Using Ontological Engineering to Overcome AI-ED Problems: Contribution, Impact and Perspectives



This article reflects on the ontology engineering methodology discussed by the paper entitled “Using Ontological Engineering to Overcome AI-ED Problems” published in this journal in 2000. We discuss the achievements obtained in the last 10 years, the impact of our work as well as recent trends and perspectives in ontology engineering for AIED.


Ontological engineering Ontology-aware systems Ontology of learning/instructional theories Theory-compliant learning scenarios 



The authors are grateful to Bill Holden for his valuable comments on the manuscript. This work is partially supported by JSPS KAKENHI Grant Number 26240033.


  1. Aroyo, L., Mizoguchi, R. & Tzolov, C. (2003). OntoAIMS: Ontological Approach to Courseware Authoring: Proc. of the International Conference on Computers in Education (ICCE2003), pp.1011–1014, Wanchai, Hongkong.Google Scholar
  2. Blanchard, B., & Mizoguchi, R. (2014). Designing Culturally-Aware Tutoring Systems with MAUOC. Research and Practice in Technology Enhanced Learning (RPTEL), 9(1), 41–69.Google Scholar
  3. Blanchard, E., G., Mizoguchi, R., & Lajoie, S. P. (2010). structuring the cultural domain with an upper ontology of culture. In E. G. Blanchard, & D. Allard (Eds.), Handbook of research on culturally aware information technology: perspectives and models. Hershey: Information Science Publishing.Google Scholar
  4. Bourdeau, J., & Balacheff, N. (2014). Technology-Enhanced Learning : From Thesaurus and Dictionary to Ontology, in Jovanović, J., & Chiong, R. (Eds.). iTechnological and Social Environments for Interactive Learning. Santa Rosa, Informing Science, pp.1–33.Google Scholar
  5. Bourdeau, J, Mizoguchi, R., Hayashi, Y., Psyche, V., & Nkambou, R. (2007). When the Domain of the Ontology is Education, Proc. Of LORNET 2007, User Centered Knowledge Environments: from theory to practice, The fourth annual LORNET conference I2LOR 2007 of the LORNET Research Network, Montreal, Nov. 5–8. Available on line,
  6. Devedzic, V. (2015). Not fade away? International Journal of Artificial Intelligence in Education, (to appear).Google Scholar
  7. Dietze, S., Sanchez-Alonso, S., Ebner, H., Yu, H., Giordano, D., Marenzi, I., & Pereira, Nunes, B. (2013). Interlinking Educational Resources and the Web of Data - a Survey of Challenges and Approaches, in Emerald Program: electronic Library and Information Systems, Volume 47, Issue 1.Google Scholar
  8. Engeström, Y., & Sannino, A. (2012). Concept formation in the wild. Mind, Culture, and Activity, 19(3), 201–206.Google Scholar
  9. Hayashi, Y., & Mizoguchi, R. (2012). Designing Lessons with an Ontological Modeling Approach in Practice: Proc. of ICCE2012.Google Scholar
  10. Hayashi, Y., Bourdeau, J., & Mizoguchi, R. (2009). Using ontological engineering to organize learning/instructional theories and build a theory-aware authoring system. International Journal of Artificial Intelligence in Education, 19(2), 211–252 special issue on Authoring Intelligent Tutoring Systems.Google Scholar
  11. Inaba. A.Thepchai S., Mitsuru I., & Mizoguchi, R. (2000). How Can We Form Effective Collaborative Learning Groups ~ Theoretical justification of Opportunistic Group Formation with ontological engineering ~ , Proc. of ITS’2000, pp.282–291, Montreal Canada.Google Scholar
  12. Isotani, S., Inaba, A., Ikeda, M., & Mizoguchi, R. (2009). An Ontology Engineering Approach to the Realization of Theory-Driven Group Formation. International Journal of Computer-Supported Collaborative Learning, 4(4), 445–478.CrossRefGoogle Scholar
  13. Isotani, S., Mizoguchi, R., Inaba, A., & Ikeda, M. (2010). The foundations of a theory-aware authoring tool for CSCL design. International Journal of Computers and Education, 54(4), 809-834.Google Scholar
  14. Isotani, S, Chalco, G., Mizoguchi, R., & Moreira, D. (2014). An Ontology Engineering Approach to Gamify Collaborative Learning Scenarios, Proc. of CRIWG2014, Springer.Google Scholar
  15. Kasai, T., Nagano, K. ,& Mizoguchi, R. (2010). Building an Ontology-Based System Which Supports the Instructional Design Process, Proc. of 18th International Conference on Computers in Education (ICCE2010), pp. 51–55, Putrajaya, Malaysia.Google Scholar
  16. Kasai, T., Nagano, K., & Mizoguchi R., (2014). The Effect of Visualizing Lesson Structures in a Teacher Education Program, Proc. of ICCE2014, Nara, Japan, pp. 14–21.Google Scholar
  17. Kitamura, Y., Kashiwase, M , Fuse, M , & Mizoguchi R. (2004). Deployment of an ontological framework of functional design knowledge, Advanced Engineering Informatics 18 (2), 115–127.CrossRefGoogle Scholar
  18. Koedinger, K., R., Corbett, A.C., & Perfetti, C., (2012). The Knowledge Learning Instruction (KLI) framework: Bridging the science practice chasm to enhance robust student learning. Cognitive Science, 36(5), 757–798.Google Scholar
  19. Mizoguchi, R., (2003). Introduction to ontological engineering: Parts 1 to 3. New Generation Computing, 21(4), 365–384.CrossRefMATHGoogle Scholar
  20. Mizoguchi, R., (2010) YAMATO: Yet Another More Advanced Top-level Ontology, Proc. Of Australian Workshop on Ontology, AOW2010, pp.1–16, Adelaide, Australia.Google Scholar
  21. Mizoguchi, R., & Bourdeau, J. (2000). Using Ontological Engineering to Overcome AI-ED Problems. International Journal of Artificial Intelligence in Education, 11(2), 107–121.Google Scholar
  22. Mizoguchi, R., & Kitamura, Y. (2009). A functional ontology of artifacts. The Monist, 92(3), 387–402.CrossRefGoogle Scholar
  23. Mizoguchi, R., Vanwelkenhuysen, J., & Ikeda M. (1995). Task Ontology for Reuse of Problem Solving Knowledge, Proc. of Knowledge Building & Knowledge Sharing 1995(KB&KS’95), Enschede, The Netherlands, pp.46–59.Google Scholar
  24. Mizoguchi, R., Hayashi, Y., & Bourdeau, J. (2007). Inside Theory-Aware and Standards-Compliant Authoring System, (Inveited talk) Proc. of The Fifth International Workshop on Ontologies and Semantic Web for E-Learning (SWEL’07), pp. 1–18, Marina del Rey.Google Scholar
  25. Mizoguchi, R., Hayashi, Y. and Bourdeau, J. (2009). Inside a Theory-aware Authoring System, Semantic Web Technologies for E-learning, D. Dicheva, R. Mizoguchi, J. Greer (Eds) IOS press, Amsterdam, The Netherlands, pp. 59–76.Google Scholar
  26. Mizoguchi, R., Kozaki, K., Kou, H., Yamagata, Y., Imai, T., Waki, K., & Ohe, K. (2011). Proc. of 2nd International Conference on Biomedical Ontology (ICBO2011), pp.63–70, Buffalo.Google Scholar
  27. Murray, T. (1999). Authoring intelligent tutoring systems: an analysis of the state of the art. International Journal of Artificial Intelligence in Education (IJAIED), 10, 98–129.Google Scholar
  28. Paquette, G. (2010). Visual Modeling for Semantic Web Technologies: Models and Ontologies.Google Scholar
  29. Psyché, V., Bourdeau, J., Nkambou, R., & Mizoguchi, R. (2005). Making learning design standards work with an ontology of educational theories. Supporting Learning through Intelligent and Socially Informed Technology-Proc. of the 12th Artificial Intelligence in Education (AIED2005), July 18–22 2005, Amsterdam, The Netherlands., 539-546.Google Scholar
  30. Rovetto, R., & Mizoguchi, R. (2015). Causality and ontology of disease. Applied Ontology, 10, 79–105.Google Scholar
  31. Savard, I., Paquette, G., & Bourdeau, J. (2014). An Advisor System for Cultural Adaptation in Instructional Design, Proc. Of the Fifth International Workshop on Culturally-Aware Tutoring Systems (CATS), ITS2014, uploads/2014/05/Proceedings-CATS2014.pdf.
  32. Sklavakis, D., & Refanidis, I. (2014). The MATHESIS meta-knowledge engineering framework: Ontology-driven development of intelligent tutoring systems. Applied Ontology, 9, 3–4.Google Scholar
  33. Sottilare, R., Graesser, A., Hu, X., & Holden, H. (2013). (Eds.). Design Recommendations for Intelligent Tutoring Systems: Volume 1 - Learner Modeling. Orlando, FL: U.S. Army Research Laboratory. ISBN 978-0-9893923-0-3. Available at:
  34. Sottilare, R., Graesser, A., Hu, X., & Goldberg, B. (2014). (Eds.). Design Recommendations for Intelligent Tutoring Systems: Volume 2 - Instructional Management. Orlando, FL: U.S. Army Research Laboratory. ISBN 978-0-9893923-3-4. Available at:
  35. Sottilare, R., Graesser, A., Hu, X & Brawner, K. (Eds.). (2015). Design recommendations for intelligent tutoring systems: 3 - authoring tools and expert modeling techniques. Orlando, FL: U.S. Army Research Laboratory.Google Scholar

Copyright information

© International Artificial Intelligence in Education Society 2015

Authors and Affiliations

  1. 1.Research Center for Service ScienceJapan Advanced Institute of Science and TechnologyIshikawaJapan
  2. 2.TELUQ, Centre de recherche LICEFMontréalCanada

Personalised recommendations