Skip to main content
Log in

Efficient mathematical models for parameters estimation of single-diode photovoltaic cells

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The photovoltaic (PV) cell behavior is characterized by its current–voltage relationship. This relationship is dependent on the PV cell’s equivalent circuit parameters. Accurate estimation of such parameters is essential to study and analyze the PV system performance in terms of many aspects such as modeling and control. The main purpose of this paper is to develop mathematical models for the parameters of the single-diode poly and monocrystalline PV cells. The models are formulated using Eureqa software by utilizing training data collected from simulating thousands of PV modules available in Simulink library. The developed models can be easily and instantly executed by only using information available from module datasheet under standard test conditions (STC). The models are then validated using four different assessments by considering testing data, commercial PV modules, and experimental data, in addition to benchmarking with other reported algorithms. As an overall evaluation, the assessments have shown that the developed models are efficient in estimating the PV cell equivalent circuit parameters and can consequently predict the IV curves for any poly or monocrystalline PV modules, under any weather conditions, with a high degree of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. United States, Congress, U.S.: Energy Information Administration. “Short-Term Energy Outlook (STEO),” Short-Term Energy Outlook (STEO), U.S. Energy Information Administration, pp. 1–53 (2020). https://www.eia.gov/outlooks/steo/report/electricity.php

  2. IEA: Global Energy Review, IEA, Paris (2020). https://www.iea.org/reports/global-energy-review-2020/renewables

  3. Oliva, D., Elaziz, M.A., Elsheikh, A.H., Ewees, A.A.: A review on meta-heuristics methods for estimating parameters of solar cells. J. Power Sour. 435, 126683 (2019)

    Article  CAS  Google Scholar 

  4. Chin, V.J., Salam, Z., Ishaque, K.: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: a review. Appl. Energy 154, 500–519 (2015)

    Article  ADS  Google Scholar 

  5. Khursheed, M.-U.-N., Khan, M. F. N., Ali, G., Khan, A. K.: A review of estimating solar photovoltaic cell parameters. In: 2019 2nd Int. Conf. on Computing, Math. and Eng. Technol. (iCoMET) (2019).

  6. Humada, A.M., Hojabri, M., Mekhilef, S., Hamada, H.M.: Solar cell parameters extraction based on single and double-diode models: a review. Renew. Sustain. Energy Rev. 56, 494–509 (2016)

    Article  Google Scholar 

  7. Toledo, F., Blanes, J.M.: Analytical and quasi-explicit four arbitrary point method for extraction of solar cell single-diode model parameters. Renew. Energy 92, 346–356 (2016)

    Article  Google Scholar 

  8. Batzelis, E.I., Papathanassiou, S.A.: A method for the analytical extraction of the single-diode PV model parameters. IEEE Trans. Sustain. Energy 7(2), 504–512 (2016)

    Article  ADS  Google Scholar 

  9. Brano, V.L., Ciulla, G.: An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data. Appl. Energy 111, 894–903 (2013)

    Article  ADS  Google Scholar 

  10. Cubas, J., Pindado, S., Victoria, M.: On the analytical approach for modeling photovoltaic systems behavior. J. Power Sour. 247, 467–474 (2014)

    Article  ADS  CAS  Google Scholar 

  11. Dongue, S.B., Njomo, D., Ebengai, L.: An improved nonlinear five-point model for photovoltaic modules. Int. J. Photoenergy 2013, 1–11 (2013)

    Article  Google Scholar 

  12. Abbassi, R., Abbassi, A., Jemli, M., Chebbi, S.: “Identification of unknown parameters of solar cell models: a comprehensive overview of available approaches. Renew. Sustain. Energy Rev. 90, 453–474 (2018)

    Article  Google Scholar 

  13. Elbaset, A.A., Ali, H., Sattar, M.A.E.: New seven parameters model for amorphous silicon and thin film PV modules based on solar irradiance. Sol. Energy 138, 26–35 (2016)

    Article  ADS  CAS  Google Scholar 

  14. Peng, L., Sun, Y., Meng, Z.: An improved model and parameters extraction for photovoltaic cells using only three state points at standard test condition. J. Power Sour. 248, 621–631 (2014)

    Article  ADS  CAS  Google Scholar 

  15. Ishaque, K., Salam, Z., Taheri, H.: Simple, fast and accurate two-diode model for photovoltaic modules. Sol. Energy Mater. Solar Cells 95(2), 586–594 (2011)

    Article  CAS  Google Scholar 

  16. Elazab, O.S., Hasanien, H.M., Alsaidan, I., Abdelaziz, A.Y., Muyeen, S.M.: Parameter estimation of three diode photovoltaic model using grasshopper optimization algorithm. Energies 13(2), 497 (2020)

    Article  Google Scholar 

  17. Gude, S., Jana, K.C.: Parameter extraction of photovoltaic cell using an improved cuckoo search optimization. Sol. Energy 204, 280–293 (2020)

    Article  ADS  Google Scholar 

  18. Ibrahim, I.A., Hossain, M., Duck, B.C., Nadarajah, M.: An improved wind driven optimization algorithm for parameters identification of a triple-diode photovoltaic cell model. Energy Convers. Manage. 213, 112872 (2020)

    Article  Google Scholar 

  19. Luu, T.V., Nguyen, N.S.: Parameters extraction of solar cells using modified JAYA algorithm. Optik 203, 164034 (2020)

    Article  ADS  CAS  Google Scholar 

  20. Qais, M.H., Hasanien, H.M., Alghuwainem, S.: Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm. Appl. Energy 250, 109–117 (2019)

    Article  ADS  CAS  Google Scholar 

  21. Soon, J.J., Low, K.-S.: Photovoltaic model identification using particle swarm optimization with inverse barrier constraint. IEEE Trans. Power Electron. 27(9), 3975–3983 (2012)

    Article  ADS  Google Scholar 

  22. Chen, Z., Wu, L., Lin, P., Wu, Y., Cheng, S.: Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy. Appl. Energy 182, 47–57 (2016)

    Article  ADS  CAS  Google Scholar 

  23. Saravanan, C., Panneerselvam, M.A.: A comprehensive analysis for extracting single diode PV model parameters by hybrid GA-PSO algorithm. Int. J. Comp. Appl. 78(8), 16–19 (2013)

    Google Scholar 

  24. Singh, K.J., Kho, K.L.R., Singh, S.J., Devi, Y.C., Singh, N., Sarkar, S.: Artificial neural network approach for more accurate solar cell electrical circuit model. Int. J. Comp. Sci. Appl. 4(3), 101–116 (2014)

    Google Scholar 

  25. Karamirad, M., Omid, M., Alimardani, R., Mousazadeh, H., Heidari, S.N.: ANN based simulation and experimental verification of analytical four- and five-parameters models of PV modules. Simul. Modell. Prac. and Theo. 34, 86–98 (2013)

    Article  Google Scholar 

  26. Karatepe, E., Boztepe, M., Colak, M.: Neural network based solar cell model. Energy Convers. Manage. 47(9–10), 1159–1178 (2006)

    Article  CAS  Google Scholar 

  27. Cortés, B., Sánchez, R.T., Flores, J.J.: Characterization of a polycrystalline photovoltaic cell using artificial neural networks. Sol. Energy 196, 157–167 (2020)

    Article  ADS  Google Scholar 

  28. Al-Subhi, A., El-Amin, I.: Optimal duty cycle modeling for maximum power point tracking of photovoltaic system. In: 2017 9th IEEE-GCC Conf. and Exhib. (GCCCE) (2017)

  29. Al-Subhi, A., El-Amin, I., Mosaad, M.I.: Efficient predictive models for characterization of photovoltaic module performance. Sustain Energy Technol. Assess. 38, 100672 (2020)

    Google Scholar 

  30. Al-Subhi, A., Al-Alwani, S., El-Amin I.: Mathematical-based accurate prediction model of output AC power for grid-connected photovoltaic system. In: 2017 Saudi Arabia Smart Grid Conf. (SASG) (2017)

  31. Yan, Z., Li, C., Song, Z., Xiong, L., Luo, C.: An improved brain storming optimization algorithm for estimating parameters of photovoltaic models. IEEE Access 7, 77629–77641 (2019)

    Article  Google Scholar 

  32. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Michael, S., Lipson, H.: Eureqa (version 0.98 beta) [software]." Nutonian, Somerville, Mass, USA (2013).

  34. Wang, G., Zhao, K., Shi, J., Chen, W., Zhang, H., Yang, X., Zhao, Y.: An iterative approach for modeling photovoltaic modules without implicit equations. Appl. Energy 202, 189–198 (2017)

    Article  ADS  Google Scholar 

  35. (June 2020). 170 W Photovoltaic Module-Trinasolar. https://static.trinasolar.com/sites/default/files/PS-M-0332%20D%20Datasheet_Duomax_PEG40.07_US_Sep2017_B.pdf

  36. (June 2020). 280 W Photovoltaic Module-PENTA ASM6610P Series. http://www.astronergy-solarmodule.de/files/content/9_0_Download/Update_Download_5BB_180213/ASM6610P_5BB_PENTA_TD_40mm_ENG_2018_02.pdf

  37. (June 2020). 50 W Photovoltaic Module-Prostar PMS50W. https://enerfree.cl/wp-content/uploads/2018/11/Monocrystalline-Solar-Panel-50W-PMS50W-Datasheet.pdf

  38. (June 2020). 260 W Photovoltaic Module-EMMVEE. https://emmvee-energy.de/wp-content/uploads/2018/03/Mono-crystalline-60-72.pdf

  39. García, R.M.A., Abril, I.P.: Photovoltaic module model determination by using the Tellegen’s theorem. Renew. Energy 152, 409–420 (2020)

    Article  Google Scholar 

  40. (June 2020). 200 W Photovoltaic Module-Kyocera KC200GT. https://www.energymatters.com.au/images/kyocera/KC200GT.pdf

  41. (June 2020). 60 W Photovoltaic Module-Solarex MSX60. https://www.solarelectricsupply.com/media/custom/upload/Solarex-MSX64.pdf

  42. (June 2020). W Photovoltaic Module-Shell Solar SP70. https://www.solenerg.com.br/files/SP70.pdf

  43. (June 2020). 150 W Photovoltaic Module-Shell Solar SQ150-PC. https://millersolar.com/MillerSolar/Resources/Shell/ShellSQ150-PC.pdf

  44. (June 2020). 55 W Photovoltaic Module-Shell Solar SM55. http://www.atlantasolar.com/pdf/Shell/ShellSM55_USv1.pdf

  45. (June 2020). 36 W Photovoltaic Module-Shell Solar S36. https://ebonys.pagesperso-orange.fr/ebocrea/boutique/module/ShellS36_UK.pdf

  46. Merchaoui, M., Sakly, A., Mimouni, M.F.: Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction. Energy Convers. Manage. 175, 151–163 (2018)

    Article  Google Scholar 

  47. Ishaque, K., Salam, Z., Syafaruddin: A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model. Sol. Energy 85(9), 2217–2227 (2011)

    Article  ADS  Google Scholar 

  48. Ram, J.P., Babu, T.S., Dragicevic, T., Rajasekar, N.: A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation. Energy Convers. Manage. 135, 463–476 (2017)

    Article  Google Scholar 

  49. Soto, W.D., Klein, S., Beckman, W.: Improvement and validation of a model for photovoltaic array performance. Sol. Energy 80(1), 78–88 (2006)

    Article  ADS  Google Scholar 

  50. Lun, S.-X., Du, C.-J., Guo, T.-T., Wang, S., Sang, J.-S., Li, J.-P.: A new explicit I–V model of a solar cell based on Taylor’s series expansion. Sol. Energy 94, 221–232 (2013)

    Article  ADS  Google Scholar 

  51. Karmalkar, S., Haneefa, S.: A physically based explicit J–V model of a solar cell for simple design calculations. IEEE Electr. Devic. Lett. 29(5), 449–451 (2008)

    Article  ADS  CAS  Google Scholar 

  52. Saloux, E., Teyssedou, A., Sorin, M.: Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. Sol. Energy 85(5), 713–722 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Al-Subhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Subhi, A. Efficient mathematical models for parameters estimation of single-diode photovoltaic cells. Energy Syst 15, 275–296 (2024). https://doi.org/10.1007/s12667-022-00542-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-022-00542-3

Keywords

Navigation