Skip to main content

Advertisement

Log in

Kidney-lung connections in acute and chronic diseases: current perspectives

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Lung and kidney functions are intimately related in both health and disease. The regulation of acid–base equilibrium, modification of partial pressure of carbon dioxide and bicarbonate concentration, and the control of blood pressure and fluid homeostasis all closely depend on renal and pulmonary activities. These interactions begin in fetal age and are often responsible for the genesis and progression of diseases. In gestational age, urine is a fundamental component of the amniotic fluid, acting on pulmonary maturation and growth. Moreover, in the first trimester of pregnancy, kidney is the main source of proline, contributing to collagen synthesis and lung parenchyma maturation. Pathologically speaking, the kidneys could become damaged by mediators of inflammation or immuno-mediated factors related to a primary lung pathology or, on the contrary, it could be the renal disease that determines a consecutive pulmonary damage. Furthermore, non immunological mechanisms are frequently involved in renal and pulmonary diseases, as observed in chronic pathologies such as sleep apnea syndrome, pulmonary hypertension, progressive renal disease and hemodialysis. Kidney damage has also been related to mechanical ventilation. The aim of this review is to describe pulmonary-renal interactions and their related pathologies, underscoring the need for a close collaboration between intensivists, pneumologists and nephrologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kayashima Y, Smithies O, Kakoki M (2012) The kallikrein-kinin system and oxidative stress. Curr Opin Nephrol Hypertens 21:92–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Izzo JL Jr, Weir MR (2011) Angiotensin-converting enzyme inhibitors. J Clin Hypertens (Greenwich) 13:667–675

    Article  CAS  Google Scholar 

  3. Hislop A, Hey E, Reid L (1979) The lungs in congenital bilateral renal agenesis and dysplasia. Arch Dis Child 54:32–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salant DJ (2010) Goodpasture’s disease–new secrets revealed. N Engl J Med 363:388–391

    Article  CAS  PubMed  Google Scholar 

  5. Santoro D, Pellicanò V, Visconti L, Trifirò G, Cernaro V, Buemi M (2015) Monoclonal antibodies for renal diseases: current concepts and ongoing treatments. Expert Opin Biol Ther 15:1119–1143

    Article  CAS  PubMed  Google Scholar 

  6. Hié M, Costedoat-Chalumeau N, Saadoun D, Azoulay E (2013) The pulmonary-renal syndrome: a diagnostic and therapeutic emergency for the internist and the intensivist. Rev Med Interne 34:679–686

    Article  PubMed  Google Scholar 

  7. Ioachimescu OC, Stoller JK (2008) Diffuse alveolar hemorrhage: diagnosing it and finding the cause. Cleve Clin J Med 75:264–265

    Article  Google Scholar 

  8. Jennette JC (2013) Overview of the 2012 revised International Chapel Hill Consensus Conference nomenclature of vasculitides. Clin Exp Nephrol 17:603–606

    Article  PubMed  PubMed Central  Google Scholar 

  9. Munshi BD, Sengupta S, Sharan A, Mukhopadhyay S, Ghosh B, Dasgupta A, Bhattacharyya R (2015) Anti-neutrophil cytoplasmic antibody (ANCA)-negative small vessel vasculitis: a rare cause of pulmonary renal syndrome. Intern Med 54:2759–2763

    Article  PubMed  Google Scholar 

  10. Jennette JC, Falk RJ, Andrassy K et al (1994) Nomenclature of systemic vasculitides: the proposal of an international consensus conference. Arthritis Rheum 37:187–192

    Article  CAS  PubMed  Google Scholar 

  11. Agarwal G, Sultan G, Werner SL, Hura C (2014) Hydralazine induces myeloperoxidase and proteinase 3 anti-neutrophil cytoplasmic antibody vasculitis and leads to pulmonary renal syndrome. Case Rep Nephrol 2014:868590

    PubMed  PubMed Central  Google Scholar 

  12. Dolman KM, Gans RO, Vervaat TJ et al (1993) Vasculitis and antineutrophil cytoplasmic autoantibodies associated with propylthiouracil therapy. Lancet 342:651–652

    Article  CAS  PubMed  Google Scholar 

  13. Grau RG (2015) Drug-induced vasculitis: new insights and a changing lineup of suspects. Curr Rheumatol Rep 17:71

    Article  PubMed  Google Scholar 

  14. Qin H, Guo Q, Shen N et al (2014) Chest imaging manifestations in lupus nephritis. Clin Rheumatol 33:817–823

    Article  PubMed  Google Scholar 

  15. Tamai K, Tomii K, Nakagawa A, Otsuka K, Nagata K (2015) Diffuse alveolar hemorrhage with predominantly right-sided infiltration resulting from cardiac comorbidities. Intern Med 54:319–324

    Article  PubMed  Google Scholar 

  16. de Prost N, Parrot A, Cuquemelle E et al (2012) Diffuse alveolar hemorrhage in immunocompetent patients: etiologies and prognosis revisited. Respir Med 106:1021–1032

    Article  PubMed  Google Scholar 

  17. Lacava V, Coppolino G, Puntorieri E et al (2015) Nephro-oncology: a link in evolution. Ren Fail 37:1260–1266

    Article  PubMed  Google Scholar 

  18. Bernard GR, Artigas A, Brigham KL, Brigham KL et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    Article  CAS  PubMed  Google Scholar 

  19. Ferguson ND, Frutos-Vivar F, Esteban A, Fernández-Segoviano P, Aramburu JA, Nájera L, Stewart TE (2005) Acute respiratory distress syndrome: under recognition by clinicians and diagnostic accuracy of three clinical definitions. Crit Care Med 33:2228–2234

    Article  PubMed  Google Scholar 

  20. Definition Task Force ARDS, Ranieri VM et al (2012) Acute respiratory distress syndrome: the Berlin Definition. JAMA 307:2526–2533

    Google Scholar 

  21. Endo S, Shibata S, Sato N et al (2010) A prospective cohort study of ALI/ARDS in the Tohoku district of Japan (second report). J Anesth 24:351–358

    Article  PubMed  Google Scholar 

  22. Chiumello D, Marino A, Brioni M et al (2013) Visual anatomical lung CT scan assessment of lung recruitability. Intensive Care Med 39:66–73

    Article  PubMed  Google Scholar 

  23. Lichtenstein D, Goldstein I, Mourgeon E, Cluzel P, Grenier P, Rouby JJ (2004) Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology 100:9–15

    Article  PubMed  Google Scholar 

  24. Galbois A, Ait-Oufella H, Baudel JL et al (2010) Pleural ultrasound compared with chest radiographic detection of pneumothorax resolution after drainage. Chest 138:648–655

    Article  PubMed  Google Scholar 

  25. Bellani G, Messa C, Guerra L et al (2009) Lungs of patients with acute respiratory distress syndrome show diffuse inflammation in normally aerated regions: a [18F]-fluoro-2-deoxy-d-glucose PET/CT study. Crit Care Med 37:2216–2222

    Article  PubMed  Google Scholar 

  26. Matsuoka S, Hunsaker AR, Gill RR, Jacobson FL, Ohno Y, Patz S, Hatabu H (2008) Functional MR imaging of the lung. Magn Reson Imaging Clin N Am 16:275–289

    Article  PubMed  Google Scholar 

  27. Ware LB, Matthay MA (2005) Clinical practice. Acute pulmonary edema. N Engl J Med 353:2788–2796

    Article  CAS  PubMed  Google Scholar 

  28. Yao YM, Luan YY, Zhang QH, Sheng ZY (2015) Pathophysiological aspects of sepsis: an overview. Methods Mol Biol 1237:5–15

    Article  CAS  PubMed  Google Scholar 

  29. Rubenfeld GD, Caldwell E, Peabody E et al (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693

    Article  CAS  PubMed  Google Scholar 

  30. Guinot PG, Dupont H, Longrois D (2015) Some questioning about the assessment of renal perfusion in sepsis. Crit Care Med 43:e262–e264

    Article  PubMed  Google Scholar 

  31. Prowle JR, Bellomo R (2015) Sepsis-associated acute kidney injury: macrohemodynamic and microhemodynamic alterations in the renal circulation. Semin Nephrol 35:64–74

    Article  PubMed  Google Scholar 

  32. Darmon M, Clec’h C, Adrie C et al (2014) Acute respiratory distress syndrome and risk of AKI among critically ill patients. Clin J Am Soc Nephrol 9:1347–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huet F, Semama DS, Gouyon JB, Guignard JP (1999) Protective effect of perindoprilat in the hypoxemia-induced renal dysfunction in the newborn rabbit. Pediatr Res 45:138–142

    Article  CAS  PubMed  Google Scholar 

  34. Semama DS, Thonney M, Guignard JP (1995) Does endothelin-1 mediate the hypoxemia-induced renal dysfunction in newborn rabbits? Biol Neonate 67:216–222

    Article  CAS  PubMed  Google Scholar 

  35. Ballèvre L, Thonney M, Guignard JP (1996) Role of nitric oxide in the hypoxemia-induced renal dysfunction of the newborn rabbit. Pediatr Res 39:725–730

    Article  PubMed  Google Scholar 

  36. Kilburn KH, Dowell AR (1971) Renal function in respiratory failure. Effects of hypoxia, hyperoxia, and hypercapnia. Arch Intern Med 127:754–762

    Article  CAS  PubMed  Google Scholar 

  37. Koyner JL, Murray PT (2010) Mechanical ventilation and the kidney. Blood Purif 29:52–68

    Article  PubMed  Google Scholar 

  38. Kuiper JW, Groeneveld ABJ, Slutsky AS, Plotz FB (2005) Mechanical ventilation and acute renal failure. Crit Care Med 33:1408–1415

    Article  PubMed  Google Scholar 

  39. Pannu N, Mehta RL (2004) Effect of mechanical ventilation on the kidney. Best Pract Res Clin Anaesthesiol 18:189–203

    Article  PubMed  Google Scholar 

  40. Annat G, Viale JP, Bui Xuan B et al (1983) Effect of PEEP ventilation on renal function, plasma renin, aldosterone, neurophysins and urinary ADH, and prostaglandins. Anesthesiology 58:136–141

    Article  CAS  PubMed  Google Scholar 

  41. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  42. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  CAS  PubMed  Google Scholar 

  43. Sakr Y, Vincent JL, Reinhart K et al (2005) High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 128:3098–3108

    Article  PubMed  Google Scholar 

  44. Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575

    Article  CAS  PubMed  Google Scholar 

  45. Roch A, Hraiech S, Dizier S, Papazian L (2013) Pharmacological interventions in acute respiratory distress syndrome. Ann Intensive Care 3:20

    Article  PubMed  PubMed Central  Google Scholar 

  46. Silva PL, Pelosi P, Rocco PR (2014) Fluids in acute respiratory distress syndrome: pros and cons. Curr Opin Crit Care 20:104–112

    Article  PubMed  Google Scholar 

  47. Liu KD, Matthay MA (2008) Advances in critical care for the nephrologist: acute lung injury/ARDS. Clin J Am Soc Nephrol 3:578–586

    Article  CAS  PubMed  Google Scholar 

  48. Chauhan S, Subin S (2011) Extracorporeal membrane oxygenation, an anesthesiologist’s perspective: physiology and principles. Part 1. Ann Card Anaesth 14:218–229

    Article  PubMed  Google Scholar 

  49. Peek GJ, Mugford M, Tiruvoipati R et al (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374:1351–1363

    Article  PubMed  Google Scholar 

  50. Haneya A, Diez C, Philipp A, Bein T, Mueller T, Schmid C, Lubnow M (2015) Impact of acute kidney injury on outcome in patients with severe acute respiratory failure receiving extracorporeal membrane oxygenation. Crit Care Med 43:1898–1906

    Article  CAS  PubMed  Google Scholar 

  51. Chen Q, Yu W, Shi J, Shen J, Hu Y, Gong J, Li J, Li N (2014) The effect of extracorporeal membrane oxygenation therapy on systemic oxidative stress injury in a porcine model. Artif Organs 38:426–431

    Article  PubMed  Google Scholar 

  52. Shi J, Chen Q, Yu W et al (2014) Continuous renal replacement therapy reduces the systemic and pulmonary inflammation induced by veno-venous extracorporeal membrane oxygenation in a porcine model. Artif Organs 38:215–223

    Article  CAS  PubMed  Google Scholar 

  53. Kielstein JT, Heiden AM, Beutel G (2013) Renal function and survival in 200 patients undergoing ECMO therapy. Nephrol Dial Transpl 28:86–90

    Article  Google Scholar 

  54. Paden ML, Warshaw BL, Heard ML, Fortenberry JD (2011) Recovery of renal function and survival after continuous renal replacement therapy during extracorporeal membrane oxygenation. Pediatr Crit Care Med 12:153–158

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hoover NG, Heard M, Reid C, Wagoner S, Rogers K, Foland J, Paden ML, Fortenberry JD (2008) Enhanced fluid management with continuous venovenous hemofiltration in pediatric respiratory failure patients receiving extracorporeal membrane oxygenation support. Intensive Care Med 34:2241–2247

    Article  PubMed  Google Scholar 

  56. Wolf MJ, Chanani NK, Heard ML, Kanter KR, Mahle WT (2013) Early renal replacement therapy during pediatric cardiac extracorporeal support increases mortality. Ann Thorac Surg 96:917–922

    Article  PubMed  Google Scholar 

  57. Faubel S, Edelstein CL (2015) Mechanisms and mediators of lung injury after acute kidney injury. Nat Rev Nephrol. doi:10.1038/nrneph.2015.158

    PubMed  Google Scholar 

  58. Druhan LJ, Forbes SP, Pope AJ, Chen CA, Zweier JL, Cardounel AJ (2008) Regulation of eNOS-derived superoxide by endogenous methylarginines. Biochemistry 47:7256–7263

    Article  CAS  PubMed  Google Scholar 

  59. Otterbein LE, Zuckerbraun BS, Haga M et al (2003) Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 9:183–190

    Article  CAS  PubMed  Google Scholar 

  60. Yanbaeva DG, Dentener MA, Creutzberg EC, Wesseling G, Wouters EF (2007) Systemic effects of smoking. Chest 131:1557–1566

    Article  CAS  PubMed  Google Scholar 

  61. Farber MO, Roberts LR, Weinberger MH, Robertson GL, Fineberg NS, Manfredi F (1982) Abnormalities of sodium and H2O handling in chronic obstructive lung disease. Arch Intern Med 142:1326–1330

    Article  CAS  PubMed  Google Scholar 

  62. Barakat MF, McDonald HI, Collier TJ, Smeeth L, Nitsch D (2015) Quint JK (2015) Acute kidney injury in stable COPD and at exacerbation. Int J Chron Obstruct Pulmon Dis 10:2067–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ricciardi CA, Lacquaniti A, Cernaro V et al (2015) Salt-water imbalance and fluid overload in hemodialysis patients: a pivotal role of corin. Clin Exp Med. doi:10.1007/s10238-015-0374-1

    PubMed  Google Scholar 

  64. Simonneau G, Robbins IM, Beghetti M et al (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54:S43–S54

    Article  PubMed  Google Scholar 

  65. Havlucu Y, Kursat S, Ekmekci C et al (2007) Pulmonary hypertension in patients with chronic renal failure. Respiration 74:503–510

    Article  CAS  PubMed  Google Scholar 

  66. Buemi M, Lacquaniti A, Bolignano D et al (2008) Dialysis and the elderly: an underestimated problem. Kidney Blood Press Res 31:330–336

    Article  PubMed  Google Scholar 

  67. Zoccali C (2012) Pulmonary hypertension in dialysis patients: a prevalent, risky but still uncharacterized disorder. Nephrol Dial Transpl 27:3674–3677

    Article  Google Scholar 

  68. Sise ME, Courtwright AM, Channick RN (2013) Pulmonary hypertension in patients with chronic and end-stage kidney disease. Kidney Int 84:682–692

    Article  CAS  PubMed  Google Scholar 

  69. Lacquaniti A, Bolignano D, Campo S et al (2009) Malnutrition in the elderly patient on dialysis. Ren Fail 31:239–245

    Article  PubMed  Google Scholar 

  70. Lacquaniti A, Bolignano D, Donato V et al (2011) Obestatin: a new element for mineral metabolism and inflammation in patients on hemodialysis. Kidney Blood Press Res 34:104–110

    Article  CAS  PubMed  Google Scholar 

  71. Neri G, Lacquaniti A, Rizzo G, Donato N, Latino M, Buemi M (2012) Real-time monitoring of breath ammonia during haemodialysis: use of ion mobility spectrometry (IMS) and cavity ring-down spectroscopy (CRDS) techniques. Nephrol Dial Transpl 27:2945–2952

    Article  CAS  Google Scholar 

  72. Agarwal R (2012) Prevalence, determinants and prognosis of pulmonary hypertension among hemodialysis patients. Nephrol Dial Transpl 27:3908–3914

    Article  Google Scholar 

  73. Yan Y, Zhao HP, Wang M (2009) Severe uremic lung: a case report and review. Beijing Da Xue Xue Bao 41:596–598

    PubMed  Google Scholar 

  74. Kimmel PL, Miller G, Mendelson WB (1989) Sleep apnea syndrome in chronic renal disease. Am J Med 86:308–314

    Article  CAS  PubMed  Google Scholar 

  75. Markou N, Kanakaki M, Myrianthefs P et al (2006) Sleep-disordered breathing in nondialyzed patients with chronic renal failure. Lung 184:43–49

    Article  PubMed  Google Scholar 

  76. Uyar M, Davutoğlu V, Gündoğdu N, Kosovalı D, Sarı İ (2015) Renal functions in obstructive sleep apnea patients. Sleep Breath. doi:10.1007/s11325-015-1204-0

    PubMed  Google Scholar 

  77. Sakaguchi Y, Hatta T, Hayashi T et al (2013) Association of nocturnal hypoxemia with progression of CKD. Clin J Am Soc Nephrol 8:1502–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kinebuchi S, Kazama JJ, Satoh M et al (2004) Short-term use of continuous positive airway pressure ameliorates glomerular hyperfiltration in patients with obstructive sleep apnoea syndrome. Clin Sci (Lond) 107:317–322

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Lacquaniti.

Ethics declarations

Funding source

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Financial disclosure

The authors have no financial relationships relevant to this article to disclose.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Statement on the welfare of animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visconti, L., Santoro, D., Cernaro, V. et al. Kidney-lung connections in acute and chronic diseases: current perspectives. J Nephrol 29, 341–348 (2016). https://doi.org/10.1007/s40620-016-0276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-016-0276-7

Keywords

Navigation