Skip to main content

Advertisement

Log in

Epigenomic and transcriptomic landscaping unraveled candidate repositioned therapeutics for non-functioning pituitary neuroendocrine tumors

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Non-functioning pituitary neuroendocrine tumors are challengingly diagnosed tumors in the clinic. Transsphenoidal surgery remains the first-line treatment. Despite the development of state-of-the-art techniques, no drug therapy is currently approved for the treatment. There are also no randomized controlled trials comparing therapeutic strategies or drug therapy for the management after surgery. Therefore, novel therapeutic interventions for the therapeutically challenging NF-PitNETs are urgently needed.

Methods

We integrated epigenome and transcriptome data (both coding and non-coding) that elucidate disease-specific signatures, in addition to biological and pharmacological data, to utilize rational pathway and drug prioritization in NF-PitNETs. We constructed an epigenome- and transcriptome-based PPI network and proposed hub genes. The signature-based drug repositioning based on the integration of multi-omics data was performed.

Results

The construction of a disease-specific network based on three different biological levels revealed DCC, DLG5, ETS2, FOXO1, HBP1, HMGA2, PCGF3, PSME4, RBPMS, RREB1, SMAD1, SOCS1, SOX2, YAP1, ZFHX3 as hub proteins. Signature-based drug repositioning using hub proteins yielded repositioned drug candidates that were confirmed in silico via molecular docking. As a result of molecular docking simulations, palbociclib, linifanib, trametinib, eplerenone, niguldipine, and zuclopenthixol showed higher binding affinities with hub genes compared to their inhibitors and were proposed as potential repositioned therapeutics for the management of NF-PitNETs.

Conclusion

The proposed systems’ biomedicine-oriented multi-omics data integration for drug repurposing to provide promising results for the construction of effective clinical therapeutics. To the best of our knowledge, this is the first study reporting epigenome- and transcriptome-based drug repositioning for NF-PitNETs using in silico confirmations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets that were used in this study are publicly available at Gene Expression Omnibus (GEO Database) with the following links: GSE115783 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115783. GSE77517– https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE77517. GSE63357– https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63357.

References

  1. Asa SL, Casar-Borota O, Chanson P, Delgrange E, Earls P, Ezzat S, Grossman A, Ikeda H, Inoshita N, Karavitaki N (2017) From pituitary adenoma to pituitary neuroendocrine tumor (PitNET): an international pituitary pathology club proposal. Endocr Relat Cancer 24:C5–C8

    Article  CAS  PubMed  Google Scholar 

  2. Trouillas J, Jaffrain-Rea M-L, Vasiljevic A, Raverot G, Roncaroli F, Villa C (2020) How to classify pituitary neuroendocrine tumors (PitNET) s in 2020. Cancers (Basel) 12:514

    Article  CAS  PubMed  Google Scholar 

  3. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. https://doi.org/10.1093/neuonc/noy131

    Article  PubMed  PubMed Central  Google Scholar 

  4. Daly AF, Beckers A (2020) The Epidemiology of pituitary adenomas. Endocrinol Metab Clin North Am 49:347–355

    Article  PubMed  Google Scholar 

  5. Mercado M, Melgar V, Salame L, Cuenca D (2017) Clinically non-functioning pituitary adenomas: pathogenic, diagnostic and therapeutic aspects. Endocrinol diabetes y Nutr 64:384–395

    Article  Google Scholar 

  6. Llyod RV, Osamura RY, Klöppel GRJ (2017) WHO classification of tumours of endocrine organs. IARC, Lyon

    Google Scholar 

  7. Torregrosa-Quesada ME, García-Martínez A, Sánchez-Barbie A, Silva-Ortega S, Cámara R, Fajardo C, Pico A (2021) The silent variants of pituitary tumors: demographic, radiological and molecular characteristics. J Endocrinol Invest 44:1637–1648

    Article  CAS  PubMed  Google Scholar 

  8. Vargas G, Gonzalez B, Ramirez C, Ferreira A, Espinosa E, Mendoza V, Guinto G, Lopez-Felix B, Zepeda E, Mercado M (2015) Clinical characteristics and treatment outcome of 485 patients with nonfunctioning pituitary macroadenomas. Int J Endocrinol. https://doi.org/10.1155/2015/756069

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chanson P, Raverot G, Castinetti F, Cortet-Rudelli C, Galland F, Salenave S (2015) Management of clinically non-functioning pituitary adenoma. Annales d’endocrinologie. Elsevier, pp 239–247

  10. Penn DL, Burke WT, Laws ER (2018) Management of non-functioning pituitary adenomas: surgery. Pituitary 21:145–153

    Article  PubMed  Google Scholar 

  11. Lucas JW, Bodach ME, Tumialan LM, Oyesiku NM, Patil CG, Litvack Z, Aghi MK, Zada G (2016) Congress of neurological surgeons systematic review and evidence-based guideline on primary management of patients with nonfunctioning pituitary adenomas. Neurosurgery 79:E533–E535

    Article  PubMed  Google Scholar 

  12. Greenman Y, Stern N (2015) Optimal management of non-functioning pituitary adenomas. Endocrine 50:51–55

    Article  CAS  PubMed  Google Scholar 

  13. Even-Zohar N, Greenman Y (2018) Management of NFAs: medical treatment. Pituitary 21:168–175. https://doi.org/10.1007/s11102-018-0865-7

    Article  PubMed  Google Scholar 

  14. Brochier S, Galland F, Kujas M, Parker F, Gaillard S, Raftopoulos C, Young J, Alexopoulou O, Maiter D, Chanson P (2010) Factors predicting relapse of nonfunctioning pituitary macroadenomas after neurosurgery: a study of 142 patients. Eur J Endocrinol 163:193

    Article  CAS  PubMed  Google Scholar 

  15. Ilie MD, Raverot G (2020) Treatment options for gonadotroph tumors: current state and perspectives. J Clin Endocrinol Metab 105:e3507–e3518

    Article  Google Scholar 

  16. Peverelli E, Giardino E, Treppiedi D, Meregalli M, Belicchi M, Vaira V, Corbetta S, Verdelli C, Verrua E, Serban AL (2017) Dopamine receptor type 2 (DRD2) and somatostatin receptor type 2 (SSTR2) agonists are effective in inhibiting proliferation of progenitor/stem-like cells isolated from nonfunctioning pituitary tumors. Int J cancer 140:1870–1880

    Article  CAS  PubMed  Google Scholar 

  17. Wang H, Chen K, Yang Z, Li W, Wang C, Zhang G, Zhu L, Liu P, Yang Y (2019) Diagnosis of invasive nonfunctional pituitary adenomas by serum extracellular vesicles. Anal Chem 91:9580–9589

    Article  CAS  PubMed  Google Scholar 

  18. Aydin B, Arga KY (2019) Co-expression network analysis elucidated a core module in association with prognosis of non-functioning non-invasive human pituitary adenoma. Front Endocrinol (Lausanne) 10:361

    Article  PubMed  Google Scholar 

  19. Gossing W, Frohme M, Radke L (2020) Biomarkers for liquid biopsies of pituitary neuroendocrine tumors. Biomedicines. https://doi.org/10.3390/biomedicines8060148

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hernández-Ramírez LC, Morgan RML, Barry S, D’Acquisto F, Prodromou C, Korbonits M (2018) Multi-chaperone function modulation and association with cytoskeletal proteins are key features of the function of AIP in the pituitary gland. Oncotarget. https://doi.org/10.18632/oncotarget.24183

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gadelha MR, Kasuki L, Dénes J, Trivellin G, Korbonits M (2013) MicroRNAs: Suggested role in pituitary adenoma pathogenesis. J Endocrinol Invest 36:889–895

    Article  CAS  PubMed  Google Scholar 

  22. Beylerli O, Beeraka NM, Gareev I, Pavlov V, Yang G, Liang Y, Aliev G (2020) MiRNAs as noninvasive biomarkers and therapeutic agents of pituitary adenomas. Int J Mol Sci 21:7287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Butz H, Likó I, Czirják S, Igaz P, Korbonits M, Rácz K, Patócs A (2011) MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. Pituitary 14:112–124

    Article  CAS  PubMed  Google Scholar 

  24. Cheunsuchon P, Zhou Y, Zhang X, Lee H, Chen W, Nakayama Y, Rice KA, Hedley-Whyte ET, Swearingen B, Klibanski A (2011) Silencing of the imprinted DLK1-MEG3 locus in human clinically nonfunctioning pituitary adenomas. Am J Pathol 179:2120–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Z, Li C, Liu C, Yu S, Zhang Y (2015) Expression of the long non-coding RNAs MEG3, HOTAIR, and MALAT-1 in non-functioning pituitary adenomas and their relationship to tumor behavior. Pituitary 18:42–47. https://doi.org/10.1007/s11102-014-0554-0

    Article  CAS  PubMed  Google Scholar 

  26. Xing W, Qi Z, Huang C, Zhang N, Zhang W, Li Y, Qiu M, Fang Q, Hui G (2019) Genome-wide identification of lncRNAs and mRNAs differentially expressed in non-functioning pituitary adenoma and construction of an lncRNA-mRNA co-expression network. Biol Open. https://doi.org/10.1242/bio.037127

    Article  PubMed  Google Scholar 

  27. Klutstein M, Nejman D, Greenfield R, Cedar H (2016) DNA methylation in cancer and aging. Cancer Res 76:3446–3450

    Article  CAS  PubMed  Google Scholar 

  28. Srirangam Nadhamuni V, Korbonits M (2020) Novel insights into pituitary tumorigenesis: genetic and epigenetic mechanisms. Endocr Rev 41:821–846

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cheng S, Li C, Xie W, Miao Y, Guo J, Wang J, Zhang Y (2020) Integrated analysis of DNA methylation and mRNA expression profiles to identify key genes involved in the regrowth of clinically non-functioning pituitary adenoma. Aging (Albany NY) 12:2408

    Article  CAS  PubMed  Google Scholar 

  30. Vicchio TM, Aliquò F, Ruggeri RM, Ragonese M, Giuffrida G, Cotta OR, Ferraù F (2020) MicroRNAs expression in pituitary tumors: differences related to functional status, pathological features, and clinical behavior. J Endocrinol Investig 43:947–958

    Article  CAS  Google Scholar 

  31. Kober P, Boresowicz J, Rusetska N, Maksymowicz M, Goryca K, Kunicki J, Bonicki W, Siedlecki JA, Bujko M (2018) DNA methylation profiling in nonfunctioning pituitary adenomas. Mol Cell Endocrinol 473:194–204. https://doi.org/10.1016/j.mce.2018.01.020

    Article  CAS  PubMed  Google Scholar 

  32. Edgar R, Domrachev M, Lash AE (2002) Gene Expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210. https://doi.org/10.1093/nar/30.1.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smyth GK, Ritchie M, Thorne N, Wettenhall J (2005) LIMMA: linear models for microarray data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Statistics for Biology and Health

    Google Scholar 

  34. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:1–16

    Article  Google Scholar 

  35. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA (2014) Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30:1363–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tian Y, Morris TJ, Webster AP, Yang Z, Beck S, Feber A, Teschendorff AE (2017) ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics 33:3982–3984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, Lord RV, Clark SJ, Molloy PL (2015) De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin 8:1–16

    Article  Google Scholar 

  38. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, Beck S (2013) A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 29:189–196. https://doi.org/10.1093/bioinformatics/bts680

    Article  CAS  PubMed  Google Scholar 

  39. Chen Y, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, Gallinger S, Hudson TJ, Weksberg R (2013) Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8:203–209. https://doi.org/10.4161/epi.23470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kamburov A, Stelzl U, Lehrach H, Herwig R (2013) The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res 41:D793–D800. https://doi.org/10.1093/nar/gks1055

    Article  CAS  PubMed  Google Scholar 

  41. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523. https://doi.org/10.1038/s41467-019-09234-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484. https://doi.org/10.1093/nar/gkm882

    Article  CAS  PubMed  Google Scholar 

  43. The Gene Ontology Consortium (2019) The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res 47:D330–D338. https://doi.org/10.1093/nar/gky1055

  44. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, Jassal B, Jupe S, Korninger F, McKay S, Matthews L, May B, Milacic M, Rothfels K, Shamovsky V, Webber M, Weiser J, Williams M, Wu G, Stein L, Hermjakob H, D’Eustachio P (2016) The reactome pathway knowledgebase. Nucleic Acids Res 44:D481–D487. https://doi.org/10.1093/nar/gkv1351

    Article  CAS  PubMed  Google Scholar 

  45. Cheng L, Wang P, Tian R, Wang S, Guo Q, Luo M, Zhou W, Liu G, Jiang H, Jiang Q (2019) LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res 47:D140–D144. https://doi.org/10.1093/nar/gky1051

    Article  CAS  PubMed  Google Scholar 

  46. Liu C-J, Gao C, Ma Z, Cong R, Zhang Q, Guo A-Y (2017) lncRInter: a database of experimentally validated long non-coding RNA interaction. J Genet Genomics 44:265–268

    Article  PubMed  Google Scholar 

  47. Gov E, Arga KY (2016) Interactive cooperation and hierarchical operation of microRNA and transcription factor crosstalk in human transcriptional regulatory network. IET Syst Biol 10:219–228. https://doi.org/10.1049/iet-syb.2016.0001

    Article  PubMed  PubMed Central  Google Scholar 

  48. Karagoz K, Sevimoglu T, Arga KY (2016) Integration of multiple biological features yields high confidence human protein interactome. J Theor Biol 403:85–96

    Article  CAS  PubMed  Google Scholar 

  49. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8(Suppl 4):S11. https://doi.org/10.1186/1752-0509-8-S4-S11

    Article  PubMed  PubMed Central  Google Scholar 

  51. Campillos M, Kuhn M, Gavin A-C, Jensen LJ, Bork P (2008) Drug target identification using side-effect similarity. Science. https://doi.org/10.1126/science.1158140

    Article  PubMed  Google Scholar 

  52. Duan Q, Reid SP, Clark NR, Wang Z, Fernandez NF, Rouillard AD, Readhead B, Tritsch SR, Hodos R, Hafner M (2016) L1000CDS 2: LINCS L1000 characteristic direction signatures search engine. NPJ Syst Biol Appl 2:1–12

    Article  Google Scholar 

  53. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2019) PubChem 2019 update: improved access to chemical data. Nucleic Acids Res 47:D1102–D1109. https://doi.org/10.1093/nar/gky1033

    Article  PubMed  Google Scholar 

  54. Turanli B, Gulfidan G, Arga KY (2017) Transcriptomic-Guided drug repositioning supported by a new bioinformatics search tool: Genexpharma. Omi A J Integr Biol. https://doi.org/10.1089/omi.2017.0127

    Article  Google Scholar 

  55. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, Wiegers J, Wiegers TC, Mattingly CJ (2021) Comparative Toxicogenomics Database (CTD): update 2021. Nucleic Acids Res 49:D1138–D1143. https://doi.org/10.1093/nar/gkaa891

    Article  CAS  PubMed  Google Scholar 

  56. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide protein data bank. Nat Struct Mol Biol 10:980

    Article  CAS  Google Scholar 

  57. UniProt Consortium (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49(D1):D480–D489. https://doi.org/10.1093/nar/gkaa1100

  58. Velankar S, Best C, Beuth B, Boutselakis CH, Cobley N, Sousa Da Silva AW, Dimitropoulos D, Golovin A, Hirshberg M, John M (2010) PDBe: protein data bank in Europe. Nucleic Acids Res 38:D308–D317

    Article  CAS  PubMed  Google Scholar 

  59. Wass MN, Kelley LA, Sternberg MJE (2010) 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res 38:W469–W473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68. https://doi.org/10.1038/nrg2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Beermann J, Piccoli M-T, Viereck J, Thum T (2016) Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 96:1297–1325

    Article  CAS  PubMed  Google Scholar 

  63. Mormando M, Puliani G, Barnabei A, Lauretta R, Bianchini M, Chiefari A, Russillo M, Cognetti F, Romano L, Appetecchia M (2020) A rare case of pituitary melanoma metastasis: a dramatic and prolonged response to dabrafenib-trametinib therapy. Front Endocrinol (Lausanne) 11:471

    Article  PubMed  Google Scholar 

  64. Anderson E, Heller RS, Lechan RM, Heilman CB (2018) Regression of a nonfunctioning pituitary macroadenoma on the CDK4/6 inhibitor palbociclib: case report. Neurosurg Focus 44:E9. https://doi.org/10.3171/2018.2.FOCUS17660

    Article  PubMed  Google Scholar 

  65. Chen Y, Li Z, Fang Q, Wang H, Li C, Gao H, Zhang Y (2020) CDKN2A (p16INK4A) affects the anti-tumor effect of CDK inhibitor in somatotroph adenomas. Int J Mol Med 47:500–510. https://doi.org/10.3892/ijmm.2020.4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Campana C, Nista F, Castelletti L, Caputo M, Lavezzi E, Marzullo P, Gatto F (2022) Clinical and radiological presentation of parasellar ectopic pituitary adenomas: case series and systematic review of the literature. J Endocrinol Investig. https://doi.org/10.1007/s40618-022-01758-x

    Article  Google Scholar 

  67. Fang Y, Fullwood MJ (2016) Roles, functions, and mechanisms of long non-coding RNAS in cancer. Genom Proteom Bioinformat 14:42–54. https://doi.org/10.1016/j.gpb.2015.09.006

    Article  Google Scholar 

  68. Slaby O, Laga R, Sedlacek O (2017) Therapeutic targeting of non-coding RNAs in cancer. Biochem J 474:4219–4251. https://doi.org/10.1042/BCJ20170079

    Article  CAS  PubMed  Google Scholar 

  69. Du Q, Hu B, Feng Y, Wang Z, Wang X, Zhu D, Zhu Y, Jiang X, Wang H (2019) circOMA1-Mediated miR-145-5p suppresses tumor growth of nonfunctioning pituitary adenomas by targeting TPT1. J Clin Endocrinol Metab 104:2419–2434. https://doi.org/10.1210/jc.2018-01851

    Article  PubMed  Google Scholar 

  70. Cui M, Zhang M, Liu H-F, Wang J-P (2017) Effects of microRNA-21 targeting PITX2 on proliferation and apoptosis of pituitary tumor cells. Eur Rev Med Pharmacol Sci 21:2995–3004

    CAS  PubMed  Google Scholar 

  71. Trivellin G, Butz H, Delhove J, Igreja S, Chahal HS, Zivkovic V, McKay T, Patócs A, Grossman AB, Korbonits M (2012) MicroRNA miR-107 is overexpressed in pituitary adenomas and inhibits the expression of aryl hydrocarbon receptor-interacting protein in vitro. Am J Physiol Endocrinol Metab 303:E708–E719. https://doi.org/10.1152/ajpendo.00546.2011

    Article  CAS  PubMed  Google Scholar 

  72. Boresowicz J, Kober P, Rusetska N, Maksymowicz M, Paziewska A, Dąbrowska M, Zeber-Lubecka N, Kunicki J, Bonicki W, Ostrowski J (2020) DNA Methylation Influences miRNA expression in gonadotroph pituitary tumors. Life 10:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Haddick PCG, Tom I, Luis E, Quiñones G, Wranik BJ, Ramani SR, Stephan J-P, Tessier-Lavigne M, Gonzalez LC (2014) Defining the ligand specificity of the deleted in colorectal cancer (DCC) receptor. PLoS One 9:e84823

  74. Nakamura H, Sudo T, Tsuiki H, Miyake H, Morisaki T, Sasaki J, Masuko N, Kochi M, Ushio Y, Saya H (1998) Identification of a novel human homolog of the Drosophila dlg, P‐dlg, specifically expressed in the gland tissues and interacting with p55. FEBS Lett 433:63–67

  75. Dwyer J, Li HE, Xu D, LIU J (2007) Transcriptional regulation of telomerase activity: roles of the the Ets transcription factor family. Ann N Y Acad Sci 1114:36–47

  76. Nakae J, Kitamura T, Kitamura Y, Biggs III WH, Arden KC, Accili D (2003) The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell 4:119–129

  77. Sampson EM, Haque ZK, Ku M, Tevosian SG, Albanese C, Pestell RG, Paulson KE, Yee AS (2001) Negative regulation of the Wnt–β‐catenin pathway by the transcriptional repressor HBP1. EMBO J 20:4500–4511

  78. Taherbhoy AM, Huang OW, Cochran AG (2015) BMI1-RING1B is an autoinhibited RING E3 ubiquitin ligase. Nat Commun 6:7621. https://doi.org/10.1038/ncomms8621

  79. Taherbhoy AM, Huang OW, Cochran AG (2015) BMI1-RING1B is an autoinhibited RING E3 ubiquitin ligase. Nat Commun 6:7621. https://doi.org/10.1038/ncomms8621

  80. Qian M-X, Pang Y, Liu CH, Haratake K, Du B-Y, Ji D-Y, Wang G-F, Zhu Q-Q, Song W, Yu Y, Zhang X-X, Huang H-T, Miao S, Chen L-B, Zhang Z-H, Liang Y-N, Liu S, Cha H, Yang D, Zhai Y, Komatsu T, Tsuruta F, Li H, Cao C, Li W, Li G-H, Cheng Y, Chiba T, Wang L, Goldberg AL, Shen Y, Qiu X-B (2013) Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 153:1012–1024. https://doi.org/10.1016/j.cell.2013.04.032

  81. Sun Y, Ding L, Zhang H, Han J, Yang X, Yan J, Zhu Y, Li J, Song H, Ye Q (2006) Potentiation of Smad-mediated transcriptional activation by the RNA-binding protein RBPMS. Nucleic Acids Res 34:6314–6326 . https://doi.org/10.1093/nar/gkl914

  82. Date S, Nibu Y, Yanai K, Hirata J, Yagami K-I, Fukamizu A (2004) Finb, a multiple zinc finger protein, represses transcription of the human angiotensinogen gene. Int J Mol Med 13:637–642

  83. Lin W, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. Am Soc Clin Investig 117:1175–1183

  84. Kamizono S, Hanada T, Yasukawa H, Minoguchi S, Kato R, Minoguchi M, Hattori K, Hatakeyama S, Yada M, Morita S, Kitamura T, Kato H, Ki N, Yoshimura A (2001) The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J Biol Chem 276:12530–12538 . https://doi.org/10.1074/jbc.M010074200

  85. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872 . https://doi.org/10.1016/j.cell.2007.11.019

  86. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai Z-C, Guan K-L (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21:2747–2761. https://doi.org/10.1101/gad.1602907

  87. Mabuchi M, Kataoka H, Miura Y, Kim T-S, Kawaguchi M, Ebi M, Tanaka M, Mori Y, Kubota E, Mizushima T, Shimura T, Mizoshita T, Tanida S, Kamiya T, Asai K, Joh T (2010) Tumor suppressor, AT motif binding factor 1 (ATBF1), translocates to the nucleus with runt domain transcription factor 3 (RUNX3) in response to TGF-beta signal transduction. Biochem Biophys Res Commun 398:321–325. https://doi.org/10.1016/j.bbrc.2010.06.090

  88. Lv T, Zhang Z, Yu H, Ren S, Wang J, Li S et al (2022) Tamoxifen exerts anticancer effects on pituitary adenoma progression via inducing cell apoptosis and inhibiting cell migration. Int J Mol Sci 23:2664

  89. Raverot G, Burman P, McCormack A, Heaney A, Petersenn S, Popovic V et al (2018) European society of endocrinology clinical practice guidelines for the management of aggressive pituitary tumours and carcinomas. Eur J Endocrinol 178:G1–24

  90. Yavropoulou MP, Tsoli M, Barkas K, Kaltsas G, Grossman A (2020) The natural history and treatment of non-functioning pituitary adenomas (non-functioning PitNETs). Endocr Relat Cancer 27:R375–R390

    Article  CAS  PubMed  Google Scholar 

  91. Toogood PL, Harvey PJ, Repine JT, Sheehan DJ, VanderWel SN, Zhou H, Keller PR, McNamara DJ, Sherry D, Zhu T, Brodfuehrer J, Choi C, Barvian MR, Fry DW (2005) Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J Med Chem 48:2388–2406. https://doi.org/10.1021/jm049354h

    Article  CAS  PubMed  Google Scholar 

  92. Turner NC, Ro J, André F, Loi S, Verma S, Iwata H, Harbeck N, Loibl S, Huang Bartlett C, Zhang K, Giorgetti C, Randolph S, Koehler M, Cristofanilli M (2015) Palbociclib in hormone-receptor–positive advanced breast cancer. N Engl J Med 373:209–219. https://doi.org/10.1056/NEJMoa1505270 (Epub 2015 Jun 1. PMID: 26030518)

    Article  CAS  PubMed  Google Scholar 

  93. Italiano A, Bianchini L, Keslair F, Bonnafous S, Cardot-Leccia N, Coindre J, Dumollard J, Hofman P, Leroux A, Mainguené C (2008) HMGA2 is the partner of MDM2 in well-differentiated and dedifferentiated liposarcomas whereas CDK4 belongs to a distinct inconsistent amplicon. Int J cancer 122:2233–2241

    Article  CAS  PubMed  Google Scholar 

  94. Fedele M, Visone R, De Martino I, Troncone G, Palmieri D, Battista S, Ciarmiello A, Pallante P, Arra C, Melillo RM (2006) HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell 9:459–471

    Article  CAS  PubMed  Google Scholar 

  95. Aversa C, Leone F, Zucchini G, Serini G, Geuna E, Milani A, Valdembri D, Martinello R, Montemurro F (2015) Linifanib: current status and future potential in cancer therapy. Expert Rev Anticancer Ther 15:677–687

    Article  CAS  PubMed  Google Scholar 

  96. Tan E-H, Goss GD, Salgia R, Besse B, Gandara DR, Hanna NH, Yang JC-H, Thertulien R, Wertheim M, Mazieres J (2011) Phase 2 trial of Linifanib (ABT-869) in patients with advanced non-small cell lung cancer. J Thorac Oncol 6:1418–1425

    Article  PubMed  Google Scholar 

  97. Cainap C, Qin S, Huang W-T, Chung IJ, Pan H, Cheng Y, Kudo M, Kang Y-K, Chen P-J, Toh H-C (2015) Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J Clin Oncol 33:172

    Article  CAS  PubMed  Google Scholar 

  98. Wang ES, Yee K, Koh LP, Hogge D, Enschede S, Carlson DM, Dudley M, Glaser K, McKeegan E, Albert DH (2012) Phase 1 trial of linifanib (ABT-869) in patients with refractory or relapsed acute myeloid leukemia. Leuk Lymphoma 53:1543–1551

    Article  CAS  PubMed  Google Scholar 

  99. Albert DH, Tapang P, Magoc TJ, Pease LJ, Reuter DR, Wei R-Q, Li J, Guo J, Bousquet PF, Ghoreishi-Haack NS (2006) Preclinical activity of ABT-869, a multitargeted receptor tyrosine kinase inhibitor. Mol Cancer Ther 5:995–1006

    Article  CAS  PubMed  Google Scholar 

  100. Ortiz LD, Syro LV, Scheithauer BW, Ersen A, Uribe H, Fadul CE, Rotondo F, Horvath E, Kovacs K (2012) Anti-VEGF therapy in pituitary carcinoma. Pituitary 15:445–449

    Article  PubMed  Google Scholar 

  101. Wright CJM, McCormack PL (2013) Trametinib: first global approval. Drugs 73:1245–1254

    Article  PubMed  Google Scholar 

  102. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, Lichinitser M, Dummer R, Grange F, Mortier L (2015) Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 372:30–39

    Article  PubMed  Google Scholar 

  103. Walters DM, Lindberg JM, Adair SJ, Newhook TE, Cowan CR, Stokes JB, Borgman CA, Stelow EB, Lowrey BT, Chopivsky ME (2013) Inhibition of the growth of patient derived pancreatic cancer xenografts with the MEK inhibitor trametinib is augmented by combined treatment with the epidermal growth factor receptor HER2 inhibitor lapatinib. Neoplasia 15(2):143-IN10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Planchard D, Besse B, Groen HJM, Souquet P-J, Quoix E, Baik CS, Barlesi F, Kim TM, Mazieres J, Novello S (2016) Dabrafenib plus trametinib in patients with previously treated BRAFV600E-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol 17:984–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Corcoran RB, Atreya CE, Falchook GS, Kwak EL, Ryan DP, Bendell JC, Hamid O, Messersmith WA, Daud A, Kurzrock R (2015) Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600–mutant colorectal cancer. J Clin Oncol 33:4023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Borthakur G, Popplewell L, Boyiadzis M, Foran JM, Platzbecker U, Vey N, Roland WB, Olin RL, Raza A, Giagounidis A (2012) Phase I/II trial of the MEK1/2 inhibitor trametinib (GSK1120212) in relapsed/refractory myeloid malignancies: evidence of activity in patients with RAS mutation-positive disease. Blood. https://doi.org/10.1182/blood.V120.21.677.677

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sollfrank L, Lettmaier S, Erdmann M, Uslu U (2019) Panniculitis under successful targeted inhibition of the MAPK/ERK signaling pathway in a patient with BRAF V600E-mutated spindle cell oncocytoma of the pituitary gland. Anticancer Res 39:3955–3959

    Article  PubMed  Google Scholar 

  108. Brastianos PK, Shankar GM, Gill CM, Taylor-Weiner A, Nayyar N, Panka DJ, Sullivan RJ, Frederick DT, Abedalthagafi M, Jones PS (2016) Dramatic response of BRAF V600E mutant papillary craniopharyngioma to targeted therapy. JNCI J Natl Cancer Inst. https://doi.org/10.1093/jnci/djv310

    Article  PubMed  Google Scholar 

  109. Boer R, Grassegger A, Schudt C, Glossmann H (1989) (+)-Niguldipine binds with very high affinity to Ca2+ channels and to a subtype of α1-adrenoceptors. Eur J Pharmacol Mol Pharmacol 172:131–145

    Article  CAS  Google Scholar 

  110. Klöckner U, Isenberg G (1989) The dihydropyridine niguldipine modulates calcium and potassium currents in vascular smooth muscle cells. Br J Pharmacol 97:957

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lee AR, Seo MJ, Kim J, Lee DM, Kim IY, Yoon MJ, Hoon H, Choi KS (2019) Lercanidipine synergistically enhances bortezomib cytotoxicity in cancer cells via enhanced endoplasmic reticulum stress and mitochondrial Ca2+ Overload. Int J Mol Sci 20:6112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wee S (2015) Identification of compounds that target glioma initiating cells. Inst för fysiologi och farmakologi/Dept of Physiology and Pharmacology

  113. Kenny B, Ballard S, Blagg J, Fox D (1997) Pharmacological options in the treatment of benign prostatic hyperplasia. J Med Chem 40:1293–1315

    Article  CAS  PubMed  Google Scholar 

  114. Kulig K, Malawska B (2006) Trends in the development of new drugs for treatment of benign prostatic hyperplasia. Curr Med Chem 13:3395–3416

    Article  CAS  PubMed  Google Scholar 

  115. Gibson RC, Fenton M, da Coutinho E, SF, Campbell C, (2004) Zuclopenthixol acetate for acute schizophrenia and similar serious mental illnesses. Cochrane Database Syst Rev. John Wiley, Chichester

    Google Scholar 

  116. Khalifa AE (2004) Pro-oxidant activity of zuclopenthixol in vivo: differential effect of the drug on brain oxidative status of scopolamine-treated rats. Hum Exp Toxicol 23:439–445

    Article  CAS  PubMed  Google Scholar 

  117. Fond G, Macgregor A, Tamouza R, Hamdani N, Meary A, Leboyer M, Dubremetz J-F (2014) Comparative analysis of anti-toxoplasmic activity of antipsychotic drugs and valproate. Eur Arch Psychiatry Clin Neurosci 264:179–183

    Article  PubMed  Google Scholar 

  118. Bourdoulous S, Faure C (2020) Zuclopenthixol hydrochloride derivatives and Ebselen derivatives as ErbB2 inhibitors.Google Patents. https://patents.google.com/patent/WO2017121755A1/en.

  119. Stier CT (2003) Eplerenone: a selective aldosterone blocker. Cardiovasc Drug Rev 21:169–184. https://doi.org/10.1111/j.1527-3466.2003.tb00114.x

    Article  CAS  PubMed  Google Scholar 

  120. Weinberger MH, Roniker B, Krause SL, Weiss RJ (2002) Eplerenone, a selective aldosterone blocker, in mild-to-moderate hypertension. Am J Hypertens 15:709–716

    Article  CAS  PubMed  Google Scholar 

  121. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348:1309–1321

    Article  CAS  PubMed  Google Scholar 

  122. Zannad F, McMurray JJV, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, Vincent J, Pocock SJ, Pitt B (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364:11–21

    Article  CAS  PubMed  Google Scholar 

  123. Zhao M, Célérier I, Bousquet E, Jeanny J-C, Jonet L, Savoldelli M, Offret O, Curan A, Farman N, Jaisser F (2012) Mineralocorticoid receptor is involved in rat and human ocular chorioretinopathy. J Clin Investig 122:2672–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Epstein M, Williams GH, Weinberger M, Lewin A, Krause S, Mukherjee R, Patni R, Beckerman B (2006) Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol 1:940–951

    Article  CAS  PubMed  Google Scholar 

  125. Shavit L, Lifschitz MD, Epstein M (2012) Aldosterone blockade and the mineralocorticoid receptor in the management of chronic kidney disease: current concepts and emerging treatment paradigms. Kidney Int 81:955–968

    Article  CAS  PubMed  Google Scholar 

  126. Aydin B, Arslan S, Bayraklı F, Karademir B, Arga KY (2022) MicroRNA-Mediated drug repurposing unveiled potential candidate drugs for prolactinoma treatment. Neuroendocrinology 112:161–173

    Article  CAS  PubMed  Google Scholar 

  127. Aydin B, Caliskan A, Arga KY (2021) Overview of omics biomarkers in pituitary neuroendocrine tumors to design future diagnosis and treatment strategies. EPMA J 12:383–401

    Article  PubMed  PubMed Central  Google Scholar 

  128. Aydin B, Yildirim E, Erdogan O, Arga KY, Yilmaz BK, Bozkurt SU et al (2022) Past, present, and future of therapies for pituitary neuroendocrine tumors: need for omics and drug repositioning guidance. Omi A J Integr Biol 26:115–129

    Article  CAS  Google Scholar 

  129. Neou M, Villa C, Armignacco R, Jouinot A, Raffin-Sanson ML, Septier A, Assié G (2020) Pangenomic classification of pituitary neuroendocrine tumors. Cancer Cell 37:123–134

    Article  CAS  PubMed  Google Scholar 

  130. Mete O, Ezzat S, Perry A, Yamada S, Uccella S, Grossman AB, Asa SL (2021) The pangenomic classification of pituitary neuroendocrine tumors: quality histopathology is required for accurate translational research. Endocr Pathol 32(3):415–417

    Article  PubMed  Google Scholar 

  131. Di Somma C, Scarano E, de Alteriis G, Barrea L, Riccio E, Arianna R, Colao A (2021) Is there any gender difference in epidemiology, clinical presentation and co-morbidities of non-functioning pituitary adenomas? A prospective survey of a national referral center and review of the literature. J Endocrinol Investig 44:957–968

    Article  Google Scholar 

Download references

Acknowledgements

The scholarships under the YOK 100/2000 Doctoral Fellowship Program and 2211-C Doctoral Fellowship Program under The Scientific and Technological Research Council of Turkey (TUBITAK), and the financial support provided to Busra Aydin under project number 3629 from the Health Institutes of Turkey (TUSEB) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

BA designed data analysis framework. BA and HB performed the data analyses. BA, BT interpreted the results. FB and KYA conceived and directed the study. BA drafted the manuscript. BA and BT revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to B. Turanli.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

The authors declare that the datasets used in this study belonged to previously published studies, therefore no ethical statement is required.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

40618_2022_1923_MOESM1_ESM.xlsx

Supplementary file1 Supplementary Information 1: The associations of ncRNAs with target genes are represented as networks. A) The network displayed the interactions of ncRNAs in literature and their known targets. B) The network was composed of the DEncRNAs in NF-PitNET dataset and their target genes that were retrieved from literature (XLSX 11418 KB)

40618_2022_1923_MOESM2_ESM.tif

Supplementary file2 Supplementary Information 2: LncRNA and miRNA target-gene interactions retrieved from various databases (TIF 1648 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, B., Beklen, H., Arga, K.Y. et al. Epigenomic and transcriptomic landscaping unraveled candidate repositioned therapeutics for non-functioning pituitary neuroendocrine tumors. J Endocrinol Invest 46, 727–747 (2023). https://doi.org/10.1007/s40618-022-01923-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-022-01923-2

Keywords

Navigation