Skip to main content
Log in

Age effect on the shared etiology of glycemic traits and serum lipids: evidence from a Chinese twin study

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Diabetes and dyslipidemia are among the most common chronic diseases with increasing global disease burdens, and they frequently occur together. The study aimed to investigate differences in the heritability of glycemic traits and serum lipid indicators and differences in overlapping genetic and environmental influences between them across age groups.

Methods

This study included 1189 twin pairs from the Chinese National Twin Registry and divided them into three groups: aged ≤ 40, 41–50, and > 50 years old. Univariate and bivariate structural equation models (SEMs) were conducted on glycemic indicators and serum lipid indicators, including blood glucose (GLU), glycated hemoglobin A1c (HbA1c), total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C), in the total sample and three age groups.

Results

All phenotypes showed moderate to high heritability (0.37–0.64). The heritability of HbA1c demonstrated a downward trend with age (HbA1c: 0.50–0.79), while others remained relatively stable (GLU: 0.55–0.62, TC: 0.58–0.66, TG: 0.50–0.63, LDL-C: 0.24–0.58, HDL-C: 0.31–0.57). The bivariate SEMs demonstrated that GLU and HbA1c were correlated with each serum lipid indicator (0.10–0.17), except HDL-C. Except for HbA1c and LDL-C, as well as HbA1c and HDL-C, differences in genetic correlations underlying glycemic traits and serum lipids between age groups were observed, with the youngest group showing a significantly higher genetic correlation than the oldest group.

Conclusion

Across the whole adulthood, genetic influences were consistently important for GLU, TC, TG, LDL-C and HDL-C, and age may affect the shared genetic influences between glycemic traits and serum lipids. Further studies are needed to elucidate the role of age in the interactions of genes related to glycemic traits and serum lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB et al (2022) IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119. https://doi.org/10.1016/j.diabres.2021.109119

    Article  PubMed  Google Scholar 

  2. Su LQ, Wang YD, Chi HY (2017) Effect of curcumin on glucose and lipid metabolism, FFAs and TNF-alpha in serum of type 2 diabetes mellitus rat models. Saudi J Biol Sci 24(8):1776–1780. https://doi.org/10.1016/j.sjbs.2017.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Do R, Willer CJ, Schmidt EM, Sengupta S, Gao C, Peloso GM et al (2013) Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet 45(11):1345–1352. https://doi.org/10.1038/ng.2795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mooradian AD (2009) Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 5(3):150–159. https://doi.org/10.1038/ncpendmet1066

    Article  CAS  PubMed  Google Scholar 

  5. Chen YC, Xu C, Zhang JG, Zeng CP, Wang XF, Zhou R et al (2018) Multivariate analysis of genomics data to identify potential pleiotropic genes for type 2 diabetes, obesity and dyslipidemia using Meta-CCA and gene-based approach. PLoS ONE 13(8):0e0201173. https://doi.org/10.1371/journal.pone.0201173

    Article  CAS  Google Scholar 

  6. Fujihara K, Matsubayashi Y, Yamamoto M, Osawa T, Ishizawa M, Kaneko M et al (2017) Impact of body mass index and metabolic phenotypes on coronary artery disease according to glucose tolerance status. Diabetes Metab 43(6):543–546. https://doi.org/10.1016/j.diabet.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  7. Athyros VG, Doumas M, Imprialos KP, Stavropoulos K, Georgianou E, Katsimardou A et al (2018) Diabetes and lipid metabolism. Hormones (Athens) 17(1):61–67. https://doi.org/10.1007/s42000-018-0014-8

    Article  PubMed  Google Scholar 

  8. Riserus U, Arnlov J, Berglund L (2007) Long-term predictors of insulin resistance: role of lifestyle and metabolic factors in middle-aged men. Diabetes Care 30(11):2928–2933. https://doi.org/10.2337/dc07-0360

    Article  PubMed  Google Scholar 

  9. De Silva NM, Freathy RM, Palmer TM, Donnelly LA, Luan J, Gaunt T et al (2011) Mendelian randomization studies do not support a role for raised circulating triglyceride levels influencing type 2 diabetes, glucose levels, or insulin resistance. Diabetes 60(3):1008–1018. https://doi.org/10.2337/db10-1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. DeFronzo RA, Bonadonna RC, Ferrannini E (1992) Pathogenesis of NIDDM. A balanced overview. Diabetes Care 15(3):318–368. https://doi.org/10.2337/diacare.15.3.318

    Article  CAS  PubMed  Google Scholar 

  11. Krauss RM (2008) What can the genome tell us about LDL cholesterol? Lancet 371(9611):450–452. https://doi.org/10.1016/S0140-6736(08)60213-5

    Article  PubMed  Google Scholar 

  12. Li JK, Ng MC, So WY, Chiu CK, Ozaki R, Tong PC et al (2006) Phenotypic and genetic clustering of diabetes and metabolic syndrome in Chinese families with type 2 diabetes mellitus. Diabetes Metab Res Rev 22(1):46–52. https://doi.org/10.1002/dmrr.577

    Article  CAS  PubMed  Google Scholar 

  13. Qi Q, Liang L, Doria A, Hu FB, Qi L (2012) Genetic predisposition to dyslipidemia and type 2 diabetes risk in two prospective cohorts. Diabetes 61(3):745–752. https://doi.org/10.2337/db11-1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim YK, Hwang MY, Kim YJ, Moon S, Han S, Kim BJ (2016) Evaluation of pleiotropic effects among common genetic loci identified for cardio-metabolic traits in a Korean population. Cardiovasc Diabetol 15:20. https://doi.org/10.1186/s12933-016-0337-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li N, van der Sijde MR, LifeLines Cohort Study G, Bakker SJ, Dullaart RP, van der Harst P et al (2014) Pleiotropic effects of lipid genes on plasma glucose HbA1c and HOMA-IR levels. Diabetes 63(9):3149–3158. https://doi.org/10.2337/db13-1800

  16. Feng L, Nian S, Tong Z, Zhu Y, Li Y, Zhang C et al (2020) Age-related trends in lipid levels: a large-scale cross-sectional study of the general Chinese population. BMJ Open 10(3):e034226. https://doi.org/10.1136/bmjopen-2019-034226

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chia CW, Egan JM, Ferrucci L (2018) Age-Related changes in glucose metabolism, hyperglycemia, and cardiovascular risk. Circ Res 123(7):886–904. https://doi.org/10.1161/CIRCRESAHA.118.312806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao W, Cao W, Lv J, Yu C, Wu T, Wang S et al (2019) The Chinese National Twin Registry: a “gold mine” for scientific research. J Intern Med 286(3):299–308. https://doi.org/10.1111/joim.12926

    Article  CAS  PubMed  Google Scholar 

  19. Wang B, Gao W, Yu C, Cao W, Lv J, Wang S et al (2015) Determination of zygosity in adult Chinese twins using the 450K methylation array versus questionnaire data. PLoS ONE 10(4):e0123992. https://doi.org/10.1371/journal.pone.0123992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rijsdijk FV, Sham PC (2002) Analytic approaches to twin data using structural equation models. Brief Bioinform 3(2):119–133. https://doi.org/10.1093/bib/3.2.119

    Article  CAS  PubMed  Google Scholar 

  21. Akaike H (1987) Factor analysis and the AIC. Psychometrika 52(3):317–332. https://doi.org/10.1007/BF02294359

    Article  MathSciNet  Google Scholar 

  22. Wu Y, Zhang D, Pang Z, Jiang W, Wang S, Li S et al (2015) Multivariate modeling of body mass index, pulse pressure, systolic and diastolic blood pressure in Chinese twins. Twin Res Hum Genet 18(1):73–78. https://doi.org/10.1017/thg.2014.83

    Article  PubMed  Google Scholar 

  23. Alghamdi AS, Alqadi A, Jenkins RO, Haris PI (2021) The influence of gender and menopausal status on Hba1c variation in a big data study of a Saudi population. Curr Diabetes Rev 17(3):365–372. https://doi.org/10.2174/1573399816999200729143238

    Article  CAS  PubMed  Google Scholar 

  24. Murakata Y, Fujimaki T, Yamada Y (2015) Age-related changes in clinical parameters and their associations with common complex diseases. Biomed Rep 3(6):767–777. https://doi.org/10.3892/br.2015.505

    Article  PubMed  PubMed Central  Google Scholar 

  25. Souren NY, Paulussen AD, Loos RJ, Gielen M, Beunen G, Fagard R et al (2007) Anthropometry, carbohydrate and lipid metabolism in the East Flanders Prospective Twin Survey: heritabilities. Diabetologia 50(10):2107–2116. https://doi.org/10.1007/s00125-007-0784-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luo BF, Du L, Li JX, Pan BY, Xu JM, Chen J et al (2010) Heritability of metabolic syndrome traits among healthy younger adults: a population based study in China. J Med Genet 47(6):415–420. https://doi.org/10.1136/jmg.2009.068932

    Article  CAS  PubMed  Google Scholar 

  27. Almgren P, Lehtovirta M, Isomaa B, Sarelin L, Taskinen MR, Lyssenko V et al (2011) Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 54(11):2811–2819. https://doi.org/10.1007/s00125-011-2267-5

    Article  CAS  PubMed  Google Scholar 

  28. Liu H, Wang W, Zhang C, Xu C, Duan H, Tian X et al (2018) Heritability and genome-wide association study of plasma cholesterol in Chinese adult twins. Front Endocrinol (Lausanne) 9:677. https://doi.org/10.3389/fendo.2018.00677

    Article  PubMed  Google Scholar 

  29. Pilia G, Chen WM, Scuteri A, Orru M, Albai G, Dei M et al (2006) Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet 2(8):e132. https://doi.org/10.1371/journal.pgen.0020132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Papakonstantinou E, Oikonomou C, Nychas G, Dimitriadis GD (2022) Effects of diet, lifestyle, chrononutrition and alternative dietary interventions on postprandial glycemia and insulin resistance. Nutrients 14(4):823. https://doi.org/10.3390/nu14040823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang X, Imperatore G, Thomas W, Cheng YJ, Lobelo F, Norris K et al (2017) Effect of lifestyle interventions on glucose regulation among adults without impaired glucose tolerance or diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract 123:149–164. https://doi.org/10.1016/j.diabres.2016.11.020

    Article  CAS  PubMed  Google Scholar 

  32. Li S, Kyvik KO, Duan H, Zhang D, Pang Z, Hjelmborg J et al (2016) Longitudinal investigation into genetics in the conservation of metabolic phenotypes in Danish and Chinese twins. PLoS ONE 11(9):e0162805. https://doi.org/10.1371/journal.pone.0162805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Williams CJ, Wijesiri UW (1993) Lipid data from NHLBI veteran twins: interpreting genetic analyses when model assumptions fail. Genet Epidemiol 10(6):551–556. https://doi.org/10.1002/gepi.1370100637

    Article  CAS  PubMed  Google Scholar 

  34. Snieder H, van Doornen LJ, Boomsma DI (1999) Dissecting the genetic architecture of lipids, lipoproteins, and apolipoproteins: lessons from twin studies. Arterioscler Thromb Vasc Biol 19(12):2826–2834. https://doi.org/10.1161/01.atv.19.12.2826

    Article  CAS  PubMed  Google Scholar 

  35. Friedlander Y, Austin MA, Newman B, Edwards K, Mayer-Davis EI, King MC (1997) Heritability of longitudinal changes in coronary-heart-disease risk factors in women twins. Am J Hum Genet 60(6):1502–1512. https://doi.org/10.1086/515462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang M, Zhou J, Liu Y, Sun X, Luo X, Han C et al (2018) Risk of type 2 diabetes mellitus associated with plasma lipid levels: the rural Chinese cohort study. Diabetes Res Clin Pract 135:150–157. https://doi.org/10.1016/j.diabres.2017.11.011

    Article  CAS  PubMed  Google Scholar 

  37. Sosenko JM, Breslow J, Miettinen OS, Gabbay KH (1982) Hyperglycemia and plasma lipid levels: covariations in insulin-dependent diabetes. Diabetes Care 5(1):40–43. https://doi.org/10.2337/diacare.5.1.40

    Article  CAS  PubMed  Google Scholar 

  38. Owei I, Umekwe N, Wan J, Dagogo-Jack S (2016) Plasma lipid levels predict dysglycemia in a biracial cohort of nondiabetic subjects: potential mechanisms. Exp Biol Med (Maywood) 241(17):1961–1967. https://doi.org/10.1177/1535370216659946

    Article  CAS  PubMed  Google Scholar 

  39. Zhang L, Qiao Q, Tuomilehto J, Hammar N, Janus ED, Soderberg S et al (2009) Blood lipid levels in relation to glucose status in seven populations of Asian origin without a prior history of diabetes: the DECODA study. Diabetes Metab Res Rev 25(6):549–557. https://doi.org/10.1002/dmrr.994

    Article  CAS  PubMed  Google Scholar 

  40. James DE, Stockli J, Birnbaum MJ (2021) The aetiology and molecular landscape of insulin resistance. Nat Rev Mol Cell Biol 22(11):751–771. https://doi.org/10.1038/s41580-021-00390-6

    Article  CAS  PubMed  Google Scholar 

  41. Kumar S, Kumari B, Kaushik A, Banerjee A, Mahto M, Bansal A (2022) Relation Between HbA1c and lipid profile among prediabetics, diabetics, and non-diabetics: a hospital-based cross-sectional analysis. Cureus 14(12):e32909. https://doi.org/10.7759/cureus.32909

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kong X, Zhang X, Xing X, Zhang B, Hong J, Yang W (2015) The association of Type 2 diabetes loci identified in genome-wide association studies with metabolic syndrome and its components in a chinese population with Type 2 Diabetes. PLoS ONE 10(11):e0143607. https://doi.org/10.1371/journal.pone.0143607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Downie CG, Dimos SF, Bien SA, Hu Y, Darst BF, Polfus LM et al (2022) Multi-ethnic GWAS and fine-mapping of glycaemic traits identify novel loci in the PAGE Study. Diabetologia 65(3):477–489. https://doi.org/10.1007/s00125-021-05635-9

    Article  CAS  PubMed  Google Scholar 

  44. Klarin D, Damrauer SM, Cho K, Sun YV, Teslovich TM, Honerlaw J et al (2018) Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat Genet 50(11):1514–1523. https://doi.org/10.1038/s41588-018-0222-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stancakova A, Paananen J, Soininen P, Kangas AJ, Bonnycastle LL, Morken MA et al (2011) Effects of 34 risk loci for type 2 diabetes or hyperglycemia on lipoprotein subclasses and their composition in 6,580 nondiabetic Finnish men. Diabetes 60(5):1608–1616. https://doi.org/10.2337/db10-1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Avery CL, He Q, North KE, Ambite JL, Boerwinkle E, Fornage M et al (2011) A phenomics-based strategy identifies loci on APOC1, BRAP, and PLCG1 associated with metabolic syndrome phenotype domains. PLoS Genet 7(10):e1002322. https://doi.org/10.1371/journal.pgen.1002322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carty CL, Bhattacharjee S, Haessler J, Cheng I, Hindorff LA, Aroda V et al (2014) Analysis of metabolic syndrome components in >15 000 african americans identifies pleiotropic variants: results from the population architecture using genomics and epidemiology study. Circ Cardiovasc Genet 7(4):505–513. https://doi.org/10.1161/CIRCGENETICS.113.000386

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lin E, Kuo PH, Liu YL, Yang AC, Kao CF, Tsai SJ (2016) Association and interaction of APOA5, BUD13, CETP, LIPA and health-related behavior with metabolic syndrome in a Taiwanese population. Sci Rep 6:36830. https://doi.org/10.1038/srep36830

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Klimentidis YC, Arora A, Newell M, Zhou J, Ordovas JM, Renquist BJ et al (2020) Phenotypic and genetic characterization of lower LDL cholesterol and increased Type 2 diabetes risk in the UK Biobank. Diabetes 69(10):2194–2205. https://doi.org/10.2337/db19-1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rung J, Cauchi S, Albrechtsen A, Shen L, Rocheleau G, Cavalcanti-Proenca C et al (2009) Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet 41(10):1110–1115. https://doi.org/10.1038/ng.443

    Article  CAS  PubMed  Google Scholar 

  51. Kilpelainen TO, Zillikens MC, Stancakova A, Finucane FM, Ried JS, Langenberg C et al (2011) Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet 43(8):753–760. https://doi.org/10.1038/ng.866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iliadou A, Lichtenstein P, de Faire U, Pedersen NL (2001) Variation in genetic and environmental influences in serum lipid and apolipoprotein levels across the lifespan in Swedish male and female twins. Am J Med Genet 102(1):48–58. https://doi.org/10.1002/1096-8628(20010722)102:1%3c48::aid-ajmg1388%3e3.0.co;2-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the participants and project staff who took part in the Chinese National Twin Registry for their contributions.

Funding

This study was funded by the National Natural Science Foundation of China (82073633, 81973126, 81573223), the Special Fund for Health Scientific Research in the Public Welfare (201502006, 201002007), and Peking University Outstanding Discipline Construction Project of Epidemiology and Biostatistics.

Author information

Authors and Affiliations

Authors

Contributions

WG conceived and designed the study; ZP, MY, HW, XW, and YL helped conduct the field study and collect the data; XH, WC, JL, CY, TH, DS, CL and YP contributed to interpreting the results and provided critical comments; LL designed and supervised the conduct of the whole study and obtained funding; and YW analyzed data and drafted the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to W. Gao or L. Li.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest in this study.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Ethics approval was accepted by the Biomedical Ethics Committee at Peking University, Beijing, China (IRB00001052-13022/14021).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28897 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hong, X., Cao, W. et al. Age effect on the shared etiology of glycemic traits and serum lipids: evidence from a Chinese twin study. J Endocrinol Invest 47, 535–546 (2024). https://doi.org/10.1007/s40618-023-02164-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02164-7

Keywords

Navigation