1 Introduction

Analytic photovoltaic module modeling with the parameters provided by PV module manufacturer is critical for PV plant sizing [1, 2], simulation [3], testing [4], PV plant monitoring [5, 6], dispatching [7], and energy management [8]. A very popular PV module model introduced by Borowy & Salameh [2] named 2C model proposed in this paper, has been heavily cited by 229 papers from Google and 66 papers from IEEE-Xplore database, with no derivation process. [36] have used 2C model in their works. All known that the awareness of strong theoretic based or data well driven modeling process is necessary for a user, therefore, this paper aims to fill the blank and present not only a detailed derivation but also a conformity study of 2C model.

In Sect. 2, the 2C model is introduced, which can be decomposed into a sub-model under standard test condition (STC) and an incremental sub-model. Two new parameter sets \( ({\gamma _{{I_{{\text{m}}} }} ,\gamma _{{V_{{\text{m}}} }} }) \) and \( (\sigma _{{I_{m} }} ,\sigma _{{V_{{\text{m}}} }}) \) are introduced to simplify the model and help the further derivation and conformity study. The contradictions of 2C model with manufacturer’s datasheet have been explored in Sect. 3. In Sect. 4, 2C model under STC is derived from a single-diode circuit model. The conformity error measurements of 2C model with manufacturer’s datasheet have been developed in Sect. 5. Finally conclusions are made in Sect. 6.

2 2C model and its decomposition

2.1 Basic formula

$$ I = I_{{{\text{SC}}}} \left[ {1 - C_{1} \left( {\exp \left( {\frac{{V - \Delta V}}{{C_{2} V_{{{\text{OC}}}} }}} \right) - 1} \right)} \right] + \Delta I $$
(1)
$$ C_{1} = \left( {1 - \frac{{I_{\text{m}} }}{{I_{\text{SC}} }}} \right)\exp \left( { - \frac{{V_{\text{m}} }}{{C_{2} V_{\text{OC}} }}} \right) $$
(2)
$$ C_{2} = \left( {\frac{{V_{\text{m}} }}{{V_{\text{OC}} }} - 1} \right)/\ln \left( {1 - \frac{{I_{\text{m}} }}{{I_{\text{SC}} }}} \right) $$
(3)
$$ \Delta I = \alpha \frac{R}{{R_{\text{ref}} }}\Delta T + \left( {\frac{R}{{R_{\text{ref}} }} - 1} \right)I_{\text{SC}} $$
(4)
$$ \Delta V = - \beta \Delta T - R_{\text{s}} \Delta I $$
(5)
$$ \Delta T = T_{\text{C}} - T_{\text{ref}} $$
(6)

where R and Tc are the solar irradiance and module temperature, respectively. C1, C2, ΔI, ΔV and ΔT are intermediate variables; Isc is the short circuit current; Voc is the open circuit voltage; Im is the current at maximum power; Vm is the voltage at maximum power; α is the short circuit current temperature correlation (%/°C or A/°C); β is the open circuit voltage temperature correlation (%/°C or V/°C); Rref and Tref are the references of solar irradiance and ambient temperature and Rref = 1 kW/m2, Tref = 25 °C, respectively; Rs is internal series resistance.

2.2 New direct forms of C1 and C2

Assuming two parameter sets:

$$ \left\{\!\!{\begin{array}{ll} {\frac{{I_{\text{m} }}}{{I_{{{\text{SC}}}} }}\,=\,\gamma _{{I_{\text{m}} }} ,} & {\frac{{V_{{\text{m}}} }}{{V_{{{\text{OC}}}} }}\,=\,\gamma _{{V_{{\text{m}}} }} } \\ {1 - \frac{{I_{\text{m}} }}{{I_{{{\text{SC}}}} }}\,=\,\sigma _{{I_{{\text{m}}} }} ,} & {1 - \frac{{V_{{\text{m}}} }}{{V_{{{\text{OC}}}} }}\,=\,\sigma _{{V_{{\text{m}}} }} } \\ \end{array} } \right. $$
(7)

From (7), the equation is obtained as follows:

$$ C_{1} = \left( {\sigma_{{I_{\rm{m}} }} } \right)^{{\frac{1}{{\sigma_{{V_{\text{m}} }} }}}} $$
(8)
$$ C_{2} = - \frac{{\sigma_{{V_{\text{m}} }}}}{{\ln \sigma_{{I_{\rm{m}} }} }} $$
(9)

It can be proved that:

$$ C_{2} = - \frac{1}{{\ln C_{1} }} $$
(10)
$$ 0 < \sigma_{{I_{\rm m} }}\,<\,1,\;\;0 < \sigma_{{V_{\rm m} }}\,<\,1 $$
(11)
$$ 0\,<\,C_{1}\,<\,1 $$
(12)

2.3 Decompose 2C model into two sub-models

2C model can be decomposed into two sub-models, one is the model under STC, the other one is the incremental model

1) Under STC, R = Rref, Tc = Tref, ΔI = 0, ΔV = 0, ΔT = 0. (1) will be written as follows:

$$ I(V) = I_{\text{SC}} \left[ {1 - C_{1} \left( {\exp \left( {\frac{V}{{V_{\text{OC}} C_{2} }}} \right) - 1} \right)} \right] $$
(13)
$$ V(I) = C_{2} V_{\text{OC}} \ln \left[ {\left. {1 + \frac{1}{{C_{1} }}\left( {1 - \frac{I}{{I_{\text{SC}} }}} \right)} \right]} \right. $$
(14)

2) With R and Tc changing in time, ΔI, ΔV and ΔT will also change according to (4)–(6).

$$ \left\{ \begin{array}{l} I^{ * } = I - \Delta I \hfill \\ V^{ * } = V - \Delta V \hfill \\ \end{array} \right. $$
(15)

(1) will become as follows:

$$ I^{*} = I_{\text{SC}} \left. {\left[ {1 - C_{1} \left( {\exp \left( {\frac{{V^{*} }}{{C_{2} V_{\text{OC}} }}} \right) - 1} \right)} \right.} \right] $$
(16)

Even if R and Tc are not the reference values, the characteristic curves of I and V are still the same under STC, since the pattern of (13) is same with (16). (15) is a coordinate shift operation to transform (V, I) into (V*, I*). (13) and (16) are both determined by Isc, Voc and C1, C2. Therefore, the parameter forms of C1 and C2 will determine 2C model not only for its STC model, but also for its incremental model.

3 Contradictions of 2C model under STC

3.1 2C model at V = 0 under STC

Assuming \( I\,= \,I_{\text{SC}}^{\prime\prime} \) at V = 0, (16) can be written as:

$$ I_{\text{SC}}^{\prime\prime} = I_{\text{SC}} $$
(17)

which means the short circuit point in model is exactly at the assumed short circuit point.

3.2 2C model at V = Vm under STC

Assuming \( I = I_{\text{m}}^{\prime\prime} \) at V = Vm, (16) can be written from (7, 8, 10) as:

$$ I_{\text{m}}^{\prime\prime} = I_{\text{m}} + I_{\text{SC}} C_{1} $$
(18)

From (18), the bias between \( I = I_{\text{m}}^{\prime\prime} \) and Im can be derived as:

$$ \Delta I_{\text{m}}^{\prime\prime} = I_{\text{m}}^{\prime\prime} - I_{\text{m}} = I_{\text{SC}} C_{1}\,>\,0 $$
(19)

which means that the power point of the model (Vm, \( I_{\text{m}}^{\prime\prime} \)) always locates at the upper side of the maximum power point (Vm, Im) provided by manufactory.

3.3 2C model at I = Im under STC

Assuming V = \( V_{\text{m}}^{\prime\prime} \) at I = Im, from (14), \( V_{\text{m}}^{\prime\prime} \) is given as:

$$ V_{\text{m}}^{\prime\prime} = C_{2} V_{\text{OC}} \ln \;\left[ {1 + \frac{1}{{C_{1} }}\left( {1 - \frac{{I_{\text{m}} }}{{I_{\text{SC}} }}} \right)} \right] $$
(20)

Defining:

$$ Z_{ 2} = V_{\text{m}}^{\prime\prime} /V_{\text{m}} $$
(21)

From (8) and (9), (20) can be written as:

$$ Z_{2} = \ln \left( {1 + \sigma_{{I_{\rm m} }}^{{1 - \frac{1}{{\sigma_{{V_{\rm m} }} }}}} } \right)/\ln \left( {\sigma_{{\text{I}_{\rm m} }}^{{1 - \frac{1}{{\sigma_{{V_{\rm m} }} }}}} } \right) $$
(22)

Defining:

$$ x_{3} = \sigma_{{I_{\text{m}} }}^{{1 - \frac{1}{{\sigma_{{V_{\text{m}} }} }}}} $$
(23)

Thus:

$$ z_{2} = \ln \left( {1 + x_{3} } \right)/\ln \left( {x_{3} } \right) $$
(24)

(23) can be derived as:

$$ \ln (x_{3} ) = \left( {1 - \frac{1}{{\sigma_{{V_{\text{m}} }} }}} \right)\ln (\sigma_{{I_{\text{m}} }} ) $$
(25)

From (11), it can be derived that

$$ \left( {1 - \frac{1}{{\sigma_{{V_{\text{m}} }} }}} \right) < 0,\quad {\rm ln}(\sigma_{{\text{I}_{\text{m}} }} ) < 0 $$
(26)
$$ \ln (x_{3} ) > 0 $$
(27)

which means X3 > 1, (1 + X3)/X3 > 1, so that ln[(1 + X3)/X3] > 0, ln(1 + X3) − ln (X3) > 0. Finally, it can be derived that

$$ \ln \left( {1 + x_{3} } \right) > \ln \left( {x_{3} } \right) $$
(28)

(28) can be expressed as:

$$ \ln \left( {1 + x_{3} } \right)/\ln \left( {x_{3} } \right) > 1 $$
(29)

Substituting (29) into (24), it is shown that Z2 > 1, so that \( V_{\text{m}}^{\prime\prime} > V_{\text{m}} \) at I = Im, i.e., the power point (\( V_{\text{m}}^{\prime\prime} \), Im) of the model always locates at the right side of the maximum power point (Vm, Im) provided by manufactory.

3.4 2C model at V =  Voc under STC

Assuming I = \( I_{ 0}^{\prime\prime} \) at V = Voc, (13) can be written from (8) and (9) as:

$$ I_{0}^{\prime\prime} = I_{\text{SC}} \;\left[ {1 - \sigma_{{I_{\rm m} }}^{{\frac{1}{{\sigma_{{V_{\text{ m}} }} }}}} \;\left( {\sigma_{{I_{\rm m} }}^{{\frac{{ - V_{\text{OC}} }}{{V_{\text{oc}} \sigma_{{V_{\text{m}} }} }}}} - 1} \right)} \right] = I_{\text{SC}} \sigma_{{I_{\text{ m}} }}^{{\frac{1}{{\sigma_{{V_{\text{ m}} }} }}}} = I_{\text{SC}} C_{1} > 0 $$
(30)

which means the current at V = Voc is greater than 0, with a constant error IscC1.

4 A derivation of C1 and C2 from an ideal single-diode PV circuit model

4.1 PV circuit model with an ideal single-diode

The circuit model based on semiconductor theory with a single diode is given by (1) [9].

$$ I = I_{\text{ph}} - I_{\text{s}} \left[ {\exp \left( {\frac{{q(V + R_{\text{s}} I)}}{nkT}} \right) - 1} \right] - \frac{{V + R_{\text{s}} I}}{{R_{\text{sh}} }} $$
(31)

where Iph is the photonic current (principally depends on the solar irradiance); Is1 and Is2 are the reverse saturation currents of diode 1 and 2, respectively; q is the electron charge and q = 1.60,217,646×10−19 C; k is the Boltzmann constant and k = 1.3,806,503×10−23 J/K; T is the cell temperature in Kelvin; n is the diode ideality factors; Rs is the series resistance; Rsh is the shunt resistance. (31) is a complex equation without any explicit solutions for both voltage V and current I.

If neglecting Rs and Rsh, (1) will become:

$$ I(V) = I_{\text{ph}} - I_{\text{s}} = I_{\begin{subarray}{l} {\text{ph}} \\ \end{subarray} } - I_{0} \left[ {\exp \left( {\frac{V}{{V_{\text{T}} }}} \right) - 1} \right] $$
(32)

where I0 is the reverse saturation current; VT is the energy equivalent [9].

At the short circuit point under STC, (32) becomes:

$$ I(V)\left| {_{V = 0} } \right. = I_{\text{ph}} = I_{\text{SC}} $$
(33)

Thus:

$$ I(V) = I_{\text{SC}} - I_{0} \left[ {\exp \left( {\frac{V}{{V_{\text{T}} }}} \right) - 1} \right] $$
(34)

(14) can be expressed as:

$$ V(I) = V_{\text{T}} \ln \left[ {1 + \left( {\frac{{I_{\text{SC}} - I}}{{I_{0} }}} \right)} \right] $$
(35)

It is known that when \( I = I_{\text{SC}} - I_{ 0} ({\text{e}} - 1) \), the observed voltage is equal to VT, which can be expressed as follows:

$$ V_{\text{T}} = V(I)\left| {_{{I = I_{\text{SC}} - I_{0} ({\text{e}} - 1)}} } \right. $$
(36)

4.2 A single-diode PV circuit model expressed by C1 and C2

Substituting (34) into the following form:

$$ I(V) = I_{\text{SC}} \left\{ {1 - \frac{{I_{0} }}{{I_{\text{SC}} }}\left[ {\exp \left( {\frac{{V_{\text{OC}} }}{{V_{\text{T}} }} \cdot \frac{V}{{V_{\text{OC}} }}} \right) - 1} \right]} \right\} $$
(37)

Assuming there are two new parameters C1* and C2*, which are expressed as:

$$ C_{1}^{*} = \frac{{I_{0} }}{{I_{\text{SC}} }},\quad \quad C_{2}^{*} = \frac{{V_{\text{T}} }}{{V_{\text{OC}} }} $$
(38)

(37) can be derived as:

$$ I(V) = I_{\text{SC}} \left\{ {1 - C_{1}^{*} \left[ {\exp \left( {\frac{V}{{C_{2}^{*} V_{\text{OC}} }}} \right) - 1} \right]} \right\} $$
(39)

4.3 Key equation to solve C1* and C2*

C1* and C2* can be derived by (39) at the open circuit point and MPP points.

1) At the open circuit point, assuming V = Voc, I = 0, (39) can be derived as:

$$ \exp \left( {\frac{1}{{C_{2}^{*} }}} \right) = 1 + \frac{1}{{C_{1}^{*} }} $$
(40)

For simplifying, defining

$$ \left\{ {\begin{array}{*{20}c} {C_{3} = 1/C_{1}^{*} } \\ {C_{4} = 1/C_{2}^{*} } \\ \end{array} } \right. $$
(41)

(40) can be expressed as:

$$ \exp \left( {C_{4} } \right) = 1 + C_{3} $$
(42)

2) At the MPP point, assuming V = Vm, I = Im,(38) can be derived as:

$$ 1 + (1 - \gamma_{{I_{\text{m}} }} )C_{3} = \left( {1 + C_{3} } \right)^{{\gamma_{{V_{\text{m}} }} }} $$
(43)

Defining

$$ y = 1 + (1 - \gamma_{{I_{\text{m}} }} )C_{3} - \left( {1 + C_{3} } \right)^{{\gamma_{{V_{\text{m}} }} }} $$
(44)

which is the key equation to get the solution of C3 when y = 0. The curve of (44) is shown in Fig. 1.

Fig. 1
figure 1

Curve of (44)

4.4 Solution of C1* and C2*

Normally, C3 >> 1 when \( \gamma_{{I_{\text{m}} }} \in [0.85,0.99];\;\;\;\gamma_{{V_{\text{m}} }} \in [0. 7 5,0. 8 5 ] \) [10]. Thus:

$$ 1 + C_{3} \cong C_{3} $$
(45)

(43) can be expressed by C1* according to (41) as:

$$ C_{1}^{*} \left[ {C_{1}^{*} - \left( {1 - \frac{{I_{\text{m}} }}{{I_{\text{SC}} }}} \right)^{{\frac{1}{{\left( {1 - \frac{{V_{\text{m}} }}{{V_{\text{OC}} }}} \right)}}}} } \right] = 0 $$
(46)

Since C3 >> 1, C *1 ≠ 0, the final solution is given by

$$ C_{1}^{*} = \left( {1 - \frac{{I_{\text{m}} }}{{I_{\text{SC}} }}} \right)^{{\frac{1}{{\left( {1 - \frac{{V_{\text{m}} }}{{V_{\text{OC}} }}} \right)}}}} $$
(47)

which is same with C1 in direct form given by (8), proving the indirect form given by (2). From (45), (42) can be written as:

$$ \exp (C_{4} ) = C_{3} $$
(48)

Thus

$$ C_{2}^{*} = \left( {C_{4}^{*} } \right)^{ - 1} = \left( {\ln C_{3}^{*} } \right)^{ - 1} = \left( {\frac{{V_{\text{m}} }}{{V_{\text{OC}} }} - 1} \right)/\ln \left( {1 - \frac{{I_{\text{m}} }}{{I_{\text{SC}} }}} \right) $$
(49)

which is also exactly the same with (3).

4.5 I0 and VT in generic single-diode PV circuit model

According to (39) and (7), I0 and VT are given by

$$ I_{0} = C_{1}^{*} I_{\text{sc}} = I_{\text{sc}} \left( {\sigma_{{I_{\rm m} }} } \right)^{{\frac{1}{{\sigma_{{V_{\text{m}}}}}}}} $$
(50)
$$ V_{\text{T}} = C_{2}^{*} V_{\text{oc}} = - V_{\text{oc}} \left( {\sigma_{{_{{V_{\text{m}} }} }} } \right)/\left( {\ln \sigma_{{_{{I_{\text{m}} }} }} } \right) $$
(51)

5 The conformity measurement of STC sub-model calculated data with manufacturer’s datasheet

5.1 The error of the calculated maximum voltage in model and the provided maximum voltage

According to (20), the relative error is defined as:

$$ \delta_{{V_{\text{oc}} }} = \frac{{V_{\text{oc}}^{\prime\prime} - V_{\text{OC}} }}{{V_{\text{OC}} }} = \frac{{V_{\text{oc}}^{\prime\prime} }}{{V_{\text{OC}} }} - 1 = C_{2} \ln \left( {1 + \frac{1}{{C_{1} }}} \right) - 1 $$
(52)
$$ = - \left( {\ln C_{1} } \right)^{ - 1} \ln \left( {1 + C_{1}^{ - 1} } \right) - 1 $$
(53)

It is known that \( \delta_{{V_{oc} }} \) is greater than 0 since C1 is great than 0 from Fig. 2.

Fig. 2
figure 2

Curve of (53)

At the open-circuit point, Voc calculated in 2C STC sub-model is greater than the the assumed value one, and the bias \( \delta_{{V_{\text{oc}} }} \) greatly depends on the value of C1. The bias will increase if C1 increases.

Replacing C1 by \( \gamma_{{I_{\rm m} }} \) and \( \gamma_{{V_{\text{m}} }} \) into (53),

$$ \delta_{{V_{\text{oc}} }} = - (1 - \gamma_{{V_{\text{m}} }} )\ln \left( {1 + 1/\left( {1 - \gamma_{{I_{\rm m} }} } \right)^{{1/(1 - \gamma_{{V_{\text{m}} }} )}} } \right)/\ln \left( {1 - \gamma_{{I_{\rm m} }} } \right) - 1 $$
(54)

Fig. 3 shows that \( \delta_{{V_{\text{oc}} }} \in \left[ { 1. 7 8 {\text{e}}^{ - 1 5} , 6. 6 7 {\text{e}}^{ - 5} } \right] \) when \( \gamma_{{I_{\rm{m}} }} \in \left[ { 0. 8 5, \, 0.99 \, } \right],\quad \quad \gamma_{{V_{\text{m}} }} \in \left[ { 0. 7 5, \, 0.85 \, } \right] \). The error of the maximum voltage \( V_{\text{oc}}^{\prime} \) which is calculated with the maximum voltage Voc provided by manufactory is very small though \( V_{\text{oc}}^{\prime} > V_{\text{oc}} \).

Fig. 3
figure 3

Relative error \( \delta_{{V_{\text{oc}} }} \)with \( \gamma_{{I_{\rm m} }} \) and \( \gamma_{{V_{\text{m}} }} \) in (54)

5.2 The error of between \( I_{\text{m}}^{\prime\prime} \) and Im at V = Vm under STC

From (18) and (12), the relative error is given as:

$$ \delta_{{I_{\rm{m}} }} = \frac{{\Delta I_{\text{m}}^{\prime\prime} }}{{I_{\text{m}} }} = \frac{{I_{\text{m}}^{\prime\prime} - I_{\text{m}} }}{{I_{\text{m}} }} = \frac{{I_{\text{SC}} }}{{I_{\text{m}} }}C_{1} > 0 $$
(55)
$$ = \frac{1}{{\gamma_{{I_{\rm m} }} }}\left( {1 - \gamma_{{I_{\rm m} }} } \right)^{{1/\left( {1 - \gamma_{{_{{V_{\rm m} }} }} } \right)}} $$
(56)

From Fig. 4, it is shown that \( \delta_{{I_{\rm{m}} }} \in \left[ { 4. 6 9 {\text{e}}^{ - 1 4} , 5. 9 6 {\text{e}}^{ - 4} } \right] \) when \( \gamma_{{I_{\rm{m}} }} \in \left[ { 0. 8 5, \, 0.99 \, } \right],\;\;\;\;\gamma_{{V_{\text{m}} }} \in \left[ { 0. 7 5, \, 0.85 \, } \right] \). The error of \( I_{\text{m}}^{\prime\prime} \) at \( V = V_{\text{m}} \) and \( I_{\text{m}} \) at the MPP point is very small though \( I_{\text{m}}^{\prime\prime} > I_{\text{m}} \)

Fig. 4
figure 4

Relative error \( \delta_{{I_{\rm{m}} }} \)with \( \gamma_{{I_{m} }} \) and \( \gamma_{{V_{\text{m}} }} \)in (56)

5.3 The error between \( V_{\text{m}}^{\prime\prime} \) and \( V_{\text{m}} \) at \( I = I_{\text{m}} \) under STC

From (20) and (7), it can be obtained that:

$$ \delta_{{V_{\text{m}} }} = - \frac{{(1 - \gamma_{{V_{\text{m}} }} )}}{{\gamma_{{V_{\text{m}} }} \ln (1 - \gamma_{{I_{\text{m}} }} )}}\ln \left[ {1 + (1 - \gamma_{{I_{\rm{m}} }} )^{{\left( {\frac{{\gamma_{{V_{\text{m}} }} }}{{1 - \gamma_{{V_{\text{m}} }} }}} \right)}} } \right] $$
(57)

In Fig. 5, \( \delta_{{V_{\text{m}} }} \in \left[ { 1. 7 8 {\text{e}}^{ - 1 3} , 5. 9 2 {\text{e}}^{ - 4} } \right] \) when \( \gamma_{{I_{\rm{m}} }} \in \left[ { 0. 8 5, \, 0.99 \, } \right],\;\;\;\gamma_{{V_{\text{m}} }} \in \left[ { 0. 7 5, \, 0.85 \, } \right], \) which means the error between \( V_{\text{m}}^{\prime\prime} \) and \( V_{\text{m}} \) at the MPP point is very small though \( V_{\text{m}}^{\prime\prime} > V_{\text{m}} \).

Fig. 5
figure 5

Relative error \( \delta_{{V_{\text{m}} }} \)with \( \gamma_{{I_{\rm{m}} }} \)\( \gamma_{{V_{\text{m}} }} \) and in (57)

5.4 Prove of \( V_{\text{m}} < V_{\text{m}}^{\prime} < V_{\text{m}}^{\prime\prime} \;{\text{and}}\;I_{\text{m}} < I_{\text{m}}^{\prime} < I_{\text{m}}^{\prime\prime} \)

dP/dV is decreasing monotonously and it is 0 at point (\( V_{\text{m}}^{\prime}\), \( I_{\text{m}}^{\prime}\)). If dP/dV at point (Vm\( I_{\text{m}}^{\prime\prime}\)) is greater than 0, and dP/dV at (V m I m ) is smaller than 0, the above non-equality can be proved.

$$ \frac{{{\text{d}}P}}{{{\text{d}}V}} = I_{\text{SC}} \left[ {\frac{I}{{I_{\text{SC}} }} - \frac{V}{{C_{2} V_{\text{OC}} }}\left( {1 + C_{1} - \frac{I}{{I_{\text{SC}} }}} \right)} \right] $$
(58)

At point (V m I m ),

$$ \begin{aligned} \left. {\frac{{{\text{d}}P}}{{{\text{d}}V}}} \right|_{{(V_{\text{m}} ,I_{\text{m}}^{\prime\prime} )}} = I_{\text{SC}} \left[ {\left( {C_{1} + \frac{{I_{\text{m}}^{{}} }}{{I_{\text{SC}} }}} \right) - \frac{{V_{\text{m}} }}{{C_{2} V_{\text{OC}} }}\left( {1 - \frac{{I_{\text{m}}^{{}} }}{{I_{\text{SC}} }}} \right)} \right] \\ = I_{\text{SC}} \left\{ {1 + (1 - \gamma_{{I_{\rm{m}} }} )\left[ {\left( {1 - \gamma_{{I_{\text{m}} }} } \right)^{{\left( {\frac{{\gamma_{{V_{\text{m}} }} }}{{1 - \gamma_{{V_{\text{m}} }} }}} \right)}} - 1 - \frac{{\gamma_{{V_{\text{m}} }} }}{{1 - \gamma_{{V_{\text{m}} }} }}\ln \left( {1 - \gamma_{{I_{\text{m}} }} } \right)} \right]} \right\} \\ \end{aligned} $$
(59)

From Fig. 6, dP/dV is greater than 0 when \( \gamma_{{I_{\text{m}} }} \in \left[ { 0. 8 5, \, 0.99 \, } \right],\quad\,\gamma_{{V_{\text{m}} }} \in \left[ { 0. 7 5, \, 0.85 \, } \right] \).

Fig. 6
figure 6

Curve of dP/dV at point (V m , \( I_{{\text{m}}}^{\prime\prime} \)) in (59)

From (17), it can be derived that

$$ V_{\text{m}}^{\prime\prime} = C_{2} V_{\text{OC}} \ln \left[ {1 + \frac{1}{{C_{1} }}\left( {1 - \frac{{I_{\text{m}} }}{{I_{\text{SC}} }}} \right)} \right] = C_{2} V_{\text{OC}} \ln \left[ {1 + \frac{1}{{C_{1} }}(1 - \gamma_{{I_{\rm{m}} }} )} \right] $$
(60)

Then (58) can be expressed as:

$$ \left. {\frac{{{\text{d}}P}}{{{\text{d}}V}}} \right|_{{\left( {V_{{\text{m}}}^{{\prime \prime }} ,I_{{\text{m}}} } \right)}} = I_{{{\text{SC}}}} \left \{ 1 - (1 - \gamma _{{I_{{\text{m}}} }} )\left \{1 + \left[ {1 + \left( {1 + (1 - \gamma _{{I_{{\text{m}}} }} )^{{\frac{{\gamma _{{V_{{\text{m}}} }} }}{{1 - \gamma _{{V_{{\text{m}}} }} }}}} } \right)} \right] \right \} \times \ln \left( {1 + \left( {1 - \gamma _{{I_{{\text{m}}} }} } \right)^{{\frac{{ - \gamma _{{V_{{\text{m}}} }} }}{{1 - \gamma _{{V_{{\text{m}}} }} }}}} } \right) \right \} $$
(61)

The value of dP/dV at point (\( V_{{\text{m}}}^{\prime\prime} \)I m ) is smaller than 0 when when \( \gamma_{{I_{\text{m}} }} \in \left[ { 0. 8 5, \, 0.99 \, } \right],\;\;\;\;\gamma_{{V_{\text{m}} }} \in \left[ { 0. 7 5, \, 0.85 \, } \right] \) in Fig. 7.

Fig. 7
figure 7

Curve of dP/dV at point (\( V_{{\text{m}}}^{\prime\prime} \)I m ) in (61)

5.5 The error between the maximum power calculated in model and provided by manufactory

Defining the voltage and current at the MPP point are V m and I m Pm = VmIm, the error can be given as:

$$ \delta_{{P_{\text{m}} }} = \frac{\Delta P}{{P_{\text{m}} }} = \frac{{P_{\text{m}}^{\prime} - P_{\text{m}} }}{{P_{\text{m}} }} = (1 + C_{1} )\frac{{I_{\text{SC}} }}{{I_{\text{m}} }}\frac{{V_{\text{m}}^{\prime} }}{{V_{\text{m}} }} - C_{2} \frac{{I_{\text{m}}^{\prime} }}{{I_{\text{m}} }}\frac{{V_{\text{OC}} }}{{V_{\text{m}} }} - 1 $$
(62)

It is difficult to have an explicit expression of \( \delta_{{P_{\text{m}} }} \). It is proved above that

$$ V_{\text{m}} < V_{\text{m}}^{\prime\prime} < V_{\text{m}}^{\prime\prime} \;,\;I_{\text{m}} < I_{\text{m}}^{\prime\prime} < I_{\text{m}}^{\prime\prime} $$
(63)

From (56) and (57), it is derived that

$$ \frac{{I_{\text{m}}^{\prime\prime} }}{{I_{\text{m}} }} = \delta_{{I_{m} }} + 1 < \hbox{max} \left( {\delta_{{I_{\rm{m}} }} } \right) + 1 = 1.000{,}596 $$
(64)
$$ \frac{{V_{\text{m}}^{\prime\prime} }}{{V_{\text{m}} }} = \delta_{{V_{\text{m}} }} + 1 < \hbox{max} \left( {\delta_{{V_{\text{m}} }} } \right) + 1 = 1.000{,}592 $$
(65)

Thus:

$$ \begin{aligned} \delta_{{P_{\text{m}} }} = \frac{\Delta P}{{P_{\text{m}} }} = \frac{{P_{\text{m}}^{\prime\prime} }}{{P_{\text{m}} }} - 1 = \frac{{I_{\text{m}}^{\prime} V_{\text{m}}^{\prime} }}{{I_{\text{m}} V_{\text{m}} }} - 1 < \frac{{I_{\text{m}}^{\prime\prime} V_{\text{m}}^{\prime\prime} }}{{I_{\text{m}} V_{\text{m}} }} - 1 \\ < (\hbox{max} (\delta_{{V_{\text{m}} }} ) + 1)(\hbox{max} (\delta_{{I_{\rm{m}} }} ) + 1) - 1 \\ = 1.000{,}596*1.000{,}592 - 1 = 0.001{,}19 = 0.119\% \\ \end{aligned} $$
(66)

which means the model relative error of the calculated maximum power is small and negligible.

6 Conclusion

1) 2C model is a single-diode circuit model, since it can be derived to a single-diode circuit model theoretically. (39) defines the original physical parameters of 2C, i.e., C1 is the ratio of reverse saturation current I0 to the short circuit current Isc, C2 is the ratio of energy equivalent VT to the open circuit voltage Voc.

2) The expressions of C1 and C2 in manufacturer’s datasheet of 2C model are mostly correct under a reasonable approximation assumption for almost manufacturer’s PV modules.

3) Though there are contradictions of 2C model with manufacturer’s datasheet, the relative errors are very small, which can be negligible in engineering application.

4) The conformity error measurement method by 3D curves gives a systematic method for power community users to be aware of the conformity errors of their own PV modules by using 2C model in real application.

Therefore, the calculate data in 2C model is almost the same with the manufacturer’s datasheet under STC. If applying 2C model in a real application, it is necessary to find other PV module models.