons CT. Vulnerability mapping of coastal aquifers to seawater intrusion: Review, development and application. J Hydrol. 2019;570:555–73.

    Article  Google Scholar 

  91. Majedi-Asl M, Fuladipanah M, Mahmoudpour H, Ebrahimpour E, Kisi O. Optimization design of quality monitoring network of Urmia plain using genetic algorithm and vulnerability map. Geocarto Int. 2023;38(1):2152492.

    Article  Google Scholar 

  92. Kazakis N, Busico G, Colombani N, Mastrocicco M, Pavlou A, Voudouris K. GALDIT-SUSI a modified method to account for surface water bodies in the assessment of aquifer vulnerability to seawater intrusion. J Environ Manage. 2019;235:257–65.

    Article  Google Scholar 

  93. Noori R, Ghahremanzadeh H, Kløve B, Adamowski JF, Baghvand A. Modified-DRASTIC, modified-SINTACS and SI methods for groundwater vulnerability assessment in the southern Tehran aquifer. J Environ Sci Heal A. 2019;54(1):89–100.

    Article  CAS  Google Scholar 

  94. Kozłowski M, Sojka M. Applying a modified DRASTIC model to assess groundwater vulnerability to pollution: a case study in Central Poland. Pol J Environ Stud. 2019;28(3):1–9.

    Article  Google Scholar 

  95. Goodarzi MR, Niknam ARR, Jamali V, Pourghasemi HR. Aquifer vulnerability identification using DRASTIC-LU model modification by fuzzy analytic hierarchy process. Model Earth Sys Environ. 2022;8(4):5365–80.

    Article  Google Scholar 

  96. Taghavi N, Niven RK, Kramer M, Paull DJ. Comparison of DRASTIC and DRASTICL groundwater vulnerability assessments of the Burdekin Basin, Queensland, Australia. Sci Total Environ. 2023;858: 159945.

    Article  CAS  Google Scholar 

  97. Smail RQS, Dişli E. Assessment and validation of groundwater vulnerability to nitrate and TDS using based on a modified DRASTIC model: A case study in the Erbil Central Sub-Basin, Iraq. Environ Monit Assess. 2023;195(5):567.

    Article  CAS  Google Scholar 

  98. Alam F, Umar R, Ahmed S, Dar FA. A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of central Ganga Plain, India. Arabian J Geosci. 2014;7:927–37.

    Article  CAS  Google Scholar 

  99. Sarkar M, Pal SC. Application of DRASTIC and modified DRASTIC models for modeling groundwater vulnerability of Malda District in West Bengal. J Indian Soc Remote. 2021;49:1201–19.

    Article  Google Scholar 

  100. Awawdeh M, Obeidat M, Zaiter G. Groundwater vulnerability assessment in the vicinity of Ramtha wastewater treatment plant, North Jordan. Appl Wat Sci. 2015;5:321–34.

    Article  CAS  Google Scholar 

  101. Singh A, Srivastav SK, Kumar S, Chakrapani GJ. A modified-DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. Environ Earth Sci. 2015;74:5475–90.

    Article  CAS  Google Scholar 

  102. Taheri K, Missimer TM, Bayatvarkeshi M, Mahmoudi Sivand S, Fathi S, Toranjian A, Dehghan Manshadi B. An intrinsic vulnerability approach to assess an overburden alluvial aquifer exposure to sinkhole-prone area; results from a central Iran case study. Geocarto Int. 2023;38(1):1–26.

    Article  Google Scholar 

  103. Pisciotta A, Suozzi E, Tiwari AK. A modified GALDIT-NUTS index to assess Favignana Island aquifer vulnerability. Geocarto Int. 2022;37(26):11706–31.

    Article  Google Scholar 

  104. Bai L, Wang Y, Meng F. Application of DRASTIC and extension theory in the groundwater vulnerability evaluation. Wat Environ J. 2012;26(3):381–91.

    Article  Google Scholar 

  105. Neshat A, Pradhan B, Dadras M. Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resour Conserv Recy. 2014;86:74–86.

    Article  Google Scholar 

  106. Kang J, Zhao L, Li R, Mo H, Li Y. Groundwater vulnerability assessment based on modified DRASTIC model: A case study in Changli County China. Geocarto Int. 2017;32(7):749–58.

    Article  Google Scholar 

  107. Saida S, Tarik H, Abdellah A, Farid H, Hakim B. Assessment of groundwater vulnerability to nitrate based on the optimised DRASTIC models in the GIS Environment (Case of Sidi Rached Basin, Algeria). Geosci. 2017;7(2):20.

    Article  Google Scholar 

  108. Hamza SM, Ahsan A, Imteaz M, Mohammad TA, Ghazali AH. Groundwater pollution vulnerability assessment using a new GIS-based DRASTIC method. Int J Water Resour Arid Environ. 2017;6(1):65–79.

    Google Scholar 

  109. Kardan Moghaddam H, Jafari F, Javadi S. Vulnerability evaluation of a coastal aquifer via GALDIT model and comparison with DRASTIC index using quality parameters. Hydrolog Sci J. 2017;62(1):137–46.

    Google Scholar 

  110. Hu X, Ma C, Qi H, Guo X. Groundwater vulnerability assessment using the GALDIT model and the improved DRASTIC model: A case in Weibei Plain, China. Environ Sci Pollut R. 2018;25(32):32524–39.

    Article  CAS  Google Scholar 

  111. Park S, Son S, Han J, Lee S, Kim J. Groundwater vulnerability assessment using an integrated DRASTIC model using frequency ratio and analytic hierarchy process in GIS. InEGU General Assembly Conference Abstracts. 2018; 413.

  112. Jhariya DC, Kumar T, Pandey HK, Kumar S, Kumar D, Gautam AK, Baghel VS, Kishore N. Assessment of groundwater vulnerability to pollution by modified DRASTIC model and analytic hierarchy process. Environ Earth Sci. 2019;78:1–20.

    Article  CAS  Google Scholar 

  113. Omotola OO, Oladapo MI, Akintorinwa OJ. Modeling assessment of groundwater vulnerability to contamination risk in a typical basement terrain case of vulnerability techniques application comparison study. Model Earth Sys Environ. 2020;6:1253–80.

    Article  Google Scholar 

  114. Mallik S, Bhowmik T, Mishra U, Paul N. Local scale groundwater vulnerability assessment with an improved DRASTIC model. Nat Resour Res. 2021;30(3):2145–60.

    Article  Google Scholar 

  115. Nasri G, Hajji S, Aydi W, Boughariou E, Allouche N, Bouri S. Water vulnerability of coastal aquifers using AHP and parametric models: Methodological overview and a case study assessment. Arabian J Geosci. 2021;14(1):1–19.

    Article  Google Scholar 

  116. Gharakezloo YN, Nikoo MR, Karimi-Jashni A, Mooselu MG. A hybrid statistical decision-making optimization approach for groundwater vulnerability considering uncertainty. Environ Sci Pollut R. 2022;29(6):8597–612.

    Article  Google Scholar 

  117. Saranya T, Saravanan S. Assessment of groundwater vulnerability using analytical hierarchy process and evidential belief function with DRASTIC parameters, Cuddalore, India. Int J Environ Sci Te. 2023;20(2):1837–56.

    Article  CAS  Google Scholar 

  118. Shakeri R, Alijani F, Nassery HR. Comparison of the DRASTIC+ L and modified VABHAT models in vulnerability assessment of Karaj aquifer, central Iran, using MCDM, SWARA, and BWM methods. Environ Earth Sci. 2023;82(4):1–15.

    Article  Google Scholar 

  119. Garewal, S. K., Vasudeo, A. D., and Ghare, A. D.: Optimization of the GIS-based DRASTIC model for groundwater vulnerability assessment, in: Nature-inspired Methods for Metaheuristics Optimization, edited by: Bennis, F., Bhattacharjya, R. K., Springer, Cham, Switzerland, 489–502, 2020. https://doi.org/10.1007/978-3-030-26458-1_26

  120. Torkashvand M, Neshat A, Javadi S, Yousefi H. DRASTIC framework improvement using stepwise weight assessment ratio analysis (SWARA) and combination of genetic algorithm and entropy. Environ Sci Pollut R. 2021;28(34):46704–24.

    Article  CAS  Google Scholar 

  121. Lakshminarayanan B, Ramasamy S, Anuthaman SN, Karuppanan S. New DRASTIC framework for groundwater vulnerability assessment: Bivariate and multi-criteria decision-making approach coupled with metaheuristic algorithm. Environ Sci Pollut R. 2022;29(3):4474–96.

    Article  Google Scholar 

  122. Mogaji KA, Lim HS, Abdullah K. Modeling groundwater vulnerability prediction using geographic information system (GIS)-based ordered weighted average (OWA) method and DRASTIC model theory hybrid approach. Arabian J Geosci. 2014;7:5409–29.

    Article  CAS  Google Scholar 

  123. Pathak DR, Hiratsuka A, Awata I, Chen L. Groundwater vulnerability assessment in shallow aquifer of Kathmandu Valley using GIS-based DRASTIC model. Environ Geol. 2009;57(7):1569–78.

    Article  CAS  Google Scholar 

  124. Neshat A, Pradhan B, Pirasteh S, Shafri HZM. Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environ Earth Sci. 2014;71(7):3119–31.

    Article  CAS  Google Scholar 

  125. Gontara M, Allouche N, Jmal I, Bouri S. Sensitivity analysis for the GALDIT method based on the assessment of vulnerability to pollution in the northern Sfax coastal aquifer, Tunisia. Arabian J Geosci. 2016;9(5):1–15.

    Article  CAS  Google Scholar 

  126. Sahoo M, Sahoo S, Dhar A, Pradhan B. Effectiveness evaluation of objective and subjective weighting methods for aquifer vulnerability assessment in urban context. J Hydrol. 2016;541:1303–15.

    Article  Google Scholar 

  127. Neshat A, Pradhan B. Evaluation of groundwater vulnerability to pollution using DRASTIC framework and GIS. Arabian J Geosci. 2017;10(22):1–8.

    Article  Google Scholar 

  128. Salem ZE, Hasan SS. Use of GALDIT model and HFE-Diagram to assess seawater intrusion vulnerability in West Nile Delta, Egypt. Arabian J Geosci. 2021;14(14):1–15.

    Article  Google Scholar 

  129. Bordbar M, Neshat A, Javadi S. Modification of the GALDIT framework using statistical and entropy models to assess coastal aquifer vulnerability. Hydrolog Sci J. 2019;64(9):1117–28.

    Article  Google Scholar 

  130. Wei A, Li D, Dai F, Lang X, Ma B, Wang Y. An optimization method coupled the index-overlay method with entropy weighting model to assess seawater intrusion vulnerability. Environ Sci Pollut R. 2021;28(27):36142–56.

    Article  CAS  Google Scholar 

  131. Agossou A, Yang JS. Comparative study of groundwater vulnerability to contamination assessment methods applied to the southern coastal sedimentary basin of Benin. J Hydrol Regional Stud. 2021;35:10080.

    Article  Google Scholar 

  132. Yang JS, Jeong YW, Agossou A, Sohn JS, Lee JB. GALDIT Modification for Seasonal Seawater Intrusion Mapping Using Multi Criteria Decision Making Methods. Water. 2022;14(14):2258.

    Article  CAS  Google Scholar 

  133. Yu C, Zhang B, Yao Y, Meng F, Zheng C. A field demonstration of the entropy-weighted fuzzy DRASTIC method for groundwater vulnerability assessment. Hydrolog Sci J. 2012;57(7):1420–32.

    Article  Google Scholar 

  134. Khosravi K, Sartaj M, Tsai FTC, Singh VP, Kazakis N, Melesse AM, Prakash I, Bui DT, Pham BT. A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Sci Total Environ. 2018;642:1032–49.

    Article  CAS  Google Scholar 

  135. Jafari SM, Nikoo MR. Developing a fuzzy optimization model for groundwater risk assessment based on improved DRASTIC method. Environ Earth Sci. 2019;78(4):1–16.

    Article  CAS  Google Scholar 

  136. Barzegar R, Asghari Moghaddam A, Norallahi S, Inam A, Adamowski J, Alizadeh MR, Bou Nassar J. Modification of the DRASTIC framework for mapping groundwater vulnerability zones. Groundwater. 2020;58(3):441–52.

    Article  CAS  Google Scholar 

  137. Balaji L, Saravanan R, Saravanan K, Sreemanthrarupini NA. Groundwater vulnerability mapping using the modified DRASTIC model: The metaheuristic algorithm approach. Environ Monit Assess. 2021;193(1):1–19.

    Google Scholar 

  138. Kadkhodaie F, Asghari Moghaddam A, Barzegar R, Gharekhani M, Kadkhodaie A. Optimizing the DRASTIC vulnerability approach to overcome the subjectivity: A case study from Shabestar plain, Iran. Arabian J Geosci. 2019;12(16):1–13.

    Article  CAS  Google Scholar 

  139. Neshat A, Pradhan B. An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment. Nat Hazards. 2015;76:543–63.

    Article  Google Scholar 

  140. Khosravi K, Panahi M, Bui DT. A comprehensive study of new hybrid models for Adaptive Neuro-Fuzzy Inference System (ANFIS) with Invasive Weed Optimization (IWO), Differential Evolution (DE), Firefly (FA), Particle Swarm Optimization (PSO) and Bees (BA) algorithms for spatial prediction of groundwater spring potential mapping. 2018b.

  141. Juneja M, Nagar SK. Particle swarm optimization algorithm and its parameters: a review. In: 2016 International Conference on Control, Computing, Communication and Materials (ICCCCM) IEEE. 2016; 1–5.

  142. Bordbar M, Neshat A, Javadi S, Pradhan B, Aghamohammadi H. Meta-heuristic algorithms in optimizing GALDIT framework: A comparative study for coastal aquifer vulnerability assessment. J Hydrol. 2020;585: 124768.

    Article  CAS  Google Scholar 

  143. Bordbar M, Neshat A, Javadi S, Shahdany SMH. A hybrid approach based on statistical method and meta-heuristic optimization algorithm for coastal aquifer vulnerability assessment. Environ Model Assess. 2021;26:325–38.

    Article  Google Scholar 

  144. Jang WS, Engel B, Harbor J, Theller L. Aquifer vulnerability assessment for sustainable groundwater management using DRASTIC. Water. 2017;9(10):792.

    Article  Google Scholar 

  145. Msaddek, M. H., Moumni, Y., Ayari, A., El May, M., and Chenini, I. Artificial intelligence modelling framework for mapping groundwater vulnerability of fractured aquifer, Geocarto Int., 1–31, 2022. https://doi.org/10.1080/10106049.2022.2037729

  146. Abramson D, Abela J. A parallel genetic algorithm for solving the school timetabling problem. Canberra, Australia: Division of Information Technology, CSIRO. 1991; 1–11.

  147. Yousefi H, Jamal Omidi M, Moridi A, Sarang A. Groundwater Monitoring Network Design Using Optimized DRASTIC Method and Capture Zone Analysis. Int J Environ Res. 2021;15(5):807–17.

    Article  Google Scholar 

  148. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE T Evolut Comput. 2006;10(6):646–57.

    Article  Google Scholar 

  149. Li B, Deng H, Wang J. Optimal scheduling of microgrid considering the interruptible load shifting based on improved biogeography-based optimization algorithm. Symmetry. 2021;13(9):1707.

    Article  Google Scholar 

  150. Giri PK, De SS, Dehuri S, Cho SB. Biogeography based optimization for mining rules to assess credit risk. Intell Sys Account Financ Manag. 2021;28(1):35–51.

    Article  Google Scholar 

  151. Farahani SM, Abshouri AA, Nasiri B, Meybodi M. A Gaussian firefly algorithm. Int J Mach Learn and Comput. 2011;1(5):448.

    Article  Google Scholar 

  152. Mehrabian AR, Lucas C. A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform. 2006;1(4):355–66.

    Article  Google Scholar 

  153. Abu-Al-Nadi DI, Alsmadi OM, Abo-Hammour ZS, Hawa MF, Rahhal JS. Invasive weed optimization for model order reduction of linear MIMO systems. Appl Math Model. 2013;37(6):4570–7.

    Article  Google Scholar 

  154. Kenane E, Benmeddour F, Djahli F. Nonuniform Circular Array Synthesis for Low Side Lobe Level Using Dynamic Invasive Weeds Optimization. Prog Electromagn Res C. 2021;111:147–62.

    Article  Google Scholar 

  155. Katiyar S, Ibraheem N, Ansari AQ. Ant colony optimization: a tutorial review. In: National conference on advances in power and control. 2015; 99–110.

  156. Fijani E, Nadiri AA, Moghaddam AA, Tsai FTC, Dixon B. Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh-Bonab plain aquifer, Iran. J Hydrol. 2013;503:89–100.

    Article  CAS  Google Scholar 

  157. Barzegar R, Moghaddam AA, Baghban H. A supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: A case study from Tabriz plain aquifer, Iran. Stoch Env Res Risk A. 2016;30(3):883–99.

    Article  Google Scholar 

  158. Bordbar, M., Neshat, A., Javadi, S., Pradhan, B., Dixon, B., and Paryani, S.: Improving the coastal aquifers’ vulnerability assessment using SCMAI ensemble of three machine learning approaches, Nat Hazards, 1–22, 2021b. https://doi.org/10.1007/s11069-021-05013-z

  159. Baghapour MA, Fadaei Nobandegani A, Talebbeydokhti N, Bagherzadeh S, Nadiri AA, Gharekhani M, Chitsazan N. Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran. J Environ Health Sci. 2016;14(1):1–16.

    Google Scholar 

  160. Nadiri AA, Gharekhani M, Khatibi R, Sadeghfam S, Moghaddam AA. Groundwater vulnerability indices conditioned by supervised intelligence committee machine (SICM). Sci Total Environ. 2017;574:691–706.

    Article  CAS  Google Scholar 

  161. Moazamnia M, Hassanzadeh Y, Nadiri AA, Sadeghfam S. Vulnerability indexing to saltwater intrusion from models at two levels using artificial intelligence multiple model (AIMM). J Environ Manag. 2020;255: 109871.

    Article  Google Scholar 

  162. Kisi O, Keshavarzi A, Shiri J, Zounemat-Kermani M, Omran ESE. Groundwater quality modeling using neuro-particle swarm optimization and neuro-differential evolution techniques. Hydrol Res. 2017;48(6):1508–19.

    Article  CAS  Google Scholar 

  163. Kurani A, Doshi P, Vakharia A, Shah M. A comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting. Ann Data Sci. 2023;10(1):183–208.

    Article  Google Scholar 

  164. Sahoo S, Jha MK. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment. Hydrogeol J. 1865;21(8):2013.

    Google Scholar 

  165. Kazakis N, Spiliotis M, Voudouris K, Pliakas FK, Papadopoulos B. A fuzzy multicriteria categorization of the GALDIT method to assess seawater intrusion vulnerability of coastal aquifers. Sci Total Environ. 2018;621:524–34.

    Article  CAS  Google Scholar 

  166. Sadeghfam S, Khatibi R, Daneshfaraz R, Borhan Rashidi H. Transforming vulnerability indexing for saltwater intrusion into risk indexing through a fuzzy catastrophe scheme. Water Resour Manag. 2020;34(1):175–94.

    Article  Google Scholar 

  167. Sadeghfam S, Hassanzadeh Y, Nadiri AA, Zarghami M. Localization of groundwater vulnerability assessment using catastrophe theory. Water Resour Manag. 2016;30(13):4585–601.

    Article  Google Scholar 

  168. Iqbal J, Gorai AK, Katpatal YB, Pathak G. Development of GIS-based fuzzy pattern recognition model (modified DRASTIC model) for groundwater vulnerability to pollution assessment. Int J Environ Sci Te. 2015;12(10):3161–74.

    Article  CAS  Google Scholar 

  169. Souleymane K, Zhonghua T. A novel method of sensitivity analysis testing by applying the DRASTIC and fuzzy optimization methods to assess groundwater vulnerability to pollution: The case of the Senegal River basin in Mali. Nat Hazard Earth Sys. 2017;17(8):1375–92.

    Article  Google Scholar 

  170. Nadiri AA, Sedghi Z, Khatibi R, Gharekhani M. Mapping vulnerability of multiple aquifers using multiple models and fuzzy logic to objectively derive model structures. Sci Total Environ. 2017;593:75–90.

    Article  Google Scholar 

  171. Nadiri AA, Sedghi Z, Khatibi R, Sadeghfam S. Mapping specific vulnerability of multiple confined and unconfined aquifers by using artificial intelligence to learn from multiple DRASTIC frameworks. J Environ Manag. 2018;227:415–28.

    Article  CAS  Google Scholar 

  172. Moghaddam AA, Sangarab SN, Ilkhchi AK. Assessing groundwater vulnerability potential using modified DRASTIC in Ajabshir Plain, NW of Iran. Environ Monit Assess. 2023;195:497.

    Article  Google Scholar 

  173. Saranya, T., and Saravanan, S. A comparative analysis on groundwater vulnerability models—fuzzy DRASTIC and fuzzy DRASTIC-L, Environ. Sci. Pollut. R., 1–15, 2021. https://doi.org/10.1007/s11356-021-16195-1

  174. Bui DT, Pradhan B, Nampak H, Bui QT, Tran QA, Nguyen QP. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modeling in a high-frequency tropical cyclone area using GIS. J Hydrol. 2016;540:317–30.

    Article  Google Scholar 

  175. Ghorbani MA, Khatibi R, Sivakumar B, Cobb L. Study of discontinuities in hydrological data using catastrophe theory. Hydrolog Sci J. 2010;55(7):1137–51.

    Article  Google Scholar 

  176. Nadiri AA, Norouzi H, Khatibi R, Gharekhani M. Groundwater DRASTIC vulnerability mapping by unsupervised and supervised techniques using a modelling strategy in two levels. J Hydrol. 2019;574:744–59.

    Article  Google Scholar 

  177. Wei A, Bi P, Guo J, Lu S, Li D. Modified DRASTIC model for groundwater vulnerability to nitrate contamination in the Dagujia river basin China. Water Supp. 2021;21(4):1793–805.

    Article  CAS  Google Scholar 

  178. Khan, Q., Liaqat, M. U., and Mohamed, M. M. A comparative assessment of modeling groundwater vulnerability using DRASTIC method from GIS and a novel classification method using machine learning classifiers, Geocarto Int., 1–19, 2021. https://doi.org/10.1080/10106049.2021.1923833

  179. Ijlil S, Essahlaoui A, Mohajane M, Essahlaoui N, Mili EM, Van Rompaey A. Machine learning algorithms for modeling and mapping of groundwater pollution risk: A study to reach water security and sustainable development (SDG) goals in a Mediterranean aquifer system. Remote Sens-Basel. 2022;14(10):2379.

    Article  Google Scholar 

  180. Barzegar R, Moghaddam AA, Deo R, Fijani E, Tziritis E. Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms. Sci Total Environ. 2018;621:697–712.

    Article  CAS  Google Scholar 

  181. Elzain HE, Chung SY, Senapathi V, Sekar S, Lee SY, Roy PD, Hassan A, Sabarathinam C. Comparative study of machine learning models for evaluating groundwater vulnerability to nitrate contamination. Ecotox Environ Safe. 2022;229: 113061.

    Article  CAS  Google Scholar 

  182. Park Y, Ligaray M, Kim YM, Kim JH, Cho KH, Sthiannopkao S. Development of enhanced groundwater arsenic prediction model using machine learning approaches in Southeast Asian countries. Desalin Water Treat. 2016;57(26):12227–36.

    Article  CAS  Google Scholar 

  183. Natarajan N, Sudheer C. Groundwater level forecasting using soft computing techniques. Neural Comput Appl. 2020;32:7691–708.

    Article  Google Scholar 

  184. Mirzavand M, Khoshnevisan B, Shamshirband S, Kisi O, Ahmad R, Akib S. Evaluating groundwater level fluctuation by support vector regression and neuro-fuzzy methods: A comparative study. Nat Hazards. 2015;1(1):1–15.

    Google Scholar 

  185. Fadhillah MF, Lee S, Lee CW, Park YC. Application of support vector regression and metaheuristic optimization algorithms for groundwater potential mapping in Gangneung-si. South Korea, Remote Sens-Basel. 2021;13(6):1196.

    Google Scholar 

  186. Fayaz SA, Zaman M, Butt MA. An application of logistic model tree (LMT) algorithm to ameliorate prediction accuracy of meteorological data. Int J Adv Technol Eng Explor. 2021;8(84):1424.

    Article  Google Scholar 

  187. Singh S, Gupta P. Comparative study ID3, cart and C4. 5 decision tree algorithm: A survey. Int J Adv Info Sci Technol. 2014;27(27):97–103.

    Google Scholar 

  188. Pham BT, Phong TV, Nguyen-Thoi T, Parial K, Singh K, S., Ly, H. B., Nguyen, K. T., Ho, L. S., Le, H. V., and Prakash, I. Ensemble modeling of landslide susceptibility using random subspace learner and different decision tree classifiers. Geocarto Int. 2022;37(3):735–57.

    Article  Google Scholar 

  189. Nhu VH, Shirzadi A, Shahabi H, Singh SK, Al-Ansari N, Clague JJ, Jaafari A, Chen W, Miraki S, Dou J, Luu C, Górski K, Pham BT, Nguyen HD, Ahmad BB. Shallow landslide susceptibility mapping: A comparison between logistic model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector machine algorithms. Int J Env Res Pub He. 2020;17(8):2749.

    Article  Google Scholar 

  190. Rahmati O, Pourghasemi HR, Melesse AM. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region. Iran, Catena. 2016;137:360–72.

    Article  Google Scholar 

  191. Razavi-Termeh SV, Sadeghi-Niaraki A, Choi SM. Groundwater potential mapping using an integrated ensemble of three bivariate statistical models with random forest and logistic model tree models. Water. 2019;11(8):1596.

    Article  Google Scholar 

  192. Saha S, Paul GC, Pradhan B, Abdul Maulud KN, Alamri AM. Integrating multilayer perceptron neural nets with hybrid ensemble classifiers for deforestation probability assessment in Eastern India. Geomat Nat Haz Risk. 2021;12(1):29–62.

    Article  Google Scholar 

  193. Koycegiz C, Buyukyildiz M. Calibration of SWAT and two data-driven models for a data-scarce mountainous headwater in semi-arid Konya closed basin. Water. 2019;11(1):147.

    Article  Google Scholar 

  194. Le Guennec A, Malinowski S, Tavenard R. Data augmentation for time series classification using convolutional neural networks. In: ECML/PKDD workshop on advanced analytics and learning on temporal data. 2016.

  195. Band SS, Janizadeh S, Chandra Pal S, Saha A, Chakrabortty R, Shokri M, Mosavi A. Novel ensemble approach of deep learning neural network (DLNN) model and particle swarm optimization (PSO) algorithm for prediction of gully erosion susceptibility. Sensors. 2020;20(19):5609.

    Article  CAS  Google Scholar 

  196. Jehanzaib M, Bilal Idrees M, Kim D, Kim TW. Comprehensive evaluation of machine learning techniques for hydrological drought forecasting. J Irrig Drain E-ASCE. 2021;147(7):04021022.

    Article  Google Scholar 

  197. Rezaie F, Panahi M, Bateni SM, Jun C, Neale CM, Lee S. Novel hybrid models by coupling support vector regression (SVR) with meta-heuristic algorithms (WOA and GWO) for flood susceptibility mapping. Nat Hazards. 2022;114(2):1247–83.

    Article  Google Scholar 

  198. Abd-Elhamid HF, Javadi AA. Impact of sea level rise and over-pumping on seawater intrusion in coastal aquifers. J Water Clim Change. 2011;2(1):19–28.

    Article  Google Scholar 

  199. Kumar CP. Climate change and its impact on groundwater resources. Int J Eng Sci. 2012;1(5):43–60.

    Google Scholar 

  200. Bahir M, Ouhamdouch S, Ouazar D. An assessment of the changes in the behavior of the groundwater resources in arid environment with global warming in Morocco. Groundw Sustain Dev. 2021;12: 100541.

    Article  Google Scholar 

  201. Döll P. Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Environ Res Lett. 2009;4(3): 035006.

    Article  Google Scholar 

  202. Butscher, C., Huggenberger, P. Modeling the temporal variability of karst groundwater vulnerability, with implications for climate change 2009. https://doi.org/10.1021/es801613g

  203. Earman S, Dettinger M. Potential impacts of climate change on groundwater resources–a global review. J Water Clim Change. 2011;2(4):213–29.

    Article  Google Scholar 

  204. Bordbar M, Busico G, Sirna M, Tedesco D, Mastrocicco M. A multi-step approach to evaluate the sustainable use of groundwater resources for human consumption and agriculture. J Environ Manag. 2023;347: 119041.

    Article  Google Scholar 

  205. Nistor MM. Groundwater vulnerability in Europe under climate change. Quatern Int. 2020;547:185–96.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Research Laboratory Program (Grant Number: 2022R1A4A3032838) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Contributions

All authors participate in writing and editing the manuscript.

Corresponding authors

Correspondence to Fatemeh Rezaie, Changhyun Jun or Mohammad Valipour.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordbar, M., Rezaie, F., Bateni, S.M. et al. Global Review of Modification, Optimization, and Improvement Models for Aquifer Vulnerability Assessment in the Era of Climate Change. Curr Clim Change Rep 9, 45–67 (2023). https://doi.org/10.1007/s40641-023-00192-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40641-023-00192-2

Keywords

Navigation