Skip to main content

Advertisement

Log in

Use of GALDIT model and HFE-Diagram to assess seawater intrusion vulnerability in West Nile Delta, Egypt

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

One of the most significant groundwater resource management issues is the marine pollution interference into the coastal aquifer. This research was aimed to identify the spatial distribution of seawater intrusion for the Pleistocene aquifer west Nile Delta. A Geographic information system (GIS)-based GALDIT model and HFE Diagram were utilized to evaluate groundwater vulnerability to seawater intrusion. With respect to the GALDIT model, the coastal and the central parts which presenting 37.7% of the area are related to high vulnerability class to seawater intrusion. The southern parts of the area under investigation are moderately vulnerable to intrusion hazard; this area represents 62.3% of the total area. The findings of the sensitivity analysis showed that the adjusted vulnerability model’s effecting factors are aquifer hydraulic conductivity (A) and aquifer thickness (T). The modified GALDIT map showed that high vulnerable percentage in the northern parts increases compared to the tradition GALDIT index by 15% and still found. HFE Diagram indicated an intrusion of seawater into the costal zones in the northern part that underlie the highly vulnerable risk. These areas are fall within the field of Na-Cl type reflecting groundwater salinization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

GIS:

geographic information system

HFED:

hydrochemical facies evolution diagram

ICP:

inductive coupled plasma

ri:

the rating of the 푖푡ℎ parameter

wi:

the weight of the 푖푡ℎ parameter

S:

the sensitivity measure

A:

the removed vulnerability indices

B:

the impacted vulnerability indices

x:

number of removed data layers

y:

number of impacted data layers

W:

parameter’s effective weight

Pr:

the rating value of each parameter

Pw:

the weight value of each parameter

V:

the overall vulnerability index

G:

aquifer type

A:

aquifer hydraulic conductivity

L:

groundwater table

D:

distance from shore

I:

impact of seawater intrusion

T:

aquifer thickness

Cl−:

concentration of chloride ion in groundwater (milliequivalent/l)

DEM:

Digital Elevation Model

HCO3-:

concentration of bicarbonate ion in groundwater (milliequivalent/l)

amsl:

above main sea level

References

  • Abdel Baki AMA (1983) Hydrogeological and hydrogeochemical studies in the area west of Rosetta branch and south El Nasr canal. Ph.D. Thesis, Faculty Sci

  • Abdelhameed AT, Salem ZE, Osman OM (2017) Sedimentological characteristics of the quaternary groundwater aquifer, northwestern Nile Delta, Egypt. In: Negm AM (ed.), Groundwater in the Nile Delta, Hdb Env Chem 2019   73:161–186.   https://doi.org/10.1007/698_2017_153

  • Adepelumi AA, Ako BD, Ajayi TR, Afolabi O, Omotoso EJ (2009) Delineation of saltwater intrusion into the freshwater aquifer of Lekki Peninsula, Lagos, Nigeria. Environ Geol 56:927–933. https://doi.org/10.1007/s00254-008-1194-3

    Article  Google Scholar 

  • Afifi AA, Darwish KM (2018) Detection and impact of land encroachment in El-Beheira governorate, Egypt. Modeling Earth Syst Environ 4:517–526. https://doi.org/10.1007/s40808-018-0462-9

    Article  Google Scholar 

  • Ahmed, SA (1999). Hydrogeological and isotope assessment of groundwater in Wadi el Natrun and Sadat city, Egypt. Ph.D. Thesis, Faculty of Science, Cairo

  • Albinet M, Margat J (1970) Groundwater pollution vulnerability mapping. Bulletin du Bureau de Researches Geologicques et Minieres Bull BRGM 2nd Series 3:13–22

  • Aller L, Lehr JH, Petty R, Bennett T (1987) DRASTIC: a standardized system to evaluate groundwater pollution potential using hydrogeologic settings. USEPA-Cincinnati-OH 622

  • Almasri M (2008) Assessment of intrinsic vulnerability to contamination for Gaza coastal aquifer, Palestine. J Environ Manag 88:577–593. https://doi.org/10.1016/j.jenvman.2007.01.022

    Article  Google Scholar 

  • Alsharifa HM (2017) Assessing the groundwater vulnerability in the upper aquifers of Zarqa River Basin, Jordan using DRASTIC, SINTACS and GOD methods. Int J Water Res Environ Engineering 9:44–52. https://doi.org/10.5897/IJWREE2016.0688

    Article  Google Scholar 

  • Armanuos AM, Allam A, Negm AM (2020) Assessment of groundwater vulnerability to pollution in Western Nile Delta aquifer, Egypt. International Water Technology Journal (IWTJ) 10:18–40

    Google Scholar 

  • Attia SH (1975) Pedology and soil genesis of the quaternary deposits in the region west of the Nile Delta. Ph.D. Thesis, Faculty Sci. Ain Shams Univ. Cairo

  • Attia FA (1985) Management of water systems in Upper Egypt. Ph.D. Thesis, Cairo Univ. Egypt. Cairo

  • Awawdeh MM, Jaradat RA (2010) Evaluation of aquifers vulnerability to contamination in the Yarmouk River basin, Jordan, based on DRASTIC method. Arab J Geosci 3:273–282. https://doi.org/10.1007/s12517-009-0074-9

    Article  Google Scholar 

  • Azzam AS (1994) An integrated seismo-facies and seismo-tectonic study of the Nile Delta of Egypt, utilizing common-depth seismic reflection data. Ph.D. Thesis, Geology Department, Faculty Sci. Ein Shams Univ. Cairo, Egypt.

  • Babiker I, Mohamed M, Hiyama T, Kato K (2005) A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, Central Japan. Sci Total Environ 345:127–140. https://doi.org/10.1016/j.scitotenv.2004.11.005

    Article  Google Scholar 

  • Badran AM (1996) The contribution of logging analysis and seismic stratigraphy in the reservoir valuation and lithology determination of the north western Delta Abu Qir Offshore Egypt. M. Sc. Thesis, Geophysics Department, Faculty Sci.Ein Shams Univ. Cairo, Egypt

  • Barakat MG (1982) General review of the petroliferous provinces of Egypt with special emphasis on their geological setting and oil potentialities. Geology Department, Faculty Sci. Cairo Univ. Cairo, Egypt

  • Chachadi AG (2005) Seawater intrusion mapping using modified GALDIT indicator model-case study in Goa. Jalvigyan Sameeksha 20:29–45

    Google Scholar 

  • Chachadi AG, Lobo-Ferreira JP (2001) Seawater intrusion vulnerability mapping of aquifers using the GALDIT method. COASTIN 4:7–9

    Google Scholar 

  • Chachadi, AG, Lobo-Ferreira JP (2005) Assessing aquifer vulnerability to sea-water intrusion using GALDIT method: part 2-GALDIT indicators description, Fourth Inter-Celtic Colloquium on Hydrogeology and Management of Water Resources, Portugal, 11–14, July 2005, CD of Proceedings

  • Ćosić-Flajsig G, Vučković I, Karleuša B (2020) An innovative holistic approach to an E-flow assessment model. Civ Eng J. 6(11):2188–2202.   https://doi.org/10.28991/cej-2020-03091611

  • Diab MSh, Mahammed MA, Rizk ZS (1995) The role of geology, hydrogeology and human activities in the contamination of shallow water resources northwest of the Rosetta Nile Branch, Egypt.J. Faculty Sci. Unite Arab Emirates Univ. 8; 260–291.

  • Ding H, Zhang J (2002) The problem of environmental caused by groundwater level continuous decline in the inland basins of arid area, Northwest China—an example in middle reaches of Heihe river basin. Hydrogeol Eng Geol 3:71–75

    Google Scholar 

  • El Arabi NE, Morsy WS (2013) Applying integrated ground- and surface- water management (Case Study: Nubaryia Basin, West Delta, Egypt). J Am Sci 9:43–53

    Google Scholar 

  • El Osta M, Hussein H Tomas K (2018) Numerical simulation of groundwater flow and vulnerability in Wadi El-Natrun depression and vicinities, West Nile Delta, Egypt. J GeolSoc India 92:235–247. https://doi.org/10.1007/s12594-018-0986-7

  • Elena GF, Javier SSR (2015) An excel macro to plot the HFE-diagram to identify seawater intrusion phases. Groundwater 53:819–824. https://doi.org/10.1111/gwat.12280

    Article  Google Scholar 

  • Embaby AAA (2003) Environmental evaluation for geomorphological situation in relation to the water and soil resources of the region north of the Sadat City, west Nile Delta, Egypt.PhD thesis, Faculty of Science, Mansoura University, Mansoura

  • Farr TG, Kobric M (2000) Shuttle Reader Topography Mission produces a wealth of data. Amer Geophys Union Eos 81:583–585

    Article  Google Scholar 

  • Faye S, Maloszewski P, Stichler W, Trimborn P, Faye SC, Gaye CB (2005) Groundwater salinization in the Saloum (Senegal) delta aquifer: minor elements and isotopic indicators. Sci Total Environ 343:243–259. https://doi.org/10.1016/j.scitotenv.2004.10.001

    Article  Google Scholar 

  • Giménez-Forcada E (2010) Dynamic of sea water interface using hydrochemical facies evolution diagram. Groundwater 48:212–216. https://doi.org/10.1111/j.1745-6584.2009.00649.x

    Article  Google Scholar 

  • Gounari C, Skordas K, Gounaris A, Kosmidis D, Karyoti A (2014) Seawater intrusion and nitrate pollution in coastal aquifer of Almyros-NeaAnchialos basin, Central Greece. WSEAS Trans Environ Dev 10:211–222

    Google Scholar 

  • HACH (1990) Chemical procedures explained. Hach Technical Center for Applied Analytical Chemistry, Colorado

  • Hallal DD, Khelfi ME, Zahouani S, Benamghar A, Ouissam Haddad O, Ammari A, Lobo-Ferreira JP (2019) Application of the GALDIT method combined with geostatistics at the Bouteldja aquifer (Algeria). Environ Earth Sci 78:22. https://doi.org/10.1007/s12665-018-8005-2

    Article  Google Scholar 

  • Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge. 256p, https://doi.org/10.1017/CBO9780511780745. ISBN 978-0-521-86396-4 Hardback

  • Houria B, Kalla M, Zohra TF (2020) Hydrochemical characterisation of groundwater quality: Merdja Plain (Tebessa Town, Algeria). Civil Engineering Journal 6(2):318–325. https://doi.org/10.28991/cej-2020-03091473

    Article  Google Scholar 

  • Hzami A, Heggy E, Amrouni O, Mahé G, Maanan M, Abdeljaouad S (2021) Alarming coastal vulnerability of the deltaic and sandy beaches of North Africa. Scientific Reports, Nature portfolio 11:2320. https://doi.org/10.1038/s41598-020-77926-x

    Article  Google Scholar 

  • Ibraheem IM, El-Qady G (2017) Hydrogeophysical investigations at El-Nubariya-Wadi El-Natrun area, west Nile Delta, Egypt. Handb Environ Chem. https://doi.org/10.1007/698_2017_154

  • Ibrahim SM (2000) Groundwater hydrology of El-Khatatba area and its vicinities, West Nile Delta, Egypt.M.Sc.thesis, Faculty of Engineering, Ain Shams University, Cairo

  • Jalali M (2010) Application of multivariate analysis to study water chemistry of groundwater in a semi-arid aquifer, Malayer, Western Iran. Desalin Water Treat 19:307–317. https://doi.org/10.5004/dwt.2010.1077

    Article  Google Scholar 

  • Jones BF, Vengosh A, Rosenthal E, Yechieli Y (1999) Geochemical investigations. In: Bear J et al (eds) Seawater intrusion in coastal aquifers concepts, methods and practices. Kluwer Academic, Berlin, pp 51–72

    Chapter  Google Scholar 

  • Kaliraj S, Chandrasekar N, Ramachandran KK, Selvakumar S (2019) Seawater intrusion vulnerability in the coastal aquifers of southern India—an appraisal of the GALDIT model, parameters’ sensitivity, and hydrochemical indicators. Environ Sci Pollut Res 26:9755–9784. https://doi.org/10.1007/s11356-019-04401-0

    Article  Google Scholar 

  • Kamal ZA, Sulaiman MS, Hakim MK, Thilageswaran SA, Hamzah Z, Khan MMA (2020) Investigation of seawater intrusion in coastal aquifers of Kelantan, Malaysia using geophysical and hydrochemical techniques. Earth Environ Sci 549:012018. https://doi.org/10.1088/1755-1315/549/1/012018

    Article  Google Scholar 

  • Kazakis N, Busico G, Colombani N, Mastrocicco M, Pavlou A, Voudouris K (2019) GALDIT-SUSI a modified method to account for surface water bodies in the assessment of aquifer vulnerability to seawater intrusion. J Environ Manag 235:257–265. https://doi.org/10.1016/j.jenvman.2019.01.069

    Article  Google Scholar 

  • Kura NU, Ramli MF, Sulaiman WNA, Ibrahim S, Aris AZ, Mustapha A (2013) Evaluation of factors influencing the groundwater chemistry in a small tropical island of Malaysia. Int J Environ Res Public Health 10:1861–1881. https://doi.org/10.3390/ijerph10051861

    Article  Google Scholar 

  • Laeven MT (1991) Hydrogeological study of the Nile Delta and adjacent desert areas in Egypt with emphasis on hydrochemistry and isotope hydrology. M.Sc. thesis, Free University, Amsterdam

  • Liu L, Zhou Q, Li C (2017) Evaluation of groundwater vulnerability in Wudang District of Guiyang—an improved DRASTIC model based on AHP. GuizhouSci 35:34–37 (in Chinese)

    Google Scholar 

  • Lobo-Ferreira JP, Chachadi AG, Diamantino C, Henriques MJ (2005) Assessing aquifer vulnerability to sea-water intrusion using GALDIT method: part 1—application to the Portuguese Aquifer of Monte Gordo. In: IAHS and LNEC, proceedings of the 4th the fourth inter celtic colloquium on hydrology and management of water resources, held at Universidade do Minho, Guimarمes, Portugal

  • Lodwick WA, Monson W, Svoboda L (1990) Attribute error and sensitivity analysis of map operations in geographical information systems: suitability analysis. Int J Geogr Inf Syst 4:413–428

    Article  Google Scholar 

  • Luoma S, Okkonen J, Korkka-Niemi K (2017) Comparison of the AVI, modified SINTACS and GALDIT vulnerability methods under future climate-change scenarios for a shallow low-lying coastal aquifer in southern Finland. Hydrogeol J 25:203–222. https://doi.org/10.1007/s10040-016-1471-2

    Article  Google Scholar 

  • Mabrouk B, Jonoski A, Solomatine D, Uhlenbrook S (2013) A review of seawater intrusion in the Nile Delta groundwater system – the basis for assessing impacts due to climate changes and water resources development. Hydrol Earth Syst Sci Discuss 10:10873–10911. https://doi.org/10.5194/hessd-10-10873-2013

    Article  Google Scholar 

  • Mahesha A, ASCE AM, Vyshali, Lathashri UA, Ramesh H (2012) Parameter estimation and vulnerability assessment of coastal unconfined aquifer to saltwater intrusion. J Hydrol Eng 17:933–943. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000524

    Article  Google Scholar 

  • McCoy J and Johnston K (2001) Using ArcGIS Spatial Analyst. Environ. Systems Research Institute, Inc. Redlands, California

  • Mohamed AK (2016) Application of DC resistivity method for groundwater investigation, case study at West Nile Delta, Egypt. Arab J Geosci 9:11. https://doi.org/10.1007/s12517-015-2054-6

    Article  Google Scholar 

  • Momejian N, AbouNajm M, Alameddine I, El-Fadel M (2019) Can groundwater vulnerability models assess seawater intrusion? Environ Impact Assess Rev 75:13–26. https://doi.org/10.1016/j.eiar.2018.10.003

    Article  Google Scholar 

  • Morsy WS (2009) Environmental management to groundwater resources for Nile Delta region, PhD thesis, Faculty of Engineering, Cairo

  • Napolitano P and Fabbri A G (1996) Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. Proceedings of the Vienna conference on HydroGIS 96: Application of geographic information systems in hydrology and water resources management, IAHS Pub, 235: 559–566

  • NASA (2005) Shuttle Radar Topography Mission data sets. National Aeronautics and Space Administration. http://www.jpl.nasa.gov/srtm, last accessed, April 2007

  • Obianyo JI (2019) Effect of salinity on evaporation and the water cycle. Emerg Sci J 3:255–262. https://doi.org/10.28991/esj-2019-01188

    Article  Google Scholar 

  • Oliver MA (1990) Kriging: a method of interpolation for geographical information systems. Int J Geogr Inf Syst 4:313–332

    Article  Google Scholar 

  • Oo H T, Zin WW, Kyi T C (2020) Analysis of stream flow response to changing climate conditions using SWAT Model. Civil Engineering journal 6 :194-209. https://doi.org/10.28991/cej-2020-03091464

  • Pavlov M (1962) Geology, hydrogeology and groundwater hydrology of Wadi el Natrun and the adjacent areas. In preliminary report part 2 (Ed). Hydrogeology Desert institute and the general development organization. Cairo

  • Perera MDND, Ranasinghe TKGP, Piyadasa RUK, Jayasinghe GY (2018) Risk of seawater intrusion on coastal community of Bentota river basin Sri Lanka. Procedia Engineering 212:699–706. https://doi.org/10.1016/j.proeng.2018.01.090

    Article  Google Scholar 

  • Prust, Farooq (2020) Seawater intrusion in the coastal aquifers of India - a review. HydroResearch 3:61–74. https://doi.org/10.1016/j.hydres.2020.06.001

    Article  Google Scholar 

  • Qi SZ, Qiu QL (2011) Environmental hazard from saltwater intrusion in the Laizhou Gulf, Shandong Province of China. Nat Hazards 56:563–566. https://doi.org/10.1007/s11069-010-9686-3

    Article  Google Scholar 

  • Richter BC, Kreitler WC (1993) Geochemical techniques for identifying sources of groundwater salinization. CRC, New York. 272p, ISBN 1-56670-000-0

  • RIGW (Research Institute for Groundwater) (1992) Hydrogeological map for the Nile Delta area, Scale 1: 500000. El Kanter El Khairia, Egypt

  • Said R (1962) The Geology of Egypt. Elsevier, Amsterdam, 377 p

  • Saidi S, Bouri S, Ben Dhia H (2009) Groundwater vulnerability and risk mapping of the Jelma aquifer (central Tunisia) using a GIS-based DRASTIC model. Environ Earth Sci 59:1579–1588.https://doi.org/10.1007/s12665-009-0143-0

  • Saidi S, Bouri S, Dhia HB (2013) Groundwater management based on GIS techniques, chemical indicators and vulnerability to seawater intrusion modeling: application to the Mahdia-Ksour Essaf aquifer, Tunisia. Environ Earth Sci 70:1551–1568. https://doi.org/10.1007/s12665-013-2241-2

    Article  Google Scholar 

  • Salem ZE, El Bayumy DA (2016a) Use of the subsurface thermal regime as a groundwater-flow tracer in the semi-arid western Nile Delta, Egypt. Hydrogeol J 24:1001–1014. https://doi.org/10.1007/s10040-016-1377-z

    Article  Google Scholar 

  • Salem ZE, El Bayumy DA (2016b) Hydrogeological, etrophysical and hydrogeochemical characteristics of the groundwater aquifers east of Wadi El-Natrun, Egypt. NRIAG J Astron Geophys 5:106–123. https://doi.org/10.1016/j.nrjag.2015.12.001

    Article  Google Scholar 

  • Salem ZE, El-horiny MM (2014) Hydrogeochemical evaluation of calcareous eolianite aquifer with saline soil in a semiarid area. Environmental Science and Pollution Research, 21: 8294-8314. 21:8294–8314. https://doi.org/10.1007/s11356-014-2735-9

  • Salem ZE, Osman OM (2016) Shallow subsurface temperature in the environs of El-Nubaria canal, northwestern Nile Delta of Egypt: implications for monitoring groundwater flow system. Environ Earth Sci 75:1241. https://doi.org/10.1007/s12665-016-6046-y

    Article  Google Scholar 

  • Salem ZE, Osman OM (2017a) Use of major ions to evaluate the hydrogeochemistry of groundwater influenced by reclamation and seawater intrusion. West Nile Delta, Egypt Environ Sci Pollut Res 24:3675–3704. https://doi.org/10.1007/s11356-016-8056-4

    Article  Google Scholar 

  • Salem ZE, Osman OM (2017b) Use of geoelectrical resistivity to delineate the seawater intrusion in the northwestern part of the Nile Delta, Egypt. In: The handbook of environmental chemistry (Groundwater in the Nile Delta, 2019). Springer, Berlin, Heidelberg

  • Salem ZE, Osman OM (2018) Use of one-dimensional subsurface temperature profiles to characterize the groundwater flow system in the northwestern part of the Nile Delta, Egypt. In: The handbook of environmental chemistry (Groundwater in the Nile Delta, 2019). Springer, Berlin, Heidelberg

  • Salem ZE, Gaame OM and Hassan TM (2008) Using temperature logs and hydrochemistry as indicators for seawater intrusion and flow lines of groundwater in Quaternary aquifer, Nile Delta, Egypt. Fifth International Symposium on Geophysics (ISG 5), Nov. 27-29, 2007. 25-38.

  • Salem ZE, Al Temamy AM, Salah MK, Kassab M (2016) Origin and characteristics of brackish groundwater in Abu Madi coastal area, Northern Nile Delta, Egypt. Estuar Coast Shelf Sci 178:21–35. https://doi.org/10.1016/j.ecss.2016.05.01

    Article  Google Scholar 

  • Salem ZE, Negm AM, Nahrawy A (2017) Hydrogeophysical characteristics of the central Nile Delta Aquifer. In: The Handbook of Environmental Chemistry (Groundwater in the Nile Delta, 2019). Springer, Berlin, Heidelberg

  • Salem ZE, Gaame OM, Hassan TM (2018) Integrated subsurface thermal regime and hydrogeochemical data to delineate the groundwater flow system and seawater intrusion in the Middle Nile Delta, Egypt. In: .The handbook of environmental chemistry (Groundwater in the Nile Delta, 2019). Springer, Berlin, Heidelberg

  • Salem ZE, Sefelnasr AM, Hasan SS (2019) Assessment of groundwater vulnerability for pollution using DRASTIC Index, young alluvial plain, Western Nile Delta, Egypt. Arab J Geosci 12:727. https://doi.org/10.1007/s12517-019-4883-1

    Article  Google Scholar 

  • Sathish S, Elango L (2011) Groundwater quality and vulnerability mapping of an unconfined coastal aquifer. J Spat Hydrol 11:18–33

    Google Scholar 

  • Schlumberger (1984) Well Evaluation Conference, Egypt. Schlumberger Middle East, pp 1-64

  • Sefelnasr A, Sherif M (2014) Impacts of seawater rise on seawater intrusion in the Nile Delta aquifer. Egypt 52:264–276. https://doi.org/10.1111/gwat.12058

    Article  Google Scholar 

  • Sharaky AM, El Hasanein AS, Atta SA, Khallaf KM (2016) Nile and groundwater interaction in the Western Nile Delta, Egypt. In: Negm AM (ed.), The Nile Delta, Hdb Env Chem (2017) 55:33–62.   https://doi.org/10.1007/698_2016_127

  • Shata AA (1955) An introductory note on the geology of the northern period of the western desert of Egypt. Bull Desert Res Inst Egypt 5:96–106

    Google Scholar 

  • Shatta and El-Fayoumy (1970) Remarks on the hydrogeology of the Nile Delta, UAR. In: Proceedings of the international symposium on the hydrogeology of deltas, Bucharest, UNESCO, 2:385–396

  • Sobeih MM, El-Arabi NE, Helal EY, Awad BS (2017) Management of water resources to control groundwater levels in the southern area of the western Nile delta, Egypt. Water Science 31:137–150. https://doi.org/10.1016/j.wsj.2017.09.001

    Article  Google Scholar 

  • Sophiya MS, Syed TH (2013) Assessment of vulnerability to seawater intrusion and potential remediation measures for coastal aquifers: a case study from eastern India. Environ Earth Sci 70:1197–1209. https://doi.org/10.1007/s12665-012-2206-x

    Article  Google Scholar 

  • Tarabees E, El-Qady G (2016) Sea water intrusion modeling in Rashid area of Nile Delta (Egypt) via the inversion of DC resistivity data. Am J Clim Chang 5:147–156. https://doi.org/10.4236/ajcc.2016.52014

    Article  Google Scholar 

  • USGS (2004) Shuttle Radar Topography Mission, 1 Arc Second scene SRTM_u03_n008e004. Global Land Cover Facility, University of Maryland, College Park, Maryland

  • Venkatramanan S, Chung SY, Selvam S (2017) Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS. Environ SciPollut Res 24:23679–23693. https://doi.org/10.1007/s11356-017-9990-5

    Article  Google Scholar 

  • Werner AD, Ward JD, Morgan LK, Simmons CT, Robinson NI, Teubner MD (2012) Vulnerability indicators of sea water intrusion. Ground Water 50:48–58. https://doi.org/10.1111/j.1745-6584.2011.00817.x

    Article  Google Scholar 

  • Xie R, Pang Y, Luo B, Li J, Wu C, Zheng Y, Sun Q, Zhang P, Wang F (2017) Spatiotemporal variability in salinity and hydraulic relationship with salt intrusion in the tidal reaches of the Minjiang River, Fujian Province, China. Environ SciPollut Res 24:11847–11855. https://doi.org/10.1007/s11356-017-8788-9

    Article  Google Scholar 

  • Yang Q, Luan MT, Chong JZ (1999) Application of DRASTIC parameter system method in groundwater vulnerability assessment in Dalian. J Polytechnic University 39:684–688 (in Chinese)

    Google Scholar 

  • Zhang L (2019) Big data, knowledge mapping for sustainable development: a water quality index case study. Emerging Science Journal 3(4):249–254. https://doi.org/10.28991/esj-2019-01187

    Article  Google Scholar 

  • Dörfliger N (2011) Rise of the marine water level, induced by the climate changes, a consequence on the marine intrusion in the coastal aquifers in the home country. BRMG/RP-60829-Fr. Rapport final

  • Appelo CAJ, Geirnaert W (1983) Processes accompanying the intrusion of salt water. Geol Appl. e Idrogeol 18:29–40

  • Kumar CP, Kumar S, Bekal S (2007) Modelling of Seawater intrusion in coastal area of North Goa. Water Digest 2:80–83

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenhom E. Salem.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Broder J. Merkel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, Z.E., Hasan, S.S. Use of GALDIT model and HFE-Diagram to assess seawater intrusion vulnerability in West Nile Delta, Egypt. Arab J Geosci 14, 1318 (2021). https://doi.org/10.1007/s12517-021-07678-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07678-z

Keywords

Navigation