Skip to main content

Advertisement

Log in

MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

MicroRNAs (miRs) are small, 16–29 nucleotide long, non-coding RNA molecules which regulate the stability or translational efficiency of targeted mRNAs via RNA interference. MiRs participate in the control of cell proliferation, cell differentiation, signal transduction, cell death, and they play a role in carcinogenesis. The aims of our study were to analyse the expression profile of miRs in sporadic clinically non-functioning pituitary adenomas (NFPA) and in normal pituitary tissues, and to identify biological pathways altered in these pituitary tumors. MiR expression profiles of 12 pituitary tissue specimens (8 NFPA and 4 normal pituitary tissues) were determined using miR array based on quantitative real-time PCR with 678 different primers. Five overexpressed miRs and mRNA expression of Smads (Smad1-9), MEG and DLK1 genes were evaluated with individual Taqman assays in 10 NFPA and 10 normal pituitary tissues. Pathway analysis was performed by the DIANA-mirPath tool. Complex bioinformatical analysis by multiple algorithms and association studies between miRs, Smad3 and tumor size was performed. Of the 457 miRs expressed in both NFPA and normal tissues, 162 were significantly under- or overexpressed in NFPA compared to normal pituitary tissues Expression of Smad3, Smad6, Smad9, MEG and DLK1 was significantly lower in NFPA than in normal tissues. Pathway analysis together with in silico target prediction analysis indicated possible downregulation of the TGFβ signaling pathway in NFPA by a specific subset of miRs. Five miRs predicted to target Smad3 (miR-135a, miR-140-5p, miR-582-3p, miR-582-5p and miR-938) were overexpressed. Correlation was observed between the expression of seven overexpressed miRs and tumor size. Downregulation of the TGFβ signaling through Smad3 via miRs may have a possible role in the complex regulation of signaling pathways involved in the tumorigenesis process of NFPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  3. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  CAS  PubMed  Google Scholar 

  4. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    Article  CAS  PubMed  Google Scholar 

  6. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  Google Scholar 

  7. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  CAS  PubMed  Google Scholar 

  8. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deng S, Calin GA, Croce CM, Coukos G, Zhang L (2008) Mechanisms of microRNA deregulation in cancer. Cell Cycle 7:3729–3741

    Article  Google Scholar 

  10. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  CAS  PubMed  Google Scholar 

  12. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Camoiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  CAS  PubMed  Google Scholar 

  13. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, Kloos RT, Croce CM, de la Chapelle A (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102:19075–19080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, Calin GA, Volinia S, Liu CG, Scarpa A, Croce CM (2006) MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 24:4677–4684

    Article  CAS  PubMed  Google Scholar 

  15. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Ménard S, Croce CM (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67:8699–8707

    Article  CAS  PubMed  Google Scholar 

  16. Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, Degli Uberti EC (2005) miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204:280–285

    Article  CAS  PubMed  Google Scholar 

  17. Bottoni A, Zatelli MC, Ferracin M, Tagliati F, Piccin D, Vignali C, Calin GA, Negrini M, Croce CM, Degli Uberti EC (2007) Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210:370–373

    Article  CAS  PubMed  Google Scholar 

  18. Amaral FC, Torres N, Saggioro F, Neder L, Machado HR, Silva WA Jr, Moreira AC, Castro M (2009) MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 94:320–323

    Article  CAS  PubMed  Google Scholar 

  19. Daly AF, Burlacu MC, Livadariu E, Beckers A (2007) The epidemiology and management of pituitary incidentalomas. Horm Res 68:195–198

    PubMed  Google Scholar 

  20. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-b family signalling. Nature 425:577–584

    Article  CAS  PubMed  Google Scholar 

  21. Ikushima H, Miyazono K (2010) Cellular context-dependent “colors” of transforming growth factor-beta signaling. Cancer Sci 101:306–312

    Article  CAS  PubMed  Google Scholar 

  22. Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF (1995) Transforming growth factor b induces the cyclin-dependent kinase inhibitor p21 through p53-independent mechanism. Proc Natl Acad Sci USA 92:5545–5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-b-induced cell cycle arrest. Nature 371:257–261

    Article  CAS  PubMed  Google Scholar 

  24. Yagi K, Furuhashi M, Aoki H, Goto D, Kuwano H, Sugamura K, Miyazono K, Kato M (2002) c-myc is a downstream target of the Smad pathway. J Biol Chem 277:854–861

    Article  CAS  PubMed  Google Scholar 

  25. Miyazono K, Miyazawa K (2002) Id: a target of BMP signaling. Sci STKE 151:pe40

    Google Scholar 

  26. D’Abronzo FH, Swearingen B, Klibanski A, Alexander JM (1999) Mutational analysis of activin/transforming growth factor-beta type I and type II receptor kinases in human pituitary tumors. J Clin Endocrinol Metab 84:1716–1721

    PubMed  Google Scholar 

  27. Evans CO, Young AN, Brown MR, Brat DJ, Parks JS, Neish AS, Oyesiku NM (2001) Novel patterns of gene expression in pituitary adenomas identified by complementary deoxyribonucleic acid microarrays and quantitative reverse transcription-polymerase chain reaction. J Clin Endocrinol Metab 86:3097–3107

    CAS  PubMed  Google Scholar 

  28. Wang Y, Fortin J, Lamba P, Bonomi M, Persani L, Roberson MS, Bernard DJ (2008) Activator protein-1 and smad proteins synergistically regulate human follicle-stimulating hormone beta-promoter activity. Endocrinology 149:5577–5591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kulig E, Jin L, Qian X, Horvath E, Kovacs K, Stefaneanu L, Scheithauer BW, Lloyd RV (1999) Apoptosis in nontumorous and neoplastic human pituitaries: expression of the Bcl-2 family of proteins. Am J Pathol 154:767–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Danila DC, Zhang X, Zhou Y, Haidar JN, Klibanski A (2002) Overexpression of wild-type activin receptor alk4-1 restores activin antiproliferative effects in human pituitary tumor cells. J Clin Endocrinol Metab 87:4741–4746

    Article  CAS  PubMed  Google Scholar 

  31. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aoki KF, Kanehisa M (2005) Using the KEGG database resource. Curr Protoc Bioinformatics Chapter 1:Unit 1.12

  33. Hui AB, Shi W, Boutros PC, Miller N, Pintilie M, Fyles T, McCready D, Wong D, Gerster K, Waldron L, Jurisica I, Penn LZ, Liu FF (2009) Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Lab Invest 89:597–606

    Article  CAS  PubMed  Google Scholar 

  34. Butz H, Liko I, Czirjak S, Igaz P, Zivkovic V, Korbonits M, Racz K, Patocs A (2009) Screening for over-expressed microRNAs in human sporadic pituitary adenomas. The Endocrine Society’s Annual Meeting (ENDO), Washington, DC, Abstract OR39-3, pp 158

  35. Tömböl Z, Szabó PM, Molnár V, Wiener Z, Tölgyesi G, Horányi J, Riesz P, Reismann P, Patócs A, Likó I, Gaillard RC, Falus A, Rácz K, Igaz P (2009) Integrative molecular bioinformatics study of human adrenocortical tumors: microRNA, tissue-specific target prediction, and pathway analysis. Endocr Relat Cancer 16:895–906

    Article  PubMed  Google Scholar 

  36. Butz H, Likó I, Boyle B, Lendvai N, Igaz P, Czirják S, Korbonits M, Rácz K, Patócs A (2009) Methods of microRNA research and their use in pituitary adenomas. J Hung Soc Intern Med 62:355–362 (Hungarian, abstract in English)

    Google Scholar 

  37. Butz H, Likó I, Czirják S, Igaz P, Munayem Khan M, Zivkovic V, Bálint K, Korbonits M, Rácz K, Patócs A (2010) Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J Clin Endocrinol Metab 95:E181–E191

    Article  CAS  PubMed  Google Scholar 

  38. Zhan X, Evans CO, Oyesiku NM, Desiderio DM (2003) Proteomics and transcriptomics analyses of secretagogin down-regulation in human non-functional pituitary adenomas. Pituitary 6:189–202

    Article  CAS  PubMed  Google Scholar 

  39. Moreno CS, Evans CO, Zhan X, Okor M, Desiderio DM, Oyesiku NM (2005) Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res 65:10214–10222

    Article  CAS  PubMed  Google Scholar 

  40. Farrell WE (2006) Pituitary tumours: findings from whole genome analyses. Endocr Relat Cancer 13:707–716

    Article  CAS  PubMed  Google Scholar 

  41. Gejman R, Batista DL, Zhong Y, Zhou Y, Zhang X, Swearingen B, Stratakis CA, Hedley-Whyte ET, Klibanski A (2008) Selective loss of MEG3 expression and intergenic differentially methylated region hypermethylation in the MEG3/DLK1 locus in human clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 93:4119–4125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A (2003) A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 88:5119–5126

    Article  CAS  PubMed  Google Scholar 

  43. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hibberts NA, Simpson DJ, Bicknell JE, Broome JC, Hoban PR, Clayton RN, Farrell WE (1999) Analysis of cyclin D1 (CCND1) allelic imbalance and overexpression in sporadic human pituitary tumors. Clin Cancer Res 5:2133–2139

    CAS  PubMed  Google Scholar 

  45. Elston MS, Gill AJ, Conaglen JV, Clarkson A, Shaw JM, Law AJ, Cook RJ, Little NS, Clifton-Bligh RJ, Robinson BG, McDonald KL (2008) Wnt pathway inhibitors are strongly down-regulated in pituitary tumors. Endocrinology 149:1235–1242

    Article  CAS  PubMed  Google Scholar 

  46. Simpson DJ, Frost SJ, Bicknell JE, Broome JC, McNicol AM, Clayton RN, Farrell WE (2001) Aberrant expression of G(1)/S regulators is a frequent event in sporadic pituitary adenomas. Carcinogenesis 22:1149–1154

    Article  CAS  PubMed  Google Scholar 

  47. Jordan S, Lidhar K, Korbonits M, Lowe DG, Grossman AB (2000) Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur J Endocrinol 143:R1–R6

    Article  CAS  PubMed  Google Scholar 

  48. Jiang Q, Feng MG, Mo YY (2009) Systematic validation of predicted microRNAs for cyclin D1. BMC Cancer 9:194

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sarver AL, French AJ, Borralho PM, Thayanithy V, Oberg AL, Silverstein KA, Morlan BW, Riska SM, Boardman LA, Cunningham JM, Subramanian S, Wang L, Smyrk TC, Rodrigues CM, Thibodeau SN, Steer CJ (2009) Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer 9:401

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhu J, Guo SZ, Beggs AH, Maruyama T, Santarius T, Dashner K, Olsen N, Wu JK, Black P (1996) Microsatellite instability analysis of primary human brain tumors. Oncogene 12:1417–1423

    CAS  PubMed  Google Scholar 

  51. Lebrun JJ (2009) Activin, TGF-beta and menin in pituitary tumorigenesis. Adv Exp Med Biol 668:69–78

    Article  CAS  PubMed  Google Scholar 

  52. Pais H, Nicolas FE, Soond SM, Swingler TE, Clark IM, Chantry A, Moulton V, Dalmay T (2010) Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level. RNA 16:489–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454:56–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A (2010) Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 39:373–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, Ferbeyre G, Chartrand P (2007) An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 282:2135–2143

    Article  CAS  PubMed  Google Scholar 

  56. Choi SJ, Moon JH, Ahn YW, Ahn JH, Kim DU, Han TH (2005) Tsc-22 enhances TGF-beta signaling by associating with Smad4 and induces erythroid cell differentiation. Mol Cell Biochem 271:23–28

    Article  CAS  PubMed  Google Scholar 

  57. Martello G, Zacchigna L, Inui M, Montagner M, Adorno M, Mamidi A, Morsut L, Soligo S, Tran U, Dupont S, Cordenonsi M, Wessely O, Piccolo S (2007) MicroRNA control of Nodal signalling. Nature 449:183–188

    Article  CAS  PubMed  Google Scholar 

  58. Mishra L, Shetty K, Tang Y, Stuart A, Byers SW (2005) The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene 24:5775–5789

    Article  CAS  PubMed  Google Scholar 

  59. Petrocca F, Vecchione A, Croce CM (2008) Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res 68:8191–8194

    Article  CAS  PubMed  Google Scholar 

  60. Neto AG, McCutcheon IE, Vang R, Spencer ML, Zhang W, Fuller GN (2005) Elevated expression of p21 (WAF1/Cip1) in hormonally active pituitary adenomas. Ann Diagn Pathol 9:6–10

    Article  PubMed  Google Scholar 

  61. Hendy GN, Kaji H, Sowa H, Lebrun JJ, Canaff L (2005) Menin and TGF-beta superfamily member signaling via the Smad pathway in pituitary, parathyroid and osteoblast. Horm Metab Res 37:375–379

    Article  CAS  PubMed  Google Scholar 

  62. Prezant TR, Levine J, Melmed S (1998) Molecular characterization of the men1 tumor suppressor gene in sporadic pituitary tumors. J Clin Endocrinol Metab 83:1388–1391

    Article  CAS  PubMed  Google Scholar 

  63. Wenbin C, Asai A, Teramoto A, Sanno N, Kirino T (1999) Mutations of the MEN1 tumor suppressor gene in sporadic pituitary tumors. Cancer Lett 142:43–47

    Article  CAS  PubMed  Google Scholar 

  64. Theodoropoulou M, Cavallari I, Barzon L, D’Agostino DM, Ferro T, Arzberger T, Grübler Y, Schaaf L, Losa M, Fallo F, Ciminale V, Stalla GK, Pagotto U (2004) Differential expression of menin in sporadic pituitary adenomas. Endocr Relat Cancer 11:333–344

    Article  CAS  PubMed  Google Scholar 

  65. Asa SL, Somers K, Ezzat S (1998) The MEN-1 gene is rarely down-regulated in pituitary adenomas. J Clin Endocrinol Metab 83:3210–3212

    CAS  PubMed  Google Scholar 

  66. Farrell WE, Simpson DJ, Bicknell J, Magnay JL, Kyrodimou E, Thakker RV, Clayton RN (1999) Sequence analysis and transcript expression of the MEN1 gene in sporadic pituitary tumours. Br J Cancer 80:44–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Satta MA, Korbonits M, Jacobs RA, Bolden-Dwinfour DA, Kaltsas GA, Vangeli V, Adams E, Fahlbusch R, Grossman AB (1999) Expression of menin gene mRNA in pituitary tumours. Eur J Endocrinol 140:358–361

    Article  CAS  PubMed  Google Scholar 

  68. Ewing I, Pedder-Smith S, Franchi G, Ruscica M, Emery M, Vax V, Garcia E, Czirják S, Hanzély Z, Kola B, Korbonits M, Grossman AB (2007) A mutation and expression analysis of the oncogene BRAF in pituitary adenomas. Clin Endocrinol (Oxf) 66:348–352

    Article  CAS  Google Scholar 

  69. Zhan X, Desiderio DM (2010) Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med Genomics 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  70. Musat M, Korbonits M, Kola B, Borboli N, Hanson MR, Nanzer AM, Grigson J, Jordan S, Morris DG, Gueorguiev M, Coculescu M, Basu S, Grossman AB (2005) Enhanced protein kinase B/Akt signalling in pituitary tumours. Endocr Relat Cancer 12:423–433

    Article  CAS  PubMed  Google Scholar 

  71. Dworakowska D, Wlodek E, Leontiou CA, Igreja S, Cakir M, Teng M, Prodromou N, Góth MI, Grozinsky-Glasberg S, Gueorguiev M, Kola B, Korbonits M, Grossman AB (2009) Activation of RAF/MEK/ERK and PI3K/AKT/mTOR pathways in pituitary adenomas and their effects on downstream effectors. Endocr Relat Cancer 16:1329–1338

    Article  CAS  PubMed  Google Scholar 

  72. Li H, Bian C, Liao L, Li J, Zhao RC (2010) miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res Treat BMC Genomics 11:320

    Google Scholar 

  73. Qin L, Chen Y, Niu Y, Chen W, Wang Q, Xiao S, Li A, Xie Y, Li J, Zhao X, He Z, Mo D (2010) A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genomics 11:320

    Article  PubMed  PubMed Central  Google Scholar 

  74. Iliopoulos D, Bimpaki EI, Nesterova M, Stratakis CA (2009) MicroRNA signature of primary pigmented nodular adrenocortical disease: clinical correlations and regulation of Wnt signaling. Cancer Res 69:3278–3282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Garzia L, Andolfo I, Cusanelli E, Marino N, Petrosino G, De Martino D, Esposito V, Galeone A, Navas L, Esposito S, Gargiulo S, Fattet S, Donofrio V, Cinalli G, Brunetti A, Vecchio LD, Northcott PA, Delattre O, Taylor MD, Iolascon A, Zollo M (2009) MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS One 4:e4998

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr V. Zivkovic, Belgrade, Serbia for the provision of the control samples. This work was supported by grant ETT 040-09. A.P. is a recipient of János Bólyai Research Fellowship.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Patócs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butz, H., Likó, I., Czirják, S. et al. MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. Pituitary 14, 112–124 (2011). https://doi.org/10.1007/s11102-010-0268-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-010-0268-x

Keywords

Navigation