Skip to main content

Advertisement

Log in

Future changes in vegetation and ecosystem function of the Barents Region

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The dynamic vegetation model (LPJ-GUESS) is used to project transient impacts of changes in climate on vegetation of the Barents Region. We incorporate additional plant functional types, i.e. shrubs and defined different types of open ground vegetation, to improve the representation of arctic vegetation in the global model. We use future climate projections as well as control climate data for 1981–2000 from a regional climate model (REMO) that assumes a development of atmospheric CO2-concentration according to the B2-SRES scenario [IPCC, Climate Change 2001: The scientific basis. Contribution working group I to the Third assessment report of the IPCC. Cambridge University Press, Cambridge (2001)]. The model showed a generally good fit with observed data, both qualitatively when model outputs were compared to vegetation maps and quantitatively when compared with observations of biomass, NPP and LAI. The main discrepancy between the model output and observed vegetation is the overestimation of forest abundance for the northern parts of the Kola Peninsula that cannot be explained by climatic factors alone. Over the next hundred years, the model predicted an increase in boreal needle leaved evergreen forest, as extensions northwards and upwards in mountain areas, and as an increase in biomass, NPP and LAI. The model also projected that shade-intolerant broadleaved summergreen trees will be found further north and higher up in the mountain areas. Surprisingly, shrublands will decrease in extent as they are replaced by forest at their southern margins and restricted to areas high up in the mountains and to areas in northern Russia. Open ground vegetation will largely disappear in the Scandinavian mountains. Also counter-intuitively, tundra will increase in abundance due to the occupation of previously unvegetated areas in the northern part of the Barents Region. Spring greening will occur earlier and LAI will increase. Consequently, albedo will decrease both in summer and winter time, particularly in the Scandinavian mountains (by up to 18%). Although this positive feedback to climate could be offset to some extent by increased CO2 drawdown from vegetation, increasing soil respiration results in NEE close to zero, so we cannot conclude to what extent or whether the Barents Region will become a source or a sink of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACIA (2005) Arctic climate impact assessment. Cambridge University Press, Cambridge, p 1042

    Google Scholar 

  • Arctic Climate Impact Assessment—Policy Document (2004) Issued by the Fourth Arctic Council Ministerial Meeting Reykjavik, 24 November 2004

  • Asner GP, Scurlock JMO, Hicke JA (2003) Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Glob Ecol Biogeogr 12:191–205

    Article  Google Scholar 

  • Austrheim G (2002) Plant diversity patterns in semi-natural grasslands along an elevational gradient in southern Norway. Plant Ecol 161:193–205

    Article  Google Scholar 

  • Badeck F-W, Lischke H, Bugmann H et al (2001) Tree species composition in European pristine forests: comparison of stand data to model predictions. Clim Change 51:307–347

    Article  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1996) Ecology. Blackwell Science, Oxford

    Google Scholar 

  • Beringer J, Chapin FS, Thompson CC, McGuire AD (2005) Surface energy exchanges along a tundra–forest transition and feedbacks to climate. Agric For Meteorol 131:143–161

    Article  Google Scholar 

  • Betts A, Ball JH (1997) Albedo over the boreal forest. J Geophys Res 102:28901–28909

    Article  Google Scholar 

  • Blomqvist MM, Olff H, Blaauw MB, Bongers T, van der Putten WH (2000) Interactions between above- and belowground biota: importance for small-scale vegetation mosaics in a grassland ecosystem. Oikos 90:582–598

    Article  Google Scholar 

  • Bohn U, Gollub G, Hettwer C, Neuhäuslova Z, Raus T, Schlüter H, Weber H (2004) Map of the natural vegetation of Europe (Karte der natürlichen vegetation Europas). CD-ROM. Bundesamt für Naturschutz, Germany

    Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718

    Article  Google Scholar 

  • Callaghan TV, Jonasson S (1995) Arctic terrestrial ecosystems and environmental change. Phil Trans R Soc Lond A 352:259–274

    Article  Google Scholar 

  • Callaghan TV, Björn LO, Chernov Y et al (2004) Climate change and UV-B impacts on arctic tundra and polar desert ecosystems. Ambio 33(Special Issue 7):385–479

    Article  Google Scholar 

  • Chapin FS, Starfield, AM (1997) Time lags and novel ecosystems in response to transient climate change in arctic Alaska. Clim Change 35:449–461

    Article  Google Scholar 

  • Chapin FS III, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711

    Article  Google Scholar 

  • Chapin FS III, Sturm M, Serreze MC et al (2005) Role of land–surface changes in arctic summer warming. Science 310:657–660

    Article  Google Scholar 

  • Chapin FS III, Hoel M, Carpenter SR et al (2006) Building resilience to manage arctic change. Ambio 35(4):198–202

    Article  Google Scholar 

  • Chapman WL, Walsh JE (2003) Observed climate change in the Arctic, updated from Chapman and Walsh, 1993: recent variations of sea ice and air temperatures in high latitudes. Bull Am Meteorol Soc 74:33–47

    Article  Google Scholar 

  • Christensen TR, Panikov N, Mastepanov M, Joabsson A, Öquist M, Sommerkorn M, Reynaud S, Svensson B (2003) Biotic controls on CO2 and CH4 exchange in wetlands—a closed environment study. Biogeochemistry 64:337–354

    Article  Google Scholar 

  • Christensen TR, Johansson T, Åkerman JH, Mastepanov M, Malmer N, Friborg T, Crill P, Svensson BH (2004) Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys Res Lett 31:L04501

    Article  Google Scholar 

  • Cornelissen JHC, Callaghan TV, Alatalo JM et al (2001) Global change and Arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J Ecol 89:984–994

    Article  Google Scholar 

  • Cox CB, Moore PD (2000) Biogeography—an ecological and evolutionary approach. Blackwell Science, Oxford

    Google Scholar 

  • Cramer W (1997) Modeling the possible impact of climate change on broad-scale vegetation structure: examples from northern Europe. In: Oechel WC, Callaghan T, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and Arctic terrestrial ecosystems. Springer, New York, pp 312–329

    Google Scholar 

  • Crawford RMM, Jeffree CE, Rees WG (2003) Paludification and forest retreat in northern oceanic environments. Ann Bot 91:213–226

    Article  Google Scholar 

  • Dahlberg U (2001) Quantification and classification of Scandinavian mountain vegetation based on field data and optical satellite images. Licentiate Thesis, Department of Forest Resource Management and Geomatics. Swedish University of Agricultural Science

  • Dhillion SS, Gardsjord TL (2004) Arbuscular mycorrhizas influence plant diversity, productivity, and nutrients in boreal grasslands. Can J Bot 82:104–114

    Article  Google Scholar 

  • Dormann CF, Woodin SJ (2002) Climate change in the Arctic: using plant functional types in a meta-analysis of field experiments. Funct Ecol 16:4–17

    Article  Google Scholar 

  • Eklundh L (2003) Geografisk informationsbehandling—Metoder och tillämpningar. Formas, Stockholm

    Google Scholar 

  • FAO (Food and Agricultural Organisation) (1991) The digitized soil map of the World (Release 1.0). FAO, Rome

  • Fazakas Z, Nilsson M, Olsson H (1999) Regional forest biomass and wood volume estimation using satellite data and ancillary data. Agric For Meteorol 98–99:417–425

    Article  Google Scholar 

  • Frank AB, Dugas WA (2001) Carbon dioxide fluxes over a northern, semiarid, mixed-grass prairie. Agric For Meteorol 108:317–326

    Article  Google Scholar 

  • Gerten D, Schabhoff S, Haberlandt U, Lucht W, Sitch S (2004) Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. J Hydrol 286:249–270

    Article  Google Scholar 

  • Gilmanov TG, Oechel WC (1995) New estimates of organic matter reserves and net primary productivity of the North American tundra ecosystems. J Biogeogr 22:723–741

    Article  Google Scholar 

  • Gilmanov TG, Parton WJ, Ojima DS (1997) Testing the ‘CENTURY’ ecosystem level model on data sets from eight grassland sites in the former USSR representing a wide climatic/soil gradient. Ecol Model 96:191–210

    Article  Google Scholar 

  • Grogan P, Jonasson S (2003) Controls on annual nitrogen cycling in the understorey of a sub-arctic birch forest. Ecology 84:202–218

    Article  Google Scholar 

  • Harding R, Kuhry P, Christensen TR, Sykes MT, Dankers R, van der Linden S (2002) Climate feedbacks at the tundra–taiga interface. Ambio Spec Rep (Tundra–Taiga Treeline Research) 12:47–55

    Google Scholar 

  • Helle T (2001) Mountain birch forests and reindeer husbandry. In: Wielgolaski FE (ed) Nordic mountain birch ecosystems. The Parthenon Publishing Group, New York, pp 279–291

    Google Scholar 

  • Hickler T, Smith B, Sykes MT, Davis MB, Sugita S, Walker K (2004) Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology 85:519–530

    Article  Google Scholar 

  • Hobbie SE, Chapin FS III (1998) The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 79:1526–1544

    Google Scholar 

  • Høgda KA, Karlsen SR, Solheim I, Tømmervik H, Ramfjord H (2002) The start dates of birch pollen seasons in Fennoscandia studied by NOAA AVHRR NDVI data. Proceeding of IGARSS. 24–28 June 2002, Toronto, Ontario, Canada

  • Hultén E, Fries M (1986) Atlas of North European vascular plants: north of the Tropic of Cancer I–III. Koeltz Scientific Books, Königstein

    Google Scholar 

  • Huntley B (1997) The responses of vegetation to past and future climate changes. In: Oechel WC, Callaghan T, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and Arctic terrestrial ecosystems. Springer-Verlag, New York, pp 290–311

    Google Scholar 

  • IPCC (2001) Climate Change 2001: The scientific basis. Contribution working group I to the Third assessment report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Jackson GE, Irvine J, Grace J (1999) Xylem acoustic emissions and water relations of Calluna vulgaris L. at two climatological regions of Britain. Plant Ecology 140:3–14

    Article  Google Scholar 

  • Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73

    Article  Google Scholar 

  • Johansson T (1999) Biomass equations for determining fractions of pendula and pubescent birches growing on abandoned farmland and some practical implications. Biomass Bioenergy 16:223–238

    Article  Google Scholar 

  • Jones HE, Gore AJP (1981) A simulation approach to primary production. In: Bliss LC, Heal OW, Moore JJ (eds) Tundra ecosystems: a comparative analysis. Cambridge University Press, Cambridge, pp 239–256

    Google Scholar 

  • Juday GP, Barber B, Duffy P, Linderholm H, Rupp S, Sparrow S, Vaganov E, Yarie J (2005) Forest, land management, and agriculture. In: ACIA, Cambridge University Press, Cambridge, pp 781–862

  • Kaplan J (2001) Geophysical applications of vegetation modeling. PhD thesis, Department of Plant Ecology, Lund University, Lund

  • Keup-Thiel E, Göttel H, Jacob D (2006) Regional climate simulations for the Barents Sea region. Boreal Environ Res 11:1–12

    Google Scholar 

  • Kolb TE, Sperry JS (1999) Transport constraints on water use by the Great Basin shrub Artemisia tridentata. Plant, Cell & Environment 22:925–935

    Article  Google Scholar 

  • Koca D, Smith B, Sykes MT (2006) Modelling regional climate change effects on potential natural ecosystems in Sweden. Clim Change 78:381–406

    Article  Google Scholar 

  • Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90:68–77

    Article  Google Scholar 

  • Laiho R, Laine J (1997) Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland. For Ecol Manag 93:161−169

    Article  Google Scholar 

  • Lehtonen A, Mäkipää R, Heikkinen J, Sievänen R, Liski J (2004) Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For Ecol Manag 188:211−224

    Article  Google Scholar 

  • Lucht W, Prentice IC, Myneni RB et al (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296:1687–1689

    Article  Google Scholar 

  • Marissink M, Hansson M (2002) Floristic composition of a Swedish semi-natural grassland during six years of elevated atmospheric CO2. J Veg Sci 13:733–742

    Article  Google Scholar 

  • McDowell N, Barnard H, Bond B, Hinckley T, Hubbard R, Ishii H, Köstner B, Magnani F, Marshall J, Meinzer F, Phillips N, Ryan M, Whitehead D (2002) The relationship between tree height and leaf area: sapwood area ratio. Oecologia 132:1432–1939

    Google Scholar 

  • McGuire AD, Wirth C, Apps M et al (2002) Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes. J Veg Sci 13:301–314

    Article  Google Scholar 

  • Malmer N, Johansson T, Olsrud M, Christensen TR (2005) Vegetation, climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years. Glob Chang Biol 11:1895–1909

    Google Scholar 

  • Milne JA, Pakeman RJ, Kirkham FW, Jones IP, Hossell JE (2002) Biomass production of upland vegetation types in England and Wales. Grass Forage Sci 57:373–388

    Article  Google Scholar 

  • Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). July 2004. Working Paper 55. Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, UK

  • Monserud RA, Leemans R (1992) Comparing global vegetation maps with the Kappa statistics. Ecol Model 62:275–293

    Article  Google Scholar 

  • Morales P, Sykes MT, Prentice CI et al (2005) Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Glob Chang Biol 11:1–23

    Article  Google Scholar 

  • Mulder C, Jumpponen A, Högberg P, Huss-Danell K (2002) How plant diversity and legumes affect nitrogen dynamics in experimental grassland communities. Oecologia 133:412–421

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981–1991. Nature 386:698–702

    Article  Google Scholar 

  • Nabuurs GJ, Schelhaas MJ (2003) Spatial distribution of whole-tree carbon stocks and fluxes across the forests of Europe: where are the options for bio-energy? Biomass Bioenergy 24:311–320

    Article  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Article  Google Scholar 

  • Neuvonen S, Ruohomäki K, Bylund H, Kaitaniemi P (2001) Insect herbivores and herbivory effects on mountain birch dynamics. In: Wielgolaski FE (ed) Nordic mountain birch ecosystems. The Parthenon Publishing Group, New York, pp 207–222

    Google Scholar 

  • Niklaus PA, Leadley PW, Schmid B, Korner C (2001) A long-term field study on biodiversity X elevated CO2 interactions in grassland. Ecol Monogr 71:341–356

    Google Scholar 

  • Oechel WC, Vourlitis GL, Hastings SJ, Zulueta RC, Hinzmann L, Kane D (2000) Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406:978–981

    Article  Google Scholar 

  • Oguntunde PG, van de Giesen N (2004) Crop growth and development effects on surface albedo for maize and cowpea fields in Ghana, West Africa. Int J Biometeorol 49:106–112

    Article  Google Scholar 

  • Olson, JS (1994a) Global ecosystem framework-definitions: USGS EROS Data Center Internal Report, Sioux Falls, SD, 37 p

  • Olson, JS (1994b) Global ecosystem framework-translation strategy: USGS EROS Data Center Internal Report, Sioux Falls, SD, p 39

  • Pfeiffer S, Jacob D (2005) Changes of Arctic climate under the SRES B2 scenario conditions. Meteorol Z 14:711–719

    Article  Google Scholar 

  • Potter JA, Press MC, Callaghan TV, Lee JA (1995) Growth responses of Polytrichum commune and Hylocomium splendens to simulated environmental change. New Phytol 131:533–541

    Article  Google Scholar 

  • Press MC, Potter JA, Burke MJW, Callaghan TV, Lee J (1998) Response of a subarctic dwarf shrub heath community to simulated environmental change. J Ecol 86:315–327

    Article  Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L et al (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of the present day climate. Max-Planck-Institut für Meteorologie Report No. 218

  • Rosset M, Montani M, Tanner M, Fuhrer J (2001) Effects of abandonment on the energy balance and evapotranspiration of wet subalpine grassland. Agric Ecosyst Environ 86:277–286

    Article  Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS III et al (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207

    Article  Google Scholar 

  • Shaver GR, Jonasson S (1999) Response of Arctic ecosystems to climate change: results of long-term field experiments in Sweden and Alaska. Polar Res 18:245–252

    Article  Google Scholar 

  • Shaver GR, Bret-Harte MS, Jones MH, Johnstone J, Gough L, Laundre J, Chapin FS III (2001) Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82:3163–3181

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9:161

    Article  Google Scholar 

  • Sitch S, McGuire AD, Kimball J, Gedney N, Gamon J, Engstrom R, Wolf A, Zhuang Q, Clein J, McDonald KC (2007) Assessing the carbon balance of circumpolar arctic tundra using remote sensing and process modeling. Ecol Appl 17:213–234

    Article  Google Scholar 

  • Skre OR, Baxter R, Crawford MM, Callaghan TV, Fedorkov A (2002) How will the tundra–taiga interface respond to climate change? Ambio Spec Rep (Tundra–Taiga Treeline Research) 12:37–46

    Google Scholar 

  • Smirnov KA, Sudnitsyna TN (2003) Changes of structural and physicochemical parameters of spruce forest ecosystem under the effect of moose (Alces alces L.). Russ J Ecol 34:175–180

    Article  Google Scholar 

  • Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob Ecol Biogeogr 10:621–637

    Google Scholar 

  • Sonesson M, Hoogesteger J (1983) Recent tree-line dynamics (Betula pubescens Ehrh. Ssp. Tortuosa (Ledb.) Nyman) in northern Sweden. Nordicana 47:47–54

    Google Scholar 

  • Sturm M, Racine C, Tape K (2001) Increasing shrub abundance in the Arctic. Nature 411:546–547

    Article  Google Scholar 

  • Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Chang Biol 12:686–702

    Article  Google Scholar 

  • Tikhomirov BA, Shamurin VF, Aleksandrova VD (1981) Phytomass and primary production of tundra communities, USSR. In: Bliss LC, Heal OW, Moore JJ (eds) Tundra ecosystems: a comparative analysis. Cambridge University Press, Cambridge, pp 227–238

    Google Scholar 

  • Thompson C, Beringer J, Chapin FS III, McGuire AD (2004) Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest. J Veg Sci 15:397–406

    Article  Google Scholar 

  • Tømmervik H, Johansen B, Tombre I, Thannheiser D, Høgda KA, Gaare E, Wielgolaski FE (2004) Vegetation changes in the Nordic mountain birch forest: the influence of grazing and climate change. Arct Antarct Alp Res 46:323–332

    Article  Google Scholar 

  • Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int J Biometeorol 45:184–190

    Article  Google Scholar 

  • van Breemen N (1995) How Sphagnum bogs down other plants. Trends Ecol Evol 10:270–275

    Article  Google Scholar 

  • van der Hoek D, van Mierlo AJEM, van Groenendael JM (2004) Nutrient limitation and nutrient-driven shifts in plant species composition in a species-rich fen meadow. J Veg Sci 15:389–396

    Article  Google Scholar 

  • Van Wijk MT, Williams M, Laundre JA, Shaver GR (2003) Interannual variability of plant phenology in tussock tundra: modelling interactions of plant productivity, plant phenology, snowmelt and soil thaw. Glob Chang Biol 9:743–758

    Article  Google Scholar 

  • Vedrova EF (2002) The carbon balance in natural and disturbed forests of the southern taiga in central Siberia. J Veg Sci 13:341–350

    Article  Google Scholar 

  • Vlassova TK (2002) Human impacts on the tundra–taiga zone dynamics: the case of the Russian Lesotundra. Ambio Spec Rep (Tundra–Taiga Treeline Research) 12:30–36

    Google Scholar 

  • Vygodskaya NN, Schulze E-D, Tchebakova NM et al (2002) Climatic control of stand thinning in unmanaged spruce forests of the southern taiga in European Russia. Tellus Series B 54B:443–461

    Article  Google Scholar 

  • Walker DA (2000) Hierarchical subdivision of Arctic tundra based on vegetation response to climate, parent material and topography. Glob Chang Biol 6(S1):19–34

    Article  Google Scholar 

  • Walker DA, Gould WA, Maier HA, Raynolds MK (2002) The circumpolar Arctic vegetation map: AVHRR-derived base maps, environmental controls, and integrated mapping procedures. Int J Remote Sens 23:4551–4570

    Article  Google Scholar 

  • Walker MD, Wahren CH, Hollister RD et al (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–1346

    Article  Google Scholar 

  • Wardle DA, Hörnberg G, Zackrisson O, Kalela-Brundin M, Coomes DA (2003) Long-term effects of wildfire on ecosystem properties across an island area gradient. Science 300:972–975

    Article  Google Scholar 

  • Wielgolaski FE, Bliss LC, Svoboda J, Doyle G (1981) Primary production of tundra. In: Bliss LC, Heal OW, Moore JJ (eds) Tundra ecosystems: a comparative analysis. Cambridge University Press, Cambridge, pp 187–225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annett Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, A., Callaghan, T.V. & Larson, K. Future changes in vegetation and ecosystem function of the Barents Region. Climatic Change 87, 51–73 (2008). https://doi.org/10.1007/s10584-007-9342-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-007-9342-4

Keywords

Navigation