Skip to main content

Advertisement

Log in

The role of microRNAs in different types of thyroid carcinoma: a comprehensive analysis to find new miRNA supplementary therapies

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The most common endocrine malignancy is thyroid cancer, and researchers have made a great deal of progress in deciphering its molecular mechanisms in the recent years. Many of molecular changes observed in thyroid cancer can be used as biomarkers for diagnosis, prognosis, and therapeutic targets for treatment. MicroRNAs (miRNAs) are important parts in biological and metabolic pathways such as regulation of developmental stages, signal transduction, cell maintenance, and differentiation. Therefore, their dysregulation can expose individuals to malignancies. It has been proved that miRNA expression is dysregulated in different types of tumors, like thyroid cancers, and can be the cause of tumor initiation and progression. In this paper, we have reviewed the available data on miRNA dysregulation in different thyroid tumors including papillary, follicular, anaplastic, and medullary thyroid carcinomas aiming to introduce the last updates in miRNAs-thyroid cancer relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  2. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  3. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  4. Nikiforova MN, Chiosea SI, Nikiforov YE (2009) MicroRNA expression profiles in thyroid tumors. Endocr Pathol 20(2):85–91

    Article  CAS  PubMed  Google Scholar 

  5. Vriens MR, Weng J, Suh I, Huynh N, Guerrero MA, Shen WT, Duh QY, Clark OH, Kebebew E (2012) MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer. Cancer 118(13):3426–3432

    Article  CAS  PubMed  Google Scholar 

  6. Marini F, Luzi E, Brandi ML (2011) MicroRNA role in thyroid cancer development. J Thyroid Res 2011:407123

    Article  PubMed  PubMed Central  Google Scholar 

  7. Frezzetti D, Reale C, Calì G, Nitsch L, Fagman H, Nilsson O, Scarfò M, De Vita G, Di Lauro R (2011) The microRNA-processing enzyme Dicer is essential for thyroid function. PLoS One 6(11):e27648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zeng Y, Cullen BR (2003) Sequence requirements for micro RNA processing and function in human cells. RNA 9(1):112–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hutvágner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589):2056–2060

    Article  PubMed  Google Scholar 

  10. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934

    Article  CAS  PubMed  Google Scholar 

  11. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30

    Article  PubMed  Google Scholar 

  12. Vecchia C, Malvezzi M, Bosetti C, Garavello W, Bertuccio P, Levi F, Negri E (2015) Thyroid cancer mortality and incidence: a global overview. Int J Cancer 136(9):2187–2195

    Article  PubMed  Google Scholar 

  13. Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R (2013) Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol 2013:965212

    PubMed  PubMed Central  Google Scholar 

  14. Leenhardt L, Bernier M, Boin-Pineau M, Devolx BC, Marechaud R, Niccoli-Sire P, Nocaudie M, Orgiazzi J, Schlumberger M, Wemeau J (2004) Advances in diagnostic practices affect thyroid cancer incidence in France. Eur J Endocrinol 150(2):133–139

    Article  CAS  PubMed  Google Scholar 

  15. Baker SR, Bhatti WA (2006) The thyroid cancer epidemic: is it the dark side of the CT revolution? Eur J Radiol 60(1):67–69

    Article  PubMed  Google Scholar 

  16. Mangano J (1996) A post-Chernobyl rise in thyroid cancer in Connecticut, USA. Eur J Cancer Prev 5(1):75–81

    Article  CAS  PubMed  Google Scholar 

  17. Pallante P, Visone R, Croce CM, Fusco A (2010) Deregulation of microRNA expression in follicular cell-derived human thyroid carcinomas. Endocr Relat Cancer 17(1):F91–F104

    Article  CAS  PubMed  Google Scholar 

  18. Kondo T, Ezzat S, Asa SL (2006) Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6(4):292–306

    Article  CAS  PubMed  Google Scholar 

  19. Ferraz C, Eszlinger M, Paschke R (2011) Current state and future perspective of molecular diagnosis of fine-needle aspiration biopsy of thyroid nodules. J Clin Endocrinol Metabol 96(7):2016–2026

    Article  CAS  Google Scholar 

  20. Dean DS, Gharib H (2008) Epidemiology of thyroid nodules. Best Pract Res Clin Endocrinol Metab 22(6):901–911

    Article  PubMed  Google Scholar 

  21. Mazeh H (2012) MicroRNA as a diagnostic tool in fine-needle aspiration biopsy of thyroid nodules. Oncologist 17(8):1032–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Braun J, Hoang-Vu C, Dralle H, Hüttelmaier S (2010) Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene 29(29):4237–4244

    Article  CAS  PubMed  Google Scholar 

  23. Abraham D, Jackson N, Gundara JS, Zhao J, Gill AJ, Delbridge L, Robinson BG, Sidhu SB (2011) MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets. Clin Cancer Res 17(14):4772–4781

    Article  CAS  PubMed  Google Scholar 

  24. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ (2005) Cancer statistics, 2005. CA Cancer J Clin 55(1):10–30

    Article  PubMed  Google Scholar 

  25. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  26. Witt RL, Ferris RL, Pribitkin EA, Sherman SI, Steward DL, Nikiforov YE (2013) Diagnosis and management of differentiated thyroid cancer using molecular biology. Laryngoscope 123(4):1059–1064

    Article  PubMed  Google Scholar 

  27. Fagin JA (2005) Genetics of papillary thyroid cancer initiation: implications for therapy. Trans Am Clin Climatol Assoc 116:259

    PubMed  PubMed Central  Google Scholar 

  28. Kent WD, Hall SF, Isotalo PA, Houlden RL, George RL, Groome PA (2007) Increased incidence of differentiated thyroid carcinoma and detection of subclinical disease. Can Med Assoc J 177(11):1357–1361

    Article  Google Scholar 

  29. Fukahori M, Yoshida A, Hayashi H, Yoshihara M, Matsukuma S, Sakuma Y, Koizume S, Okamoto N, Kondo T, Masuda M (2012) The associations between RAS mutations and clinical characteristics in follicular thyroid tumors: new insights from a single center and a large patient cohort. Thyroid 22(7):683–689

    Article  CAS  PubMed  Google Scholar 

  30. Garcia-Rostan G, Zhao H, Camp RL, Pollan M, Herrero A, Pardo J, Wu R, Carcangiu ML, Costa J, Tallini G (2003) Ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol 21(17):3226–3235

    Article  CAS  PubMed  Google Scholar 

  31. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW, Tallini G, Kroll TG, Nikiforov YE (2003) RAS point mutations and PAX8-PPARγ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metabol 88(5):2318–2326

    Article  CAS  Google Scholar 

  32. Batista F, Ward L, Marcello M, Martins M, Peres K, Torricelli C, Bufalo N, Soares F, da Silva M, Assumpção L (2016) Gene expression of thyroid-specific transcription factors may help diagnose thyroid lesions but are not determinants of tumor progression. J Endocrinol Invest 39(4):423–429

    Article  CAS  PubMed  Google Scholar 

  33. Hazard JB, Hawk WA, Crile G Jr (1959) Medullary (solid) carcinoma of the thyroid—a clinicopathologic entity*. J Clin Endocrinol Metabol 19(1):152–161

    Article  CAS  Google Scholar 

  34. Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E, Love DR, Mole SE, Moore JK, Papi L (1993) Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363(6428):458–460

    Article  CAS  PubMed  Google Scholar 

  35. Donis-Keller H, Dou S, Chi D, Carlson KM, Toshima K, Lairmore TC, Howe JR, Moley JF, Goodfellow P, Wells SA (1993) Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 2(7):851–856

    Article  CAS  PubMed  Google Scholar 

  36. Yeganeh MZ, Sheikholeslami S, Behbahani GD, Farashi S, Hedayati M (2015) Skewed mutational spectrum of RET proto-oncogene Exon10 in Iranian patients with medullary thyroid carcinoma. Tumor Biol 36(7):5225–5231

    Article  Google Scholar 

  37. Moore SW, Appfelstaedt J, Zaahl MG (2007) Familial medullary carcinoma prevention, risk evaluation, and RET in children of families with MEN2. J Pediatr Surg 42(2):326–332

    Article  PubMed  Google Scholar 

  38. Guan H, Liang W, Xie Z, Li H, Liu J, Liu L, Xiu L, Li Y (2014) Down-regulation of miR-144 promotes thyroid cancer cell invasion by targeting ZEB1 and ZEB2. Endocrine 48(2):566–574

    Article  PubMed  Google Scholar 

  39. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, C-g Liu, Franssila K, Suster S (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102(52):19075–19080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kitamura Y, Hirotab S (2004) Kit as a human oncogenic tyrosine kinase. CMLS 61(23):2924–2931

    Article  CAS  PubMed  Google Scholar 

  41. Chou C-K, Yang KD, Chou F-F, Huang C-C, Lan Y-W, Lee Y-F, Kang H-Y, Liu R-T (2012) Prognostic implications of miR-146b expression and its functional role in papillary thyroid carcinoma. J Clin Endocrinol Metabol 98(2):E196–E205

    Article  Google Scholar 

  42. Deng X, Wu B, Xiao K, Kang J, Xie J, Zhang X, Fan Y (2015) MiR-146b-5p promotes metastasis and induces epithelial-mesenchymal transition in thyroid cancer by targeting ZNRF3. Cell Physiol Biochem 35(1):71–82

    Article  CAS  PubMed  Google Scholar 

  43. Geraldo M, Yamashita A, Kimura E (2012) MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing SMAD4 in thyroid cancer. Oncogene 31(15):1910–1922

    Article  CAS  PubMed  Google Scholar 

  44. Tetzlaff MT, Liu A, Xu X, Master SR, Baldwin DA, Tobias JW, Livolsi VA, Baloch ZW (2007) Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocr Pathol 18(3):163–173

    Article  CAS  PubMed  Google Scholar 

  45. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE (2013) MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metabol 93(5):1600–1608

    Article  Google Scholar 

  46. Sheu S, Grabellus F, Schwertheim S, Handke S, Worm K, Schmid K (2009) Lack of correlation between BRAF V600E mutational status and the expression profile of a distinct set of miRNAs in papillary thyroid carcinoma. Hormone Metabol Res Hormon-und Stoffwechselforschung Hormones et metabolisme 41(6):482–487

    Article  CAS  Google Scholar 

  47. Chen Y-T, Kitabayashi N, Zhou XK, Fahey TJ, Scognamiglio T (2008) MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol 21(9):1139–1146

    Article  CAS  PubMed  Google Scholar 

  48. Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP, Giordano TJ, Biddinger PW, Nikiforov YE (2006) Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 30(2):216–222

    Article  PubMed  Google Scholar 

  49. Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V, Borbone E, Petrocca F, Alder H, Croce CM (2007) MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 14(3):791–798

    Article  CAS  PubMed  Google Scholar 

  50. Cahill S, Smyth P, Finn SP, Denning K, Flavin R, O’Regan EM, Li J, Potratz A, Guenther SM, Henfrey R (2006) Effect of ret/PTC 1 rearrangement on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol Cancer 5(1):70

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rosignolo F, Maggisano V, Sponziello M, Celano M, Di Gioia C, D’Agostino M, Giacomelli L, Verrienti A, Dima M, Pecce V (2015) Reduced expression of THRβ in papillary thyroid carcinomas: relationship with BRAF mutation, aggressiveness and miR expression. J Endocrinol Invest 38(12):1283–1289

    Article  CAS  PubMed  Google Scholar 

  52. Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C (2006) A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metabol 91(9):3584–3591

    Article  CAS  Google Scholar 

  53. Santarpia L, Calin GA, Adam L, Ye L, Fusco A, Giunti S, Thaller C, Paladini L, Zhang X, Jimenez C (2013) A miRNA signature associated with human metastatic medullary thyroid carcinoma. Endocr Relat Cancer 20(6):809–823

    Article  CAS  PubMed  Google Scholar 

  54. Rossing M, Borup R, Henao R, Winther O, Vikesaa J, Niazi O, Godballe C, Krogdahl A, Glud M, Hjort-Sørensen C (2012) Down-regulation of microRNAs controlling tumourigenic factors in follicular thyroid carcinoma. J Mol Endocrinol 48(1):11–23

    Article  CAS  PubMed  Google Scholar 

  55. Jikuzono T, Kawamoto M, Yoshitake H, Kikuchi K, Akasu H, Ishikawa H, Hirokawa M, Miyauchi A, Tsuchiya S, Shimizu K (2013) The miR-221/222 cluster, miR-10b and miR-92a are highly upregulated in metastatic minimally invasive follicular thyroid carcinoma. Int J Oncol 42(6):1858–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Z-l Chen, X-h Zhao, J-w Wang, B-z Li, Wang Z, Sun J, F-w Tan, Ding D-p Xu, X-h Zhou F (2011) microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin. J Biol Chem 286(12):10725–10734

    Article  Google Scholar 

  57. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688

    Article  CAS  PubMed  Google Scholar 

  58. Visone R, Pallante P, Vecchione A, Cirombella R, Ferracin M, Ferraro A, Volinia S, Coluzzi S, Leone V, Borbone E (2007) Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26(54):7590–7595

    Article  CAS  PubMed  Google Scholar 

  59. Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF, Möller P, Stilgenbauer S, Pollack JR, Wirth T (2008) MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 112(10):4202–4212

    Article  CAS  PubMed  Google Scholar 

  60. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647

    Article  CAS  PubMed  Google Scholar 

  61. Leone V, D’Angelo D, Rubio I, de Freitas PM, Federico A, Colamaio M, Pallante P, Medeiros-Neto G, Fusco A (2011) MiR-1 is a tumor suppressor in thyroid carcinogenesis targeting CCND2, CXCR4, and SDF-1α. J Clin Endocrinol Metabol 96(9):E1388–E1398

    Article  CAS  Google Scholar 

  62. Frezzetti D, De Menna M, Zoppoli P, Guerra C, Ferraro A, Bello A, De Luca P, Calabrese C, Fusco A, Ceccarelli M (2011) Upregulation of miR-21 by Ras in vivo and its role in tumor growth. Oncogene 30(3):275–286

    Article  CAS  PubMed  Google Scholar 

  63. Mitomo S, Maesawa C, Ogasawara S, Iwaya T, Shibazaki M, Yashima-Abo A, Kotani K, Oikawa H, Sakurai E, Izutsu N (2008) Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci 99(2):280–286

    Article  CAS  PubMed  Google Scholar 

  64. Wu D, Ding J, Wang L, Pan H, Zhou Z, Zhou J, Qu P (2013) microRNA-125b inhibits cell migration and invasion by targeting matrix metallopeptidase 13 in bladder cancer. Oncol Lett 5(3):829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schwertheim S, Sheu S, Worm K, Grabellus F, Schmid K (2009) Analysis of deregulated miRNAs is helpful to distinguish poorly differentiated thyroid carcinoma from papillary thyroid carcinoma. Hormone Metabol Res Hormon-und Stoffwechselforschung Hormones et metabolisme 41(6):475–481

    Article  CAS  Google Scholar 

  66. Takakura S, Mitsutake N, Nakashima M, Namba H, Saenko VA, Rogounovitch TI, Nakazawa Y, Hayashi T, Ohtsuru A, Yamashita S (2008) Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci 99(6):1147–1154

    Article  CAS  PubMed  Google Scholar 

  67. Bruni P, Boccia A, Baldassarre G, Trapasso F, Santoro M, Chiappetta G, Fusco A, Viglietto G (2000) PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1. Oncogene 19(28):3146–3155

    Article  CAS  PubMed  Google Scholar 

  68. Frisk T, Foukakis T, Dwight T, Lundberg J, Höög A, Wallin G, Eng C, Zedenius J, Larsson C (2002) Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosom Cancer 35(1):74–80

    Article  CAS  PubMed  Google Scholar 

  69. Park S-M, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22(7):894–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mian C, Pennelli G, Fassan M, Balistreri M, Barollo S, Cavedon E, Galuppini F, Pizzi M, Vianello F, Pelizzo MR (2012) MicroRNA profiles in familial and sporadic medullary thyroid carcinoma: preliminary relationships with RET status and outcome. Thyroid 22(9):890–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hudson J, Duncavage E, Tamburrino A, Salerno P, Xi L, Raffeld M, Moley J, Chernock RD (2013) Overexpression of miR-10a and miR-375 and downregulation of YAP1 in medullary thyroid carcinoma. Exp Mol Pathol 95(1):62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou AG (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40(D1):D222–D229

    Article  CAS  PubMed  Google Scholar 

  73. Esposito F, Tornincasa M, Pallante P, Federico A, Borbone E, Pierantoni GM, Fusco A (2012) Down-regulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH2. J Clin Endocrinol Metabol 97(5):E710–E718

    Article  CAS  Google Scholar 

  74. Zhang Y, Yang W, Zhu H, Qian Y, Zhou L, Ren Y, Ren X, Zhang L, Liu X, Liu C (2014) Regulation of autophagy by miR-30d impacts sensitivity of anaplastic thyroid carcinoma to cisplatin. Biochem Pharmacol 87(4):562–570

    Article  CAS  PubMed  Google Scholar 

  75. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9(6):582–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jazdzewski K, Boguslawska J, Jendrzejewski J, Liyanarachchi S, Pachucki J, Wardyn KA, Nauman A, de la Chapelle A (2010) Thyroid hormone receptor β (THRB) is a major target gene for microRNAs deregulated in papillary thyroid carcinoma (PTC). J Clin Endocrinol Metabol 96(3):E546–E553

    Article  Google Scholar 

  77. Bhaumik D, Scott G, Schokrpur S, Patil C, Campisi J, Benz C (2008) Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27(42):5643–5647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pacifico F, Crescenzi E, Mellone S, Iannetti A, Porrino N, Liguoro D, Moscato F, Grieco M, Formisano S, Leonardi A (2010) Nuclear factor-κB contributes to anaplastic thyroid carcinomas through up-regulation of miR-146a. J Clin Endocrinol Metabol 95(3):1421–1430

    Article  CAS  Google Scholar 

  79. Shao M, Geng Y, Lu P, Xi Y, Wei S, Wang L, Fan Q, Ma W (2015) miR-4295 promotes cell proliferation and invasion in anaplastic thyroid carcinoma via CDKN1A. Biochem Biophys Res Commun 464(4):1309–1313

    Article  CAS  PubMed  Google Scholar 

  80. Xiong Y, Zhang L, Holloway AK, Wu X, Su L, Kebebew E (2011) MiR-886-3p regulates cell proliferation and migration, and is dysregulated in familial non-medullary thyroid cancer. PLoS One 6(10):e24717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri M, Troncone G, Chiappetta G, Liu C, Santoro M, Negrini M (2006) MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer 13(2):497–508

    Article  CAS  PubMed  Google Scholar 

  82. Wen Q, Zhao J, Bai L, Wang T, Zhang H, Ma Q (2015) miR-126 inhibits papillary thyroid carcinoma growth by targeting LRP6. Oncol Rep 34(4):2202–2210

    Article  CAS  PubMed  Google Scholar 

  83. Cahill S, Smyth P, Denning K, Flavin R, Li J, Potratz A, Guenther SM, Henfrey R, O’Leary JJ, Sheils O (2007) Effect of BRAFV600E mutation on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol Cancer 6(21):2092–2098

    Google Scholar 

  84. Dettmer M, Perren A, Moch H, Komminoth P, Nikiforov YE, Nikiforova MN (2013) Comprehensive microRNA expression profiling identifies novel markers in follicular variant of papillary thyroid carcinoma. Thyroid 23(11):1383–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yu X-M, Lloyd R, Chen H (2012) Current treatment of papillary thyroid microcarcinoma. Adv Surg 46(1):191–203

    Article  PubMed  Google Scholar 

  86. Sun Y, Yu S, Liu Y, Wang F, Liu Y, Xiao H (2013) Expression of miRNAs in papillary thyroid carcinomas is associated with BRAF mutation and clinicopathological features in Chinese patients. Int J Endocrinol 2013:128735

    PubMed  PubMed Central  Google Scholar 

  87. Wang Z, Zhang H, Zhang P, Li J, Shan Z, Teng W (2013) Upregulation of miR-2861 and miR-451 expression in papillary thyroid carcinoma with lymph node metastasis. Med Oncol 30(2):1–7

    Google Scholar 

  88. Colamaio M, Borbone E, Russo L, Bianco M, Federico A, Califano D, Chiappetta G, Pallante P, Troncone G, Battista S (2011) miR-191 down-regulation plays a role in thyroid follicular tumors through CDK6 targeting. J Clin Endocrinol Metabol 96(12):E1915–E1924

    Article  CAS  Google Scholar 

  89. Yu S, Liu Y, Wang J, Guo Z, Zhang Q, Yu F, Zhang Y, Huang K, Li Y, Song E (2012) Circulating microRNA profiles as potential biomarkers for diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metabol 97(6):2084–2092

    Article  CAS  Google Scholar 

  90. Colamaio M, Calì G, Sarnataro D, Borbone E, Pallante P, Decaussin-Petrucci M, Nitsch L, Croce CM, Battista S, Fusco A (2012) Let-7a down-regulation plays a role in thyroid neoplasias of follicular histotype affecting cell adhesion and migration through its ability to target the FXYD5 (Dysadherin) gene. J Clin Endocrinol Metabol 97(11):E2168–E2178

    Article  CAS  Google Scholar 

  91. Pennelli G, Fassan M, Mian C, Pizzi M, Balistreri M, Barollo S, Galuppini F, Guzzardo V, Pelizzo M, Rugge M (2013) PDCD4 expression in thyroid neoplasia. Virchows Arch 462(1):95–100

    Article  CAS  PubMed  Google Scholar 

  92. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE (2008) MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metabol 93(5):1600–1608

    Article  CAS  Google Scholar 

  93. Pennelli G, Galuppini F, Barollo S, Cavedon E, Bertazza L, Fassan M, Guzzardo V, Pelizzo MR, Rugge M, Mian C (2015) The PDCD4/miR-21 pathway in medullary thyroid carcinoma. Hum Pathol 46(1):50–57

    Article  CAS  PubMed  Google Scholar 

  94. Duan L, Hao X, Liu Z, Zhang Y, Zhang G (2014) MiR-129-5p is down-regulated and involved in the growth, apoptosis and migration of medullary thyroid carcinoma cells through targeting RET. FEBS Lett 588(9):1644–1651

    Article  CAS  PubMed  Google Scholar 

  95. Chen J, Wang M, Guo M, Xie Y, Cong Y-S (2013) miR-127 regulates cell proliferation and senescence by targeting BCL6. PLoS One 8(11):e80266

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ajith T (2013) Physiological relevance and therapeutic value of micro RNA in cancer-role of micro RNA in cancer. Front Pathol Genet 1(2):15–19

    Google Scholar 

Download references

Acknowledgements

The authors should thank the colleagues in Cellular and Molecular Biology Research Center and also Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran for supporting miRNA and thyroid-related projects. The authors should also thank Mr. Vahid Kia for his thorough proofreading and revision of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Baldini or S. Mohammadi-Yeganeh.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pishkari, S., Paryan, M., Hashemi, M. et al. The role of microRNAs in different types of thyroid carcinoma: a comprehensive analysis to find new miRNA supplementary therapies. J Endocrinol Invest 41, 269–283 (2018). https://doi.org/10.1007/s40618-017-0735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-017-0735-6

Keywords

Navigation