Meredith MM, Sommerkorn S, Cassotta C, Derksen A, Ekaykin A, Hollowed et al. In: H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.) Polar Regions. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate 2019. https://www.ipcc.ch/srocc/chapter/chapter-3-2/.
Overland JE, Hanna E, Hanssen-Bauer I, Kim S-J, Walsh JE, Wang M, et al. In: The NOAA Arctic Report Card, Surface Air Temperature 2019, https://arctic.noaa.gov/Report-Card/Report-Card 2019/ArtMID/7916/ArticleID/835/Surface-Air-Temperature.
Goosse H, Kay JE, Armour KC, et al. Quantifying climate feedbacks in polar regions. Nat Commun. 2018;9(2018):1919. https://doi.org/10.1038/s41467-018-04173-0.
CAS
Article
Google Scholar
Kay JE, et al. Recent advances in Arctic cloud and climate research. Curr Clim Change Rep. 2016;2:159.
Article
Google Scholar
Pithan F, Mauritsen T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat Geosci. 2014;7:181–4.
CAS
Article
Google Scholar
Qu X, Hall A. What controls the strength of snow-albedo feedback? J Clim. 2007;20:3971–81.
Article
Google Scholar
Stuecker MF, Bitz CM, Armour KC, et al. Polar amplification dominated by local forcing and feedbacks. Nat Clim Chang. 2018;8:1076–81. https://doi.org/10.1038/s41558-018-0339-y.
CAS
Article
Google Scholar
Taylor PC, et al. A decomposition of feedback contributions to polar warming amplification. J Clim. 2013;26:7023–43.
Article
Google Scholar
Graversen RG, Wang M. Polar amplification in a coupled climate model with locked albedo. Clim Dyn. 2009;33:629–43. https://doi.org/10.1007/s00382-009-0535-6.
Box JE, Colgan WT, Christensen TR, Schmidt NM, Lund M, Parmentier F-JW, et al. Key indicators of Arctic climate change, 1971-2017. Environ Res Lett. 2019;14:045010.
Gillett N, Stone D, Stott P, Nozawa T, Karpechko AY, Hegerl GC, et al. Attribution of polar warming to human influence. Nat Geosci. 2008;1:750–4. https://doi.org/10.1038/ngeo338.
Najafi M, Zwiers F, Gillett N. Attribution of Arctic temperature change to greenhouse-gas and aerosol influences. Nat Clim Chang. 2015;5:246–9. https://doi.org/10.1038/nclimate2524.
CAS
Article
Google Scholar
Serreze MC, Stroeve J. Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philos Trans R Soc London, Ser A. 2015;373:20140159. https://doi.org/10.1098/rsta.2014.0159.
Article
Google Scholar
Blunden J, Arndt DS. State of the climate in 2018. Bull Am Meteorol Soc. 2019;100:Si–S306. https://doi.org/10.1175/2019BAMSStateoftheClimate.1.
Article
Google Scholar
Stroeve J, Notz D. Changing state of Arctic Sea ice across all seasons. Environ Res Lett. 2018;13(10):103001. https://doi.org/10.1088/1748-9326/aade56.
Article
Google Scholar
Halfar J, Adey WH, Kronz A, Hetzinger S, Edinger E, Fitzhugh WW. Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy. PNAS. 2013;110(49):19737–41. https://doi.org/10.1073/pnas.1313775110.
CAS
Article
Google Scholar
Notz, D. and J. Stroeve (2016) Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354, Issue 6313, pp. 747–750. DOI: https://doi.org/10.1126/science.aag2345.
Notz D, Stroeve J. The trajectory towards a seasonally ice-free Arctic Ocean. Curr Clim Change Rep. 2018;4:407–16. https://doi.org/10.1007/s40641-018-0113-2.
Article
Google Scholar
Timmermans M-L, Toole J, Krishfield R. Warming of interior Arctic Ocean linked to sea ice losses at the basin margin. Sci Adv. 2018;4(8):eaat6773. https://doi.org/10.1126/sciadv.aat6773.
Article
Google Scholar
Woodgate RA. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Prog Oceanogr. 2018;160:124–54. https://doi.org/10.1016/j.pocean.2017.12.007.
Article
Google Scholar
Mudryk LR, Kushner PJ, Derksen C, Thackeray C. Snow cover response to temperature in observational and climate model ensembles. Geophys Res Lett. 2017;44:919–26. https://doi.org/10.1002/2016GL071789.
Article
Google Scholar
Mudryk L., R. Brown, C. Derksen, K. Luojus, B. Decharme, and S. Helfrich (2019) Terrestrial snow cover, Richter-Menge, J., M. L. Druckenmiller, and M. Jeffries, Eds.: Arctic Report Card 2019, https://www.arctic.noaa.gov/Report-Card.
AMAP Assessment 2017: Snow, water, ice and permafrost in the Arctic (SWIPA) (2017), Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. xiv + 269 pp.
Vihma T, Screen J, Tjernström M, Newton B, Zhang X, Popova V, et al. The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. J Geophys Res Biogeosci. 2016;121:586–620. https://doi.org/10.1002/2015JG003132.
Wendler G, Gordon T, Stuefer M. On the precipitation and precipitation change in Alaska. Atmosphere. 2017;8(12):253. https://doi.org/10.3390/atmos8120253.
Article
Google Scholar
Peterson BJ, Holmes RM, McClelland JW, Vörösmarty CJ, Lammers RB, Shiklomanov AI, et al. Increasing river discharge to the Arctic Ocean. Science. 2002;298:217. https://doi.org/10.1126/science.1077445.
Vihma T, Screen J, Tjernström M, Newton B, Zhang X, Popova V, et al. The atmospheric role in the Arctic water cycle: a review on processes, past and future changes, and their impacts. J Geophys Res G: Biogeosci. 2016;121:586–620. https://doi.org/10.1002/2015JG003132.
Zhang K, Kimball JS, Mu QZ, Jones LA, Goetz SJ, Running SW. Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. J Hydrol. 2009;379:92–110.
Article
Google Scholar
Biskaborn BK, Smith SL, Noetzli J, et al. Permafrost is warming at a global scale. Nat Commun. 2019;10:264. https://doi.org/10.1038/s41467-018-08240-4.
CAS
Article
Google Scholar
Liljedahl A, Boike J, Daanen R, Fedorov AN, Frost GV, Grosse G, et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat Geosci. 2016;9:312–8. https://doi.org/10.1038/ngeo2674.
Farquharson LM, Romanovsky VE, Cable WL, Walker DA, Kokelj SV, Nicolsky D. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys Res Lett. 2019;46:6681–9. https://doi.org/10.1029/2019GL082187.
Olefeldt D, Goswami S, Grosse G, Hayes D, Hugelius G, Kuhry P, et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat Commun. 2016;7:13043. https://doi.org/10.1038/ncomms13043.
Nitze I, Grosse G, Jones BM, et al. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat Commun. 2018;9:5423.
CAS
Article
Google Scholar
Rudy ACA, Lamoureux SF, Kokelj SV, Smith IR, England JH. Accelerating thermokarst transforms ice-cored terrain triggering a down- stream cascade to the ocean. Geophys Res Lett. 2017;44:11,080–7. https://doi.org/10.1002/2017GL074912.
Jones BM, et al. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. J Geophys Res G : Biogeosci. 2011;116:G00M03.
Google Scholar
Baltzer JL, Veness T, Chasmer LE, Sniderhan AE, Quinton WL. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob Change Biol. 2014;20:824–34. https://doi.org/10.1111/gcb.12349.
Romanovsky, V., Isaksen, K., Drozdov, D., Anisimov, O., Instanes, A., Leibman, M., et al. (2017) Changing permafrost and its impacts. In: AMAP, snow, water, ice and permafrost in the Arctic (SWIPA) 2018. Oslo, Norway: Arctic monitoring and assessment Programme (AMAP), pp. 65-102.
Chang K-Y, Riley WJ, Crill PM, Grant RF, Rich VI, Saleska SR. Large carbon cycle sensitivities to climate across a permafrost thaw gradient in subarctic Sweden. Cryosphere. 2019;13:647–63. https://doi.org/10.5194/tc-13-647-2019.
Article
Google Scholar
Parmentier FJW, Christensen TR, Rysgaard S, Bendtsen J, Glud RN, Else B, et al. A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere. Ambio. 2017;46(1):53–69. https://doi.org/10.1007/s13280-016-0872-8.
Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles. 2009;23:GB2023. https://doi.org/10.1029/2008GB003327.
CAS
Article
Google Scholar
Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping C-L, et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences. 2014;11:6573–93. https://doi.org/10.5194/bg-11-6573-2014.
Schuur E, McGuire A, Schädel C, Grosse G, Harden JW, Hayes DJ, et al. Climate change and the permafrost carbon feedback. Nature. 2015;520:171–9. https://doi.org/10.1038/nature14338.
Ruppel CD, Kessler JD. The interaction of climate change and methane hydrates. Rev Geophys. 2017;55:126–68. https://doi.org/10.1002/2016RG000534.
Article
Google Scholar
Romanovskii NN, Hubberten HW, Gavrilov AV, Eliseeva AA, Tipenko GS. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian seas. Geo-Mar Lett. 2005;25:167–82.
CAS
Article
Google Scholar
Dmitrenko IA, Kirillov SA, Tremblay LB, Kassens H, Anisimov OA, Lavrov SA, et al. Recent changes in shelf hydrography in the Siberian Arctic: potential for subsea permafrost instability. J of Geophys Res C: Oceans. 2011;116(C10):C10027. https://doi.org/10.1029/2011JC007218.
Ferré B, Mienert J, Feseker T. Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales. J Geophys Res C: Oceans. 2012;117:C10017. https://doi.org/10.1029/2012JC008300.
CAS
Article
Google Scholar
Stranne C, O’Regan M, Jakobsson M. Overestimating climate warming-induced methane gas escape from the seafloor by neglecting multiphase flow dynamics. Geophys Res Lett. 2016;43:8703–12. https://doi.org/10.1002/2016GL070049.
CAS
Article
Google Scholar
Elmendorf S, Henry G, Hollister R, et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Chang. 2012;2:453–7. https://doi.org/10.1038/nclimate1465.
Article
Google Scholar
Myers-Smith IH, Hik DS. Climate warming as a driver of tundra shrubline advance. J Ecol doi. 2018. https://doi.org/10.1111/1365-2745.12817.
Myers-Smith I, Elmendorf S, Beck P, et al. Climate sensitivity of shrub growth across the tundra biome. Nat Clim Chang. 2015;5:887–91. https://doi.org/10.1038/nclimate2697.
Article
Google Scholar
Bhatt US, Walker DA, Raynolds MK, Bieniek PA, Epstein HE, Comiso JC, et al. Changing seasonality of pan-Arctic tundra vegetation in relationship to climatic variables. Environ Res Lett. 2017;12:055003.
Myers-Smith I, Kerby JT, Phoenix GK, Bjerke JW, Epstein HE, Assmann JJ, et al. Complexity revealed in the greening of the Arctic. Nat Clim Chang. 2020;10:106–17. https://doi.org/10.1038/s41558-019-0688-1.
van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT, Chen Y, Rogers BM, et al. Global fire emissions estimates during 1997–2016. Earth Syst Sci Data. 2017;9:697–720. https://doi.org/10.5194/essd-9-697-2017.
Amiro BD, et al. Direct carbon emissions from Canadian forest fires, 1959–1999. Can J For Res. 2001;31:512–25.
CAS
Article
Google Scholar
Kasischke ES, Johnstone JF. Variation in post-fire organic layer thickness in a black spruce forest complex in Interior Alaska and its effects on soil temperature and moisture. Can J For Res. 2005;35:2164–77.
Article
Google Scholar
Yi S, et al. Interactions between soil, thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance. J Geophys Res G: Biogeosci. 2009;114:G02015.
Google Scholar
Turetsky M, Kane E, Harden J, Ottmar RD, Mannies KL, Hoy E, et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat Geosci. 2011;4:27–31. https://doi.org/10.1038/ngeo1027.
McCarty JL, Smith TEL, Turetsky MR. Arctic fires re-emerging. Nat Geosci. 2020;13:658–60. https://doi.org/10.1038/s41561-020-00645-5.
CAS
Article
Google Scholar
Bond-Lamberty B, Peckham SD, Ahl DE, Gower ST. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature. 2007;450(7166):89–92. https://doi.org/10.1038/nature06272.
CAS
Article
Google Scholar
Kelly R, Chipman ML, Higuera PE, Stefanova I, Brubaker LB, Hu FS. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. PNAS. 2013. https://doi.org/10.1073/pnas.1305069110.
Coops NC, Hermosilla T, Wulder MA, White JC, Bolton DK. A thirty year, fine-scale, characterization of area burned in Canadian forests shows evidence of regionally increasing trends in the last decade. PLoS One. 2018;13(5):e0197218. https://doi.org/10.1371/journal.pone.0197218.
CAS
Article
Google Scholar
Ponomarev EI, Kharuk VI, Ranson KJ. Wildfires dynamics in Siberian larch forests. Forests. 2016;7:125.
Article
Google Scholar
Andela N, Morton DC, Giglio L, Chen Y, van der Werf GR, Kasibhatla PS, et al. A human-driven decline in global burned area. Science. 2017;30:356–6345, 1356–1362. https://doi.org/10.1126/science.aal4108.
Veraverbeke S, Rogers B, Goulden M, Jandt RR, Miller CE, Wiggins EB, et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat Clim Chang. 2017;7:529–34. https://doi.org/10.1038/nclimate3329.
SIMIP Community (2020) Arctic sea ice in CMIP6. Geophys Res Lett, 47, e2019GL086749. https://doi.org/10.1029/2019GL086749
Lantuit H, Overduin PP, Wetterich S. Recent progress regarding permafrost coasts. Permafr Periglac Process. 2013;24:120–30. https://doi.org/10.1002/ppp.1777.
Article
Google Scholar
Bintanja RK, Van der Wiel EC, Van der Linden J, Reusen L, Bogerd F et al. Strong future increases in Arctic precipitation variability linked to poleward moisture transport. Sci Adv,.2020 12FEB2020:EAAX6869.
Hansen BB, Isaksen K, Benestad RE, Kohler J, Pederson ÅØ, Loe LE, et al. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic. Environ Res Lett. 2014;9:11. https://doi.org/10.1088/1748-9326/9/11/114021.
Peters G, Andrew R, Boden T, et al. The challenge to keep global warming below 2 °C. Nat Clim Chang. 2013;3(2013):4–6. https://doi.org/10.1038/nclimate1783.
Article
Google Scholar
Overland JE, Wang M, Walsh JE, Stroeve JC. Future Arctic climate changes: adaptation and mitigation time scales. Earth’s Future. 2014. https://doi.org/10.1002/2013EF000162.
McGuire AD, Lawrence DM, Koven C, Clein JS, Burke E, Chen G, et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. PNAS. 2018;30:201719903. https://doi.org/10.1073/pnas.1719903115.
Nitzbon J, Westermann S, Langer M, Martin LCP, Strauss J, Laboor S, et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat Commun. 2020;11(1):2201. https://doi.org/10.1038/s41467-020-15725-8.
Pastick NJ, et al. Historical and projected trends in landscape drivers affecting carbon dynamics in Alaska. Ecol Appl. 2017;27(5):1383–402. https://doi.org/10.1002/eap.1538.
Article
Google Scholar
Young AM, Higuera PE, Duffy PA, Hu FS. Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography. 2017;40(5):606–17. https://doi.org/10.1111/ecog.02205.
Article
Google Scholar
Walter Anthony K, et al. 21st century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat Commun. 2018;9(1):3262. https://doi.org/10.1038/s41467-018-05738-0.
Article
Google Scholar
Pearson RG, Phillips SJ, Loranty MM, Beck PSA, Damoulas T, Knight SJ, et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat Clim Chang. 2013;3:673–7.
Swann AL, Fung IY, Levis S, Bonan GB, Doney SC. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. PNAS. 2009;107:4,1295–300 www.pnas.org/cgi/doi/10.1073/pnas.0913846107.
Google Scholar
Parmentier FJW, Christensen TR, Sørensen LL, Rysgaard S, McGuire AD, Miller PA, et al. The impact of a lower sea-ice extent on Arctic greenhouse-gas exchange. Nat Clim Chang. 2013;3:195–202.
Terhaar J, Orr JC, Ethé C, Regnier P, Bopp L. Simulated Arctic Ocean response to doubling of riverine carbon and nutrient delivery. Glob Biogeochem Cycles. 2019;33:1048–70. https://doi.org/10.1029/2019GB006200.
CAS
Article
Google Scholar
Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson Ö. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science. 2010;327:1246.
CAS
Article
Google Scholar
Berchet A, Bousquet P, Pison I, Locatelli R, Chevallier F, Paris J-D, et al. Atmospheric constraints on the methane emissions from the East Siberian Shelf. Atmos Chem Phys. 2016;16:4147–57. https://doi.org/10.5194/acp-16-4147-2016.
Thornton BF, Prytherch J, Andersson K, Brooks IM, Salisbury DJ, Tjernström M, et al. Shipborne eddy covariance observations of methane fluxes constrain Arctic sea emissions. Sci Adv. 2020;6(5):eaay7934. https://doi.org/10.1126/sciadv.aay.7934.
Piao S, Ciais P, Friedlingstein P, et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature. 2008;451:49–52. https://doi.org/10.1038/nature06444.
CAS
Article
Google Scholar
Lund M, Falk JM, Friborg T, Mbufong HN, Sigsgaard C, Soegaard H, et al. Trends in CO2 exchange in a high Arctic tundra heath, 2000-2010. J Geophys Res G: Biogeosci. 2012;117(G2):G02001. https://doi.org/10.1029/2011JG001901.
Parmentier F-JW, van Huissteden J, van der Molen MK, Schaepman-Strub G, Karsanaev SA, Maximov TC, et al. Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia. J Geophys Res Biogeosci. 2011a;116(G3):G03016. https://doi.org/10.1029/2010JG001637.
Roach J, Griffith B, Verbyla D, Jones J. Mechanisms influencing changes in lake area in Alaskan boreal forest. Glob Chang Biol. 2011;17:2567–83. https://doi.org/10.1111/j.1365-2486.2011.02446.x.
Article
Google Scholar
Lawrence DM, Koven CD, Swenson SC, Riley WJ, Slater AG. Permafrost thaw and resulting soil moisture changes regulate high-latitude CO2 and CH4 emissions. Environ Res Lett. 2015;10(9):094011.
Article
Google Scholar
Oh Y, Zhuang Q, Liu L, Welp LR, Lau MCY, Onstott TC, et al. Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Nat Clim Chang. 2020;10(4):317–21. https://doi.org/10.1038/s41558-020-0734-z.
Whalen SC, Reeburgh WS, Barber VA. Oxidation of methane in boreal forest soils: a comparison of seven measures. Biogeochemistry. 1992;16:181–211. https://doi.org/10.1007/BF00002818.
CAS
Article
Google Scholar
Myhre GD, Shindell F.-M, Bréon W, Collins J, Fuglestvedt J, Huang D et al. Anthropogenic and natural radiative forcing. In: Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.) Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2013
Turetsky MR, Abbott BW, Jones MC, Walter Anthony K, Olefeldt D, Schuur EAG, et al. Permafrost collapse is accelerating carbon release. Nature. 2019;569:32–4. https://doi.org/10.1038/d41586-019-01313-4.
Koven CD, Schuur EAG, Schädel C, Bohn TJ, Burke EJ, Chen G, et al. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Phil Trans R Soc London: Ser A. 2015;373:20140423. https://doi.org/10.1098/rsta.2014.0423.
Schuur EAG, Abbott BW, Bowden WB, Brovkin V, Camill P, et al. Expert assessment of vulnerability of permafrost carbon to climate change. Clim Chang. 2013;119:359–74.
CAS
Article
Google Scholar
Graven HD, Keeling RF, Piper SC, Patra PK, Stephens BB, Wofsy SC, et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science. 2013;341(6150):1085–9. https://doi.org/10.1126/science.1239207.
Barlow JM, Palmer PI, Bruhwiler LM, Tans P. Analysis of CO2 mole fraction data: first evidence of large-scale changes in CO2 uptake at high northern latitudes. Atmos Chem Phys. 2015;15:13739–58. https://doi.org/10.5194/acp-15-13739-2015.
CAS
Article
Google Scholar
Forkel M, Carvalhais N, Rodenbeck C, Keeling R, Heimann M, Thonicke K, et al. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science. 2016;351(6274):696–9. https://doi.org/10.1126/science.aac4971.
Thompson RL, Sasakawa M, Machida T, Aalto T, Worthy D, Lavric JV, et al. Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion. Atmos Chem Phys. 2017;17:3553–72. https://doi.org/10.5194/acp-17-3553-2017.12.
Commane R, Lindaas J, Benmergui J, Luus KA, Chang RY-W, Daube BC, et al. Increasing early winter CO2 from Alaskan tundra. PNAS. 2017;114(21):5361–6. https://doi.org/10.1073/pnas.1618567114.
Jeong SJ, Bloom AA, Schimel D, Sweeney C, Parazoo N.C Medvigy, et al. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO2 measurements. Sci. Adv 2018 4(7) eaao1167. https://doi.org/10.1126/sciadv.aao1167.
Sweeney C, Dlugokencky E, Miller CE, Wofsy S, Karion A, Dinardo S, et al. No significant increase in long-term CH4 emissions on North Slope of Alaska despite significant increase in air temperature. Geophys Res Lett. 2016;43(12):6604–11. https://doi.org/10.1002/2016GL069292.
Dlugokencky EJ, Houweling S, Bruhwiler L, Masarie KA, Lang PM, Miller JB, et al. Atmospheric methane levels off: temporary pause or a new steady state? Geophys Res Lett. 2003;30:1992. https://doi.org/10.1029/2003GL018126.
Dlugokencky EJ, Nisbet EG, Fisher R, Lowry D. Global atmospheric methane: budget changes and dangers. Philos Trans R Soc London Ser A. 2011; 369: 2058–2072. https://doi.org/10.1098/rsta.2010.0341.
Holzer M, Waugh DW. Interhemispheric transit time distributions and path-dependent lifetimes constrained by measurements of SF6, CFCs, and CFC replacements. Geophys Res Lett. 2015;42:4581–9. https://doi.org/10.1002/2015GL064172.
Article
Google Scholar
Dimdore-Miles OB, Palmer PI, Bruhwiler LP. Detecting changes in Arctic methane emissions: limitations of the inter-polar difference of atmospheric mole fractions. Atmos Chem Phys. 2018;18:17895–907. https://doi.org/10.5194/acp-18-17895-2018.
CAS
Article
Google Scholar
Bruhwiler L, Dlugokencky E, Masarie K, Ishizawa M, Andrews A, Miller J, et al. CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane. Atmos Chem Phys. 2014;14:8269–93. https://doi.org/10.5194/acp-14-8269-2014.
Ueyama M, Ichii K, Iwata H, Euskirchen ES, Zona D, Rocha AV, et al. Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression. J Geophys Res Biogeosci. 2013;118:1266–81. https://doi.org/10.1002/jgrg.20095.
Natali SM, Watts JD, Rogers BM, Potter S, Ludwig SM, Selbmann A-K, et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat Clim Chang. 2019;9(11):852–7. https://doi.org/10.1038/s41558-019-0592-8.
Jung M, Reichstein M, Schwalm CR, Huntingford C, Sitch S, Ahlström A, et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature. 2017;541(7638):516–20. https://doi.org/10.1038/nature20780.
CAS
Article
Google Scholar
Qiu C, Zhu D, Ciais P, Guenet B, Krinner G, Peng S, et al. ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales. Geosci Model Dev. 2018;11(2):497–519. https://doi.org/10.5194/gmd-11-497-2018.
AMAP Assessment 2015: Methane as an Arctic climate forcer. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. vii + 139 pp.
Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, et al. The global methane budget 2000-2017. Earth Syst Sci Data. 2020. https://doi.org/10.5194/essd-2019-128.
Jørgensen CJ, Lund Johansen KM, Westergaard-Nielsen A, Elberling B. Net regional methane sink in High Arctic soils of northeast Greenland. Nat Geosci. 2014;8:20–3. https://doi.org/10.1038/NGEO2305.
Article
Google Scholar
Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS. Methane bubbling from Siberian Thaw Lakes as a positive feedback to climate warming. Nature. 2006;443:71–5. https://doi.org/10.1038/nature05040.
CAS
Article
Google Scholar
Walter KM, Smith LC, Chapin FS. Methane bubbling from northern lakes: present and future contributions to the global methane budget. Phil Trans R Soc London: Ser A. 2007;365:1657–76. https://doi.org/10.1098/rsta.2007.2036.
CAS
Article
Google Scholar
Wik M, Crill PM, Bastviken D, Danielsson Å, Norbäck E. Bubbles trapped in arctic lake ice: potential implications for methane emissions. J Geophys Res. 2011;116:G03044. https://doi.org/10.1029/2011JG001761.
CAS
Article
Google Scholar
Sepulveda-Jauregui A, Walter Anthony KM, Martinez-Cruz K, Greene S, Thalasso F. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska. Biogeosciences. 2015;12:3197–223. https://doi.org/10.5194/bg-12-3197-2015.
Wik M, Varner R, Anthony KW, MacIntyre S, Bastviken D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat Geosci. 2016;9:99–105. https://doi.org/10.1038/ngeo2578.
CAS
Article
Google Scholar
Verpoorter C, Kutser T, Seekell DA, Tranvik LJ. A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett. 2014;41:6396–402.
Article
Google Scholar
Holgerson M, Raymond P. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat Geosci. 2016;9:222–6. https://doi.org/10.1038/ngeo2654.
CAS
Article
Google Scholar
Thornton BF, Wik M, Crill PM. Double-counting challenges the accuracy of high-latitude methane inventories. Geophys Res Lett. 2016;43:12,569–77. https://doi.org/10.1002/2016GL071772.
CAS
Article
Google Scholar
McGuire AD, Christensen TR, Hayes D, Heroult A, Euskirchen E, Kimball JS, et al. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences. 2012;9(8):3185–204. https://doi.org/10.5194/bg-9-3185-2012.
Parmentier F-JW, van der Molen MK, van Huissteden J, Karsanaev SA, Kononov AV, Suzdalov DA, et al. Longer growing seasons do not increase net carbon uptake in the northeastern Siberian tundra. J Geophys Res G: Biogeosci. 2011b;116(G4):G04013. https://doi.org/10.1029/2011JG001653.
Pirk N, Sievers J, Mertes J, Parmentier FJW, Mastepanov M, Christensen TR. Spatial variability of CO2 uptake in polygonal tundra: assessing low-frequency disturbances in eddy covariance flux estimates. Biogeosciences. 2017;14(12):3157–69. https://doi.org/10.5194/bg-14-3157-2017.
CAS
Article
Google Scholar
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature. 2000;408(6809):184–7. https://doi.org/10.1038/35041539.
CAS
Article
Google Scholar
Friedlingstein P, Bopp L, Ciais P, Dufresne J-L, Fairhead L, LeTreut H, et al. Positive feedback between future climate change and the carbon cycle. Geophys Res Lett. 2001;28(8):1543–6. https://doi.org/10.1029/2000GL012015.
Chadburn S, Burke E, Essery R, Boike J, Langer M, Heikenfeld M, et al. An improved representation of physical permafrost dynamics in the JULES land-surface model. Geosci Model Dev. 2015;8(5):1493–508. https://doi.org/10.5194/gmd-8-1493-2015.
Druel A, Ciais P, Krinner G, Peylin P. Modeling the vegetation dynamics of northern shrubs and mosses in the ORCHIDEE land surface model. J Adv Model Earth Sy. 2019;11(7):2020–35 10/gg7kdn.
Article
Google Scholar
Hayes DJ, McGuire AD, Kicklighter DW, Gurney KR, Burnside TJ, Melillo JM. Is the northern high-latitude land-based CO2 sink weakening? Global Biogeochem Cy. 2011;25(3):GB3018. https://doi.org/10.1029/2010GB003813.
CAS
Article
Google Scholar
Wolf A, Callaghan TV, Larson K. Future changes in vegetation and ecosystem function of the Barents Region. Clim Chang. 2008;87(1–2):51–73. https://doi.org/10.1007/s10584-007-9342-4.
CAS
Article
Google Scholar
Chadburn SE, Krinner G, Porada P, Bartsch A, Beer C, Belelli Marchesini L, et al. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models. Biogeosciences. 2017;14(22):5143–69. https://doi.org/10.5194/bg-14-5143-2017.
Ekici A, Beer C, Hagemann S, Boike J, Langer M, Hauck C. Simulating high-latitude permafrost regions by the JSBACH terrestrial ecosystem model. Geosci Model Dev. 2014;7(2):631–47 10/f24qvk.
Article
Google Scholar
Wania R, Ross I, Prentice IC. Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes. Glob Biogeochem Cy. 2009;23(3):GB3014. https://doi.org/10.1029/2008GB003412.
CAS
Article
Google Scholar
Xia J, McGuire AD, Lawrence D, Burke E, Chen G, Chen X, et al. Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. J Geophys Res G: Biogeosci. 2017;122(2):430–46. https://doi.org/10.1002/2016JG003384 2017.
Turetsky MR, Abbott BW, Jones MC, Anthony KW, Olefeldt D, Schuur EAG, et al. Carbon release through abrupt permafrost thaw. Nat Geosci. 2020;13(2):138–43. https://doi.org/10.1038/s41561-019-0526-0.
Aas KS, Martin L, Nitzbon J, Langer M, Boike J, Lee H, et al. Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model. Cryosphere. 2019;13(2):591–609. https://doi.org/10.5194/tc-13-591-2019.
Parmentier F-JW, Rasse DP, Lund M, Bjerke JW, Drake BG, Weldon S, et al. Vulnerability and resilience of the carbon exchange of a subarctic peatland to an extreme winter event. Environ Res Lett. 2018;13(6):065009. https://doi.org/10.1088/1748-9326/aabff3.
Cao MK, Marshall S, Gregson K. Global carbon exchange and methane emissions from natural wetlands: application of a process-based model. J Geophys Res Atmos. 1996;101(D9):14399–414. https://doi.org/10.1029/96JD00219.
CAS
Article
Google Scholar
Christensen TR, Prentice IC, Kaplan J, Haxeltine A, Sitch S. Methane flux from northern wetlands and tundra - an ecosystem source modelling approach. Tellus Series B. 1996;48(5):652–61.
Article
Google Scholar
Walter BP, Heimann M. A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Glob Biogeochem Cy. 2000;14(3):745–65. https://doi.org/10.1029/1999GB001204.
CAS
Article
Google Scholar
Kaiser S, Göckede M, Castro-Morales K, Knoblauch C, Ekici A, Kleinen T, et al. Process-based modelling of the methane balance in periglacial landscapes (JSBACH-methane). Geosci Model Dev. 2017;10(1):333–58. https://doi.org/10.5194/gmd-10-333-2017.
Parmentier F-JW, Zhang W, Mi Y, Zhu X, Huissteden J, Hayes DJ, et al. Rising methane emissions from northern wetlands associated with sea ice decline. Geophys Res Lett. 2015;42(17):7214–22. https://doi.org/10.1002/2015GL065013.
Wania R, Melton JR, Hodson EL, Poulter B, Ringeval B, Spahni R, et al. Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geosci Model Dev. 2013;6(3):617–41. https://doi.org/10.5194/gmd-6-617-2013.
Wania R, Ross I, Prentice IC. Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1. Geosci Model Dev. 2010;3(2):565–84. https://doi.org/10.5194/gmd-3-565-2010.
Article
Google Scholar
Zhuang Q, Melillo JM, Kicklighter DW, Prinn RG, McGuire AD, Steudler PA, et al. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: a retrospective analysis with a process-based biogeochemistry model. Glob Biogeochem Cy. 2004;18(3):GB3010. https://doi.org/10.1029/2004GB002239.
Xu X, Elias DA, Graham DE, Phelps TJ, Carroll SL, Wullschleger SD, et al. A microbial functional group-based module for simulating methane production and consumption: application to an incubated permafrost soil. J Geophys Res G: Biogeosci. 2015;120(7):1315–33. https://doi.org/10.1002/2015JG002935.
Oh Y, Stackhouse B, Lau MCY, Xu X, Truman AT, Moch J, et al. A scalable model for methane consumption in arctic mineral soils. Geophys Res Lett. 2016;43:5143–50. https://doi.org/10.1002/2016GL069049.
Treat CC, Marushchak ME, Voigt C, Zhang Y, Tan Z, Zhuang Q, et al. Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic. Glob Chang Biol. 2018b;24(11):5188–204. https://doi.org/10.1111/gcb.14421.
Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, et al. Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmos Chem Phys. 2017;17(18):11135–61. https://doi.org/10.5194/acp-17-11135-2017.
Watts JD, Kimball JS, Bartsch A, McDonald KC. Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions. Environ Res Lett. 2014;9(7):075001. https://doi.org/10.1088/1748-9326/9/7/075001.
Article
Google Scholar
Bintanja R, Selten FM. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature. 2014;509(7501):479–82. https://doi.org/10.1038/nature13259.
CAS
Article
Google Scholar
Petrescu AMR, van Beek LPH, van Huissteden J, Prigent C, Sachs T, Corradi CAR, et al. Modeling regional to global CH4 emissions of boreal and arctic wetlands. Global Biogeochem Cy. 2010;24(4):GB4009. https://doi.org/10.1029/2009GB003610.
Poulter B, Bousquet P, Canadell JG, Ciais P, Peregon A, Saunois M, et al. Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environ Res Lett. 2017;12(9):094013. https://doi.org/10.1088/1748-9326/aa8391.
Olefeldt D, Turetsky MR, Crill PM, McGuire AD. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob Chang Biol. 2013;19(2):589–603. https://doi.org/10.1111/gcb.12071.
Article
Google Scholar
Mastepanov M, Sigsgaard C, Dlugokencky EJ, Houweling S, Ström L, Tamstorf MP, et al. Large tundra methane burst during onset of freezing. Nature. 2008;456(7222):628–30. https://doi.org/10.1038/nature07464.
Treat CC, Bloom AA, Marushchak ME. Nongrowing season methane emissions–a significant component of annual emissions across northern ecosystems. Glob Chang Biol. 2018a;44:163. https://doi.org/10.1111/gcb.14137.
Article
Google Scholar
Zona D, Gioli B, Commane R, Lindaas J, Wofsy SC, Miller CE, et al. Cold season emissions dominate the Arctic tundra methane budget. PNAS. 2016;113(1):40–5. https://doi.org/10.1073/pnas.1516017113.
Tan Z, Zhuang Q. Arctic lakes are continuous methane sources to the atmosphere under warming conditions. Environ Res Lett. 2015;10(5):054016. https://doi.org/10.1088/1748-9326/10/5/054016.
CAS
Article
Google Scholar
Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A. Freshwater methane emissions offset the continental carbon sink. Science. 2011;331(6013):50–0. https://doi.org/10.1126/science.1196808.
van Huissteden J, Berrittella C, Parmentier FJW, Mi Y, Maximov TC, Dolman AJ. Methane emissions from permafrost thaw lakes limited by lake drainage. Nat Clim Chang. 2011;1(2):119–23. https://doi.org/10.1038/nclimate1101.
CAS
Article
Google Scholar
Archer D. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin. Biogeosciences. 2015;12(10):2953–74. https://doi.org/10.5194/bg-12-2953-2015.
Article
Google Scholar
Angelopoulos M, Overduin PP, Miesner F, Grigoriev MN, Vasiliev AA. Recent advances in the study of Arctic submarine permafrost. Permafrost Periglac. 2020;31:442–53. https://doi.org/10.1002/ppp.2061.
Article
Google Scholar
Walter Anthony KM, Anthony P, Grosse G, Chanton J. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat Geosci. 2012;5(6):419–26. https://doi.org/10.1038/ngeo1480.
CAS
Article
Google Scholar
Christensen TR, Arora VK, Gauss M, Höglund-Isaksson L, Parmentier F-JW. Tracing the climate signal: mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase. Sci Report. 2019;9(1):1146. https://doi.org/10.1038/s41598-018-37719-9.
CAS
Article
Google Scholar
Enting I. Estimation and inversion across the spectrum of carbon cycle modelling. AIMS Geosciences. 2018;4:126–43.
CAS
Article
Google Scholar
Tarantola A. Inverse problem theory methods for data fitting and model parameter estimation. New York: Elsevier Sci; 1987.
Google Scholar
Miller, S.M., C.E. Miller, R. Commane, R.Y.-W. Chang, S.J. Dinardo, J.M. Henderson, A. Karion, J. Lindaas, J.R. Melton, J.B. Miller, C. Sweeney, S.C. Wofsy, A.M. Michalak (2016) A multiyear estimate of methane fluxes in Alaska from CARVE atmospheric observations. Global Biogeochem. Cycles, 30 (10), 1441–1453. doi:https://doi.org/10.1002/2016GB005419.
Rödenbeck C. Estimating CO2 sources and sinks from atmospheric mixing ratio measurements using a global inversion of atmospheric transport, Technical Report 6. Jena, Germany: Max Planck Institute for Biogeochemistry; 2005.
Chevallier F. Validation report for the inverted CO2 fluxes, v18r1. CAMS deliverable CAMS73_2018SC1_D73.1.4.1-2017- v0_201812; 2018. https://atmosphere.copernicus.eu/sites/default/files/2019-01/CAMS73_2018SC1_D73.1.4.1-2017-v0_201812_v1_final.pdf.
Peters W, Jacobson AR, Sweeney C, Andrews AE, Conway TJ, Masarie K, et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. PNAS. 2007;104(48):18925–30. https://doi.org/10.1073/pnas.0708986104.
CAS
Article
Google Scholar
van der Laan-Luijkx IT, van der Velde IR, van der Veen E, Tsuruta A, Stanislawska K, Babenhauserheide A, et al. The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: implementation and global carbon balance 2001–2015. Geosci Model Dev. 2017;10(7):2785–800. https://doi.org/10.5194/gmd-10-2785-2017.
Article
Google Scholar
Parazoo NC, Commane R, Wofsy SC, Koven CD, Sweeney C, Lawrence DM, et al. PNAS. 2016;113(28):7733–8. https://doi.org/10.1073/pnas.1601085113.
Leonard, M. et al. (2020) Examining the global terrestrial carbon cycle using ‘top-down’ and ‘bottom-up’ models. in prep.
Welp LR, Patra PK, Rödenbeck C, Nemani R, Bi J, Piper SC, et al. Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI. Atmos Chem Phys. 2016;16:9047–66. https://doi.org/10.5194/acp-16-9047-2016.
Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, et al. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles. 1993;7(4):811–41. https://doi.org/10.1029/93GB02725.
Randerson JT, Van Der Werf GR, Giglio L, Collatz GJ, Kasibhatla PS. Global fire emissions database, version 4.1 (GFEDv4). ORNL DAAC. 2015. https://doi.org/10.3334/ORNLDAAC/1293.
Schaefer K, Collatz GJ, Tans P, Denning AS, Baker I, Berry J, et al. Combined simple biosphere/Carnegie-Ames-Stanford approach terrestrial carbon cycle model. J Geophys Res G: Biogeosci. 2008;113(G3):G03034. https://doi.org/10.1029/2007JG000603.
CAS
Article
Google Scholar
Haynes K, Baker IT, Denning S, Stöckli R, Schaefer K, Lokupitiya EY, et al. Representing grasslands using dynamic prognostic phenology based on biological growth stages: 1. Implementation in the Simple Biosphere Model (SiB4). J Adv Model Earth Syst. 2019a;11:4423–39. https://doi.org/10.1029/2018MS001540.
Haynes KD, Baker IT, Denning AS, Wolf S, Wohlfahrt G, Kiely G, et al. Representing grasslands using dynamic prognostic phenology based on biological growth stages: 2. Carbon cycling. J Adv Model Earth Syst. 2019b;11:4440–65. https://doi.org/10.1029/2018MS001541.
Article
Google Scholar
Schaefer K, Lantuit H, Romanovsky VE, Schuur EAG, Witt R. The impact of permafrost carbon feedback on global climate. Environ Res Lett. 2014;9:085003. https://doi.org/10.1088/1748-9326/9/8/085003.
CAS
Article
Google Scholar