Computational Particle Mechanics

, Volume 3, Issue 3, pp 333–348 | Cite as

Tapped granular column dynamics: simulations, experiments and modeling

  • A. D. Rosato
  • L. Zuo
  • D. Blackmore
  • H. Wu
  • D. J. Horntrop
  • D. J. Parker
  • C. Windows-Yule
Article

Abstract

This paper communicates the results of a synergistic investigation that initiates our long term research goal of developing a continuum model capable of predicting a variety of granular flows. We consider an ostensibly simple system consisting of a column of inelastic spheres subjected to discrete taps in the form of half sine wave pulses of amplitude a/d and period \(\tau \). A three-pronged approach is used, consisting of discrete element simulations based on linear loading-unloading contacts, experimental validation, and preliminary comparisons with our continuum model in the form of an integro-partial differential equation.

Keywords

Granular column Discrete element simulation Positron emission tracking Continuum model 

References

  1. 1.
    Valverde JM, Castellanos A (2007) Compaction of fine powders: from fluidized agglomerates to primary particles. Granul Matter 9(1–2):19–24Google Scholar
  2. 2.
    Rosato AD, Dybenko O, Ratnaswamy V, Horntrop D, Kondic L (2010) Microstructure evolution in density relaxation by tapping. Phys Rev E 81:061301CrossRefGoogle Scholar
  3. 3.
    Richard P, Philippe P, Barbe F, Bourles S, Thibault X, Bideau D (2003) Analysis by x-ray microtomography of a granular packing undergoing compaction. Phys Rev E 68(2):020301CrossRefGoogle Scholar
  4. 4.
    Richard P, Nicodemi M, Delannay R, Ribiere P, Bideau D (2005) Slow relaxation and compaction of granular systems. Nat Mater 4(2):121–128CrossRefGoogle Scholar
  5. 5.
    Luding S, Nicolas M, Pouliquen O (2000) A minimal model for slow dynamics: compaction of granular media under vibration or shear. In: Kolymbas D, Fellin W (eds) Compaction of soils, granulates and powders. A. A. Balkema, Rotterdam, p 241Google Scholar
  6. 6.
    Linz S, Dohle A (1999) Minimal relaxation law for compaction of tapped granular matter. Phys Rev E 60(5):5737–5741CrossRefGoogle Scholar
  7. 7.
    Dobry R, Whitman RV (1973) Compaction of sand on a vertically vibrated table. American Society of Testing Materials, PhiladelphiaGoogle Scholar
  8. 8.
    Ayer JE, Soppet FE (1965) Vibratory compaction: I, compaction of spherical shapes. J Am Ceram Soc 48(4):180CrossRefGoogle Scholar
  9. 9.
    Wildman RD, Parker DJ (2002) Coexistence of two granular temperatures in binary vibrofluidized beds. Phys Rev Lett 88(6):064301CrossRefGoogle Scholar
  10. 10.
    Wildman RD, Huntley JM, Parker DJ (2001) Granular temperature profiles in three-dimensional vibrofluidized granular beds. Phys Rev E 63(6 I):061311CrossRefGoogle Scholar
  11. 11.
    Warr S, Huntley JM, Jacques GTH (1995) Fluidization of a two-dimensional granular system: experimental study and scaling behavior. Phys Rev E 52(5):5583–5595CrossRefGoogle Scholar
  12. 12.
    Wakou J, Ochiai A, Isobe M (2008) A Langevin approach to one-dimensional granular media fluidized by vibrations. J Phys Soc Jpn 77(3):034402CrossRefGoogle Scholar
  13. 13.
    Brey JJ, Ruiz-Montero MJ, Moreno F, Garcia-Rojo R (2002) Transversal inhomogeneities in dilute vibrofluidized granular fluids. Phys Rev E 65(6):061302CrossRefGoogle Scholar
  14. 14.
    Yoon DK, Jenkins JT (2006) The influence of different species’ granular temperatures on segregation in a binary mixture of dissipative grains. Phys Fluids 18(7):073301:073303–073306CrossRefGoogle Scholar
  15. 15.
    Windows-Yule CR, Parker DJ (2015) Density-driven segregation in binary and ternary granular systems. Kona Powder Particle 32:163–175. doi:10.14356/kona.2015004 CrossRefGoogle Scholar
  16. 16.
    Williams JC (1976) The segregation of particulate materials: a review. Powder Technol 15:245–251CrossRefGoogle Scholar
  17. 17.
    Vanel L, Rosato AD, Dave RN (1997) Rise regimes of a single large sphere in a vibrated bed. Phys Rev Lett 78:1255–1258CrossRefGoogle Scholar
  18. 18.
    Shishodia N, Wassgren CR (2001) Particle segregation in vibrofluidized beds due to buoyant forces. Phys Rev Lett 87(8):084302CrossRefGoogle Scholar
  19. 19.
    Sanders DA, Swift MR, Bowley RM, King PJ (2006) The attraction of Brazil nuts. Europhys Lett 73(3):349–355CrossRefGoogle Scholar
  20. 20.
    Rosato AD, Blackmore DL, Zhang N, Lan Y (2002) A perspective on vibration-induced size segregation of granular materials. Chem Eng Sci 57(2):265–275CrossRefGoogle Scholar
  21. 21.
    Poschel T, Herrmann HJ (1995) Size segregation and convection. Europhys Lett 29(2):123–128CrossRefGoogle Scholar
  22. 22.
    Metzger MJ, Remy B, Glasser BJ (2011) All the Brazil nuts are not on top: vibration induced granular size segregation of binary, ternary and multi-sized mixtures. Powder Technol 205(1–3):42–51CrossRefGoogle Scholar
  23. 23.
    Liffman K, Muniandy K, Rhodes M, Gutteridge D, Metcalfe G (2001) A segregation mechanisms in vertically shaken bed. Granul Matter 3:205–214CrossRefGoogle Scholar
  24. 24.
    Huerta DA, Ruiz-Suarez JC (2004) Vibration-induced granular segregation: a phenomenon driven by three mechanisms. Phys Rev Lett 92(11):114301–114301CrossRefGoogle Scholar
  25. 25.
    Harwood CF (1977) Powder segregation due to vibration. Powder Technol 16:51–57CrossRefGoogle Scholar
  26. 26.
    Ellenberger J, Vandu CO, Krishna R (2006) Vibration-induced granular segregation in a pseudo-2D column: the (reverse) Brazil nut effect. Powder Technol 164(3):168–173CrossRefGoogle Scholar
  27. 27.
    Duran J, Rajchenbach J, Clement E (1993) Arching effect model for particle size segregation. Phys Rev Lett 70:2431–2434CrossRefGoogle Scholar
  28. 28.
    Ahmad K, Smalley IJ (1973) Observation of particle segregation in vibrated granular systems. Powder Technol 8:69–75CrossRefGoogle Scholar
  29. 29.
    Bonneau L, Andreotti B, Clement E (2007) Surface elastic waves in granular media under gravity and their relation to booming avalanches. Phys Rev E 75(1):016602. doi:10.1103/PhysRevE.75.016602 CrossRefGoogle Scholar
  30. 30.
    Conway SL, Coldfarb DJ, Glasser BJ (2003) Free surface waves in wall-bounded granular flows. Phys Rev Lett 90(7):074301CrossRefGoogle Scholar
  31. 31.
    Luding S (1997) Surface waves and pattern formation in vibrated granular media. In: Behringer R, Jenkins JT (eds) Powders and grains 1997. A. A. Balkema, AmsterdamGoogle Scholar
  32. 32.
    Pak HK, Behringer PR (1993) Surface waves in vertically vibrated granular materials. Phys Rev Lett 71(12):1835–1838CrossRefGoogle Scholar
  33. 33.
    Blackmore D, Rosato A, Tricoche X, Urban K, Zuo L (2014) Analysis, simulation and visualization of 1D tapping via reduced dynamical systems models. Physica D 273–74:14–27. doi:10.1016/j.physd.2014.01.009 CrossRefGoogle Scholar
  34. 34.
    Blackmore D, Rosato A, Tricoche X, Urban K, Ratnaswamy V (2011) Tapping dynamics for a column of particles and beyond. J Mech Mater Struct 6(1–4):71–86. doi:10.2140/jomms.2011.6.71 CrossRefGoogle Scholar
  35. 35.
    Dybenko O, Rosato AD, Horntrop D (2007) Three-dimensional Monte Carlo simulations of density relaxation. Kona Powder Particle 25:133–144CrossRefGoogle Scholar
  36. 36.
    Falcon E, Laroche C, Fauve S, Coste C (1998) Collision of a 1-D column of beads with a wall. Eur Phys J B 5(1):111–131CrossRefGoogle Scholar
  37. 37.
    Cundall PA (1974) Rational design of tunnel supports: a computer model for rock-mass behavior using interactive graphics for input and output of geometrical data. U. S. Army Corp. of Engineers, OmahaGoogle Scholar
  38. 38.
    Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65CrossRefGoogle Scholar
  39. 39.
    Alder BJ, Wainwright TE (1956) Statistical mechanical theory of transport properties. In: Proceedings of the international union of pure and applied physics, BrusselsGoogle Scholar
  40. 40.
    Alder BJ, Wright TEWA (1960) Studies in molecular dynamics. II. Behavior of a small number of elastic spheres. J Chem Phys 33(5):1439–1451MathSciNetCrossRefGoogle Scholar
  41. 41.
    Walton OR, Braun RL (1993) Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters. In: Joint DOE/NSF worksop on flow of particulates and fluids, IthacaGoogle Scholar
  42. 42.
    Walton OR, Braun RL (1986) Stress calculations for assemblies of inelastic spheres in uniform shear. Acta Mech 63(1–4):73–86CrossRefGoogle Scholar
  43. 43.
    Walton OR (1992) Numerical simulation of inelastic, frictional particle-particle interactions. In: Roco MC (ed) Particulate two-phase flow. Butterworths, Boston, pp 884–911 Google Scholar
  44. 44.
    Goldsmith W (1960) Impact: the theory and physical behavior of colliding solids. Edward Arnold, LondonMATHGoogle Scholar
  45. 45.
    Dintwa E, Tijskens E, Ramon H (2008) On the accuracy of the Hertz model to describe the normal contact of soft elastic spheres. Granul Matter 10(3):209–221CrossRefMATHGoogle Scholar
  46. 46.
    Parker D, Forster R, Fowler P, Takhar P (2002) Positron emission particle tracking usingthe new Birmingham positron camera. Nucl Instr Methods Phys Res A 477:540–545CrossRefGoogle Scholar
  47. 47.
    Wildman RD, Huntley JM, Hansen JP, Parker DJ, Allen DA (2000) Single-particle motion in three-dimensional vibrofluidized granular beds. Phys Rev E 62(3 B):3826–3835CrossRefGoogle Scholar
  48. 48.
    Windows-Yule CR, Rosato AD, Rivas N, Parker DJ (2014) Influence of initial conditions on granular dynamics near the jamming transition. New J Phys 16:063016CrossRefGoogle Scholar
  49. 49.
    Wildman RD, Huntley JM, Parker DJ (2001) Convection in highly fluidized three-dimensional granular beds. Phys Rev Lett 86:3304–3307CrossRefGoogle Scholar
  50. 50.
    Windows-Yule CR, Rivas N, Parker DJ (2013) Thermal convection and temperature inhomogeneity in a vibrofluidized granular bed: the influence of sidewall dissipation. Phys Rev Lett 111:038001CrossRefGoogle Scholar
  51. 51.
    Windows-Yule C, Weinhart T, Parker DJ, Thornton AR (2014) Effects of packing density on the segregative behaviors of granular systems. Phys Rev Lett 112:098001CrossRefGoogle Scholar
  52. 52.
    Jenkins JT, Zhang C (2002) Kinetic theory for identical, frictional, nearly elastic spheres. Phys Fluids 14(3):1228–1235CrossRefGoogle Scholar
  53. 53.
    McNamara S, Young WR (1994) Inelastic collapse in two dimensions. Phys Rev E 50(1):R28–R31CrossRefGoogle Scholar
  54. 54.
    Blackmore D, Samulyak R, Rosato A (1999) New mathematical model for particle flow dynamics. J Nonlinear Math Phys 6:198–221MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Blackmore D, Urban K, Rosato A (2010) Integrability analysis of regular and fractional BSR fields. Condens Matter Phys 13(43403):1–7Google Scholar
  56. 56.
    Wu H, Blackmore D (2015) Global well-posedness of the BSR model. In preparationGoogle Scholar
  57. 57.
    Stirkwerda JC (2004) Finite difference schemes and particle differential equations. SIAM, PhiladelphiaCrossRefGoogle Scholar
  58. 58.
    Tadmor E (2002) Stability of Runga-Kutta schemes by the energy method. In: Estep D, Tavener S (eds) Collected lectures on the preservation of stability under discretization. SIAM, Philadelphia, pp 25–48Google Scholar

Copyright information

© OWZ 2015

Authors and Affiliations

  • A. D. Rosato
    • 1
  • L. Zuo
    • 1
  • D. Blackmore
    • 2
  • H. Wu
    • 2
  • D. J. Horntrop
    • 2
  • D. J. Parker
    • 3
  • C. Windows-Yule
    • 3
  1. 1.Granular Science Lab, Mechanial and Industrial Engineering DepartmentNew Jersey Institute of TechnologyNewarkUSA
  2. 2.Department of Mathematical SciencesNew Jersey Institute of TechnologyNewarkUSA
  3. 3.Department of PhysicsUniversity of BirminghamBirminghamUK

Personalised recommendations