Skip to main content
Log in

Effect of Process Parameters on Powder Bed Fusion Maraging Steel 300: A Review

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Powder bed fusion is a 3D printing method to build metallic components by laser melting. Maraging steels are used in aerospace applications due to their tremendous strength to weight proportion. In current years, maraging steel components built by Additive Manufacturing (AM) are used in the aerospace industry instead of casting parts. Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS), and Laser Powder Bed Fusion (LPBF) techniques in the 3D printing process are widely used to manufacture the maraging steel. The mechanical features of LPBF maraging steel are more when compared to the wrought alloy. The variable process parameters in the LPBF method are laser power, laser scanning velocity, hatch distance, layer thickness, and build direction. Such process parameters are manipulated adequately to fabricate the final component; otherwise, they cause porosity, cracks, low density, and balling. Depending on the laser-metal interaction, these defects affect the microstructure, relative density, mechanical, and surface features of the maraging steel component fabricated in the LPBF process. In this paper, an attempt has been made to review the effect of the laser process parameters with the maraging steel 300 in the LPBF process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

This article is a review article. All Reference papers are available.

References

  1. Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R.: Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57, 133–164 (2012)

    Article  Google Scholar 

  2. Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C.: Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016)

    Article  Google Scholar 

  3. Leary, M. Surface roughness optimisation for selective laser melting (SLM): accommodating relevant and irrelevant surfaces, in: M. Brandt (Ed.), Laser Additive Manufacturing Materials, Design, Technologies, and Applications, Woodhead Publishing Series in Electronic and Optical Materials, pp. 99–118 Chapter 4 (2017)

  4. Leon, A., Aghion, E.: Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM). Mater. Charact. 131, 188–194 (2017)

    Article  Google Scholar 

  5. Tan, C., Zhou, K., Ma, W., Zhang, P., Liu, M., Kuang, T.: Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater. Des. 134, 23–34 (2017)

    Article  Google Scholar 

  6. Guo, J., Goh, M., Zhu, Z., Lee, X., Nai, M.L.S., Wei, J.: On the machining of selective laser melting CoCrFeMnNi high-entropy alloy. Mater. Des. 153, 211–220 (2018)

    Article  Google Scholar 

  7. Yin, S., Chen, C., Yan, X., Feng, X., Jenkins, R., O’Reilly, P., Liu, M., Li, H., Lupoi, R.: The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel. Addit. Manuf. 22, 592–600 (2018)

    Google Scholar 

  8. Nasab, M.H., Gastaldi, D., Lecis, N.F., Vedani, M.: On morphological surface features of the parts printed by selective laser melting (SLM). Addit. Manuf. 24, 373–377 (2018)

    Google Scholar 

  9. Mutua, J., Nakata, S., Onda, T., Chen, Z.-C.: Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater. Des. 139, 486–497 (2018)

    Article  Google Scholar 

  10. Kaynak, Y., Kitay, O.: The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting. Addit. Manuf. 26, 84–93 (2019)

    Google Scholar 

  11. Bodziak, S., Al-Rubaie, K.S., Valentina, L.D., Lafratta, F.H., Santos, E.C., Zanatta, A.M., Chen, Y.: Precipitation in 300 grade maraging steel built by selective laser melting: aging at 510 °C for 2 h. Mater. Charact. 151, 73–83 (2019)

    Article  Google Scholar 

  12. Atzeni, E., Iuliano, L., MInetola, P., Salmi, A.: Redesign and cost estimation of rapid manufactured plastic parts. Rapid Prototyping J. 16(5), 308–317 (2010)

    Article  Google Scholar 

  13. Atzeni, E., Salmi, A.: Economics of additive manufacturing for end-usable metal parts. Int. J. Adv. Manuf. Technol. 62(9–12), 1147–1155 (2012)

    Article  Google Scholar 

  14. Mellor, S., Hao, L., Zhang, D.: Additive manufacturing: A framework for implementation. Int. J. Prod. Econ. 149, 194–201 (2014)

    Article  Google Scholar 

  15. Tolosa, I., Garciandía, F., Zubiri, F.: Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies. Int. J. Adv. Manuf. Technol. 51(5–9), 639–647 (2010)

    Article  Google Scholar 

  16. Guan, K., Wang, Z., Gao, M., Li, X., Zeng, X.: Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel. Mater. Des. 50, 581–586 (2013)

    Article  Google Scholar 

  17. Narayanan, TSN Sankara., Kim, Jisoo, Jeong, Hoon Eui, Park, Hyung Wook: Enhancement of the surface properties of selective laser melted maraging steel by large pulsed electron-beam irradiation. Additive Manufacturing 33, 101125 (2020)

    Article  Google Scholar 

  18. Gong, X., Anderson, T., Chou, K.: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater. 58(9), 3303–3312 (2010)

    Article  Google Scholar 

  19. Jia, Q., Gu, D.: Selective laser melting additive manufacturing of Inconel 718 super alloy parts: densification, microstructure and properties. J. Alloy. Compd. 585, 713–721 (2014)

    Article  Google Scholar 

  20. Kanagarajah, P., Brenne, F., Niendorf, T., Maier, H.: Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading. Materials Science and Engineering A. 588, 188–195 (2013)

    Article  Google Scholar 

  21. Kumar, S., Pityana, S.: Laser-based additive manufacturing of metals. Adv. Mater. Res. 227, 92–95 (2011)

    Article  Google Scholar 

  22. Kumar S. Selective Laser Sintering: Recent Advances. In: 4th Pacific International Conference on Applications of Lasers and Optics. Wuhan-China, 617 (2010)

  23. Khan, M., Dickens, P. M. Processing parameters for Selective Laser Melting (SLM) of gold. In: Proceedings of Solid Freeform Fabrication symposium. 278–279 (2008)

  24. Louvis, E., Fox, P., Sutcliffe, C.: Selective laser melting of aluminum components. J. Mater. Process. Technol. 211(2), 275–284 (2011)

    Article  Google Scholar 

  25. Thijs, L., Kempen, K., Kruth, J.-P., Humbeeck, J.V.: Fine-structured aluminum products with controllable texture by selective laser melting of pre-alloyed AlSi10Mgpowder. Acta Mater. 61, 1809–1819 (2013)

    Article  Google Scholar 

  26. Aboulkhair, N.T., Everitt, N., Ashcroft, I., Tuck, C.: Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 1, 77–86 (2014)

    Google Scholar 

  27. Kumar, S., Kruth, J.P.: Composites by rapid prototyping technology. Mater. Des. 31(2), 850–856 (2010)

    Article  Google Scholar 

  28. Ghosh, S.K., Saha, P., Kishore, S.: Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process. Mater. Sci. Eng. A 527(18–19), 4694–4701 (2010)

    Article  Google Scholar 

  29. Dai, D., Gu, D.: Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments [J]. Mater. Des. 55, 482–491 (2014)

    Article  Google Scholar 

  30. Zhang, Q., Chen, J., Guo, P., et al.: Texture and microstructure characterization in laser additive manufactured Ti– 6Al–2Zr–2Sn–3Mo–1.5 Cr–2Nb titanium alloy [J]. Mater. Des. 88, 550–557 (2015)

    Article  Google Scholar 

  31. Gu, D.D., Meiners, W., Wissenbach, K., et al.: Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. Int. Mater. Rev. 57(3), 133–164 (2012)

    Article  Google Scholar 

  32. Baron, P., et al.: Research and application of methods of technical diagnostics for the verification of the design node. Meas. J. Int. Meas. Confed. 94, 245–253 (2016)

    Article  Google Scholar 

  33. Hanzl, P., et al.: Optimization of the pressure porous sample and its manufacturability by selective laser melting. Manuf. Technol. J. 17(1), 34–38 (2017)

    Google Scholar 

  34. Majstorovic, V., et al.: CAI model for prismatic parts in digital manufacturing. Procedia CIRP 25, 27–32 (2014)

    Article  Google Scholar 

  35. Rubesova,K., et al.: Microstructure ofMS1 maraging steel in 3D-printed products after semi-solid processing. In: Proceedings of the 27th DAAAM International Symposium, Published by DAAAM International, Vienna, Austria, pp. 0467–0472 (2016)

  36. Sha, W., Guo, Z.: Maraging Steels: Modelling of Microstructure, Properties and Applications. Woodhead Publishing Ltd., Cambridge, UK (2009)

    Book  Google Scholar 

  37. Bai, Y., Yang, Y., Wang, D., Zhang, M.: Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng. A 703, 116–123 (2017)

    Article  Google Scholar 

  38. Bremen, S., Meiners, W., Diatlov, A.: Selective laser melting: A manufacturing technology for the future? Laser Tech. J. 9(2), 33–38 (2012)

    Article  Google Scholar 

  39. Pereloma, E.V., Stohr, R.A., Miller, M.K., Ringer, S.P.: Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel by Atom Probe Tomography. Metall. and Mater. Trans. A. 40, 3069 (2009)

    Article  Google Scholar 

  40. Pereloma, E.V., Shekhter, A., Miller, M.K., Ringer, S.P.: Ageing behaviour of an Fe–20Ni–1.8Mn–1.6Ti– 0.59Al (wt%) maraging alloy: clustering, precipitation and hardening. Acta Materialia 52, 5589–5602 (2004)

    Article  Google Scholar 

  41. Tewari, R., Mazumder, S., Batra, I.S., Dey, G.K., Banerjee, S.: Precipitation in 18 wt% Ni maraging steel of grade 350. Acta Mater. 48, 1187–1200 (2000)

    Article  Google Scholar 

  42. Frazier, W.E.: Metal additive manufacturing: A review. J. Mater. Eng. Perform. 23, 1917–1928 (2014)

    Article  Google Scholar 

  43. Sames, W.J., List, F.A., Pannala, S., Dehoff, R.R., Babu, S.S.: The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61, 315–360 (2016)

    Article  Google Scholar 

  44. Dutta, B., Froes, F.H.: Additive manufacturing of titanium alloys. Adv. Mater. Process. 172, 18–23 (2014)

    Google Scholar 

  45. Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L., Fino, P.: Influence of process parameters on surface roughness of aluminium parts produced by DMLS. Int. J. Adv. Manuf. Technol. 67(9–12), 2743–2751 (2013)

    Article  Google Scholar 

  46. Subashini, L., Phani Prabhakar, K.V., Ghosh, Swati, Padmanabham, G.: Comparison of laser-MIG hybrid and autogenous laser welding of M250 maraging steel thick sections—understanding the role of filler wire addition. Int. J. Adv. Manuf. Technol. 107(3), 1581–1594 (2020)

    Article  Google Scholar 

  47. Xu, X., Ganguly, S., Ding, J., Dirisu, P., Martina, F., Liu, X., Williams, S.W.: Improving mechanical properties of wire plus arc additively manufactured maraging steel through plastic deformation enhanced aging response. Mater. Sci. Eng., A 747, 111–118 (2019)

    Article  Google Scholar 

  48. Xu, X., Ganguly, S., Ding, J., Guo, S., Williams, S., Martina, F.: Microstructural evolution and mechanical properties of maraging steel produced by wire+ arc additive manufacture process. Mater. Charact. 143, 152–162 (2018)

    Article  Google Scholar 

  49. Xu, X., Ding, J., Ganguly, S., Diao, C., Williams, S.: Preliminary investigation of building strategies of maraging steel bulk material using wire+ arc additive manufacture. J. Mater. Eng. Perform. 28(2), 594–600 (2019)

    Article  Google Scholar 

  50. Ben-Artzy, A., Reichardt, A., Borgonia, J.-P., Dillon, R.P., McEnerney, B., Shapiro, A.A., Hosemann, P.: Compositionally graded SS316 to C300 Maraging steel using additive manufacturing. Mater. Des. 201, 109500 (2021)

    Article  Google Scholar 

  51. Jarfors, Anders EW., Matsushita, Taishi, Siafakas, Dimitrios, Stolt, Roland: On the nature of the anisotropy of Maraging steel (1.2709) in additive manufacturing through powder bed laser-based fusion processing. Mater. Des. 204, 109608 (2021)

    Article  Google Scholar 

  52. Podgornik, B., Šinko, M., Godec, M.: "Dependence of the wear resistance of additive-manufactured maraging steel on the build direction and heat treatment." Additive Manufacturing: 102123 (2021)

  53. de Oliveira, Amanda, Rossi, Vitor Furlan, de Oliveira, Julio, Teixeira, Carlos, Conte, Erik Gustavo Del.: Investigation of the build orientation effect on magnetic properties and Barkhausen Noise of additively manufactured maraging steel 300. Additive Manufacturing 38, 101827 (2021)

    Article  Google Scholar 

  54. Ahmadkhaniha, Donya, Möller, H., Zanella, Caterina: Studying the Microstructural Effect of Selective Laser Melting and Electropolishing on the Performance of Maraging Steel. J. Mater. Eng. Perform. 30, 1–18 (2021)

    Article  Google Scholar 

  55. Kruth, J.P., Mercelis, P., Froyen, L., Rombouts, M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 11, 25–36 (2005)

    Article  Google Scholar 

  56. Olakanmi, E.O., Cochrane, R.F., Dalgarno, K.W.: A review on selective laser sintering/ melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog. Mater. Sci. 74, 401–477 (2015)

    Article  Google Scholar 

  57. Khaing, M.W., Fuh, J.Y.H., Lu, L.: Direct Metal Laser Sintering for rapid tooling: Processing and characterization of EOS parts. J. Mater. Process. Technol. 113, 269–272 (2001)

    Article  Google Scholar 

  58. Calignano, F.: Investigation of the accuracy and roughness in the laser powder bed fusion process. Virtual Phys Prototyping. 13(2), 97–104 (2018)

    Article  Google Scholar 

  59. Sing, S., An, J., Yeong, W., et al.: Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res 34(3), 369–385 (2016)

    Article  Google Scholar 

  60. Yin, H., Felicelli, S.D.: Dendrite growth simulation during solidification in the LENS process. Acta Materialia 58(4), 1455–1465 (2010)

    Article  Google Scholar 

  61. Amano, R.S., Rohatgi, P.K.: Laser engineered net shaping process for SAE 4140 low alloy steel. Mater. Sci. Eng., A 528(22–23), 6680–6693 (2011)

    Article  Google Scholar 

  62. Bian, L., Thompson, S.M., Shamsaei, N.: Mechanical Properties and Micro structural Features of Direct Laser-Deposited Ti-6Al-4V. Jom 67(3), 629–638 (2015)

    Article  Google Scholar 

  63. Gåård, A., Krakhmalev, P., Bergström, J.: Microstructural characterization and wear behavior of (Fe, Ni)–TiC MMC prepared by DMLS. J. Alloy. Compd. 421, 166–171 (2016)

    Article  Google Scholar 

  64. Jhabvala, J., et al.: On the effect of scanning strategies in the Selective Laser Melting process. Virtual and Physical Prototyping 5, 99–109 (2010)

    Article  Google Scholar 

  65. Yasa, E., et al.: Charpy impact testing of metallic Selective Laser Melting parts. Virtual and Physical Prototyping 5, 89–98 (2010)

    Article  Google Scholar 

  66. Bhattacharya, S., et al.: Micro structural evolution and mechanical, and corrosion property evaluation of Cu–30Ni alloy formed by Direct Metal Deposition process. J. Alloy. Compd. 509, 6364–6373 (2011)

    Article  Google Scholar 

  67. Delgado, J., Ciurana, J., Serenó, L.: Comparison of forming manufacturing processes and Selective Laser Melting technology based on the mechanical properties of products. Virtual and Physical Prototyping 6, 167–178 (2011)

    Article  Google Scholar 

  68. Aboulkhair, N.T., Maskery, I., Tuck, C., Ashcroft, I., Everitt, N.M.: The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment. Mater. Sci. Eng. A. 66, 139–146 (2016)

    Article  Google Scholar 

  69. DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., Zhang, W.: Additive manufacturing of metallic components – Process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)

    Article  Google Scholar 

  70. Yap, Chor Yen, Chua, Chee Kai, Dong, Zhi Li, Liu, Zhong Hong, Zhang, Dan Qing, Loh, Loong Ee, Sing, Swee Leong: Review of selective laser melting: Materials and applications. Applied physics reviews 2(4), 041101 (2015)

    Article  Google Scholar 

  71. Shuai, C., He, C., Liang, Xu., Li, Q., Chen, T., Yang, Y., Peng, S.: Wrapping effect of secondary phases on the grains: increased corrosion resistance of Mg–Al alloys. Virtual and Physical Prototyping 13(4), 292–300 (2018)

    Article  Google Scholar 

  72. Shuai, Cijun, Wenjing Yang, Youwen Yang, Chengde Gao, Chongxian He, Hao Pan. "A continuous net-like eutectic structure enhances the corrosion resistance of Mg alloys." International Journal of Bioprinting 5(2) (2019)

  73. Guo, M., Dongdong, Gu., Xi, L., Lei, Du., Zhang, H., Zhang, J.: Formation of scanning tracks during Selective Laser Melting (SLM) of pure tungsten powder: Morphology, geometric features and forming mechanisms. Int. J. Refract Metal Hard Mater. 79, 37–46 (2019)

    Article  Google Scholar 

  74. Wen, S., Wang, C., Zhou, Y., Duan, L., Wei, Q., Yang, S., Shi, Y.: High-density tungsten fabricated by selective laser melting: Densification, microstructure, mechanical and thermal performance. Opt. Laser Technol. 116, 128–138 (2019)

    Article  Google Scholar 

  75. Du, Zhenglin, Hui-Chi Chen, Ming Jen Tan, Guijun Bi, Chee Kai Chua. "Effect of nAl2O3 on the part density and microstructure during the laser-based powder bed fusion of AlSi10Mg composite." Rapid Prototyp. J. (2020)

  76. Chen, Xizhang, Kun Liu, Wei Guo, Namrata Gangil, Arshad Noor Siddiquee, Sergey Konovalov. "The fabrication of NiTi shape memory alloy by selective laser melting: a review." Rapid Prototyp. J. (2019)

  77. Kianian, Babak. "Wohlers Report 2018: 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report: Chapter title: Other Countries." In Wohlers Report 2018. Wohlers Associates, Inc. (2018)

  78. Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H.A.A., Maier, H.J.: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int. J. Fatigue 48, 300–307 (2013)

    Article  Google Scholar 

  79. Groeber, M.A., et al.: Application of characterization, modelling, and analytics towards understanding process-structure linkages in metallic 3D printing. IOP Conf. Ser. Mater. Sci. Eng. 219, 012002 (2017)

    Article  Google Scholar 

  80. Khairallah, S.A., Anderson, A.T., Rubenchik, A., King, W.E.: Laser powderbed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36–45 (2016)

    Article  Google Scholar 

  81. King, W.E., et al.: Observation of keyhole-mode laser melting in laser powderbed fusion additive manufacturing. J. Mater. Process. Technol. 214, 2915–2925 (2014)

    Article  Google Scholar 

  82. Katayama, S., Seto, N., Kim, J.-D., Matsunaw, A.: Formation mechanism and reduction method of porosity in laser welding of stainless steel. Int. Congr. Appl. Lasers Electro-Opt. 1997, G83 (1997)

    Google Scholar 

  83. Ly, S., Rubenchik, A.M., Khairallah, S.A., Guss, G., Matthews, M.J.: Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing. Sci. Rep. 7, 4085 (2017)

    Article  Google Scholar 

  84. Martin, Aiden A., Calta, Nicholas P., Khairallah, Saad A., Wang, Jenny, Depond, Phillip J., Fong, Anthony Y., Thampy, Vivek, et al.: Dynamics of pore formation during laser powder bed fusion additive manufacturing. Nat. Commun. 10(1), 1–10 (2019)

    Article  Google Scholar 

  85. Gong, Haijun, Rafi, Khalid, Hengfeng Gu, G.D., Ram, Janaki, Starr, Thomas, Stucker, Brent: Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting. Mater. Des. 86, 545–554 (2015)

    Article  Google Scholar 

  86. Cunningham, Ross, Narra, Sneha P., Montgomery, Colt, Beuth, Jack, Rollett, A.D.: Synchrotron-based X-ray icrotomography characterization of the effect of processing variables on porosity formation in laser power-bed additive manufacturing of Ti-6Al-4V. Jom 69(3), 479–484 (2017)

    Article  Google Scholar 

  87. Kasperovich, G., Haubrich, J., Gussone, J., Requena, G.: Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater. Des. 105, 160–170 (2016)

    Article  Google Scholar 

  88. Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R.: Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57, 133–164 (2013)

    Article  Google Scholar 

  89. Frazier, W.E.: Metal AdditiveManufacturing: A Review. J. Mater. Eng. Perform. 23, 1917–1928 (2014)

    Article  Google Scholar 

  90. Santos, E.C., Shiomi, M., Osakada, K., Laoui, T.: Rapid manufacturing of metal components by laser forming. Int. J. Mach. Tools Manuf. 46, 1459–1468 (2006)

    Article  Google Scholar 

  91. Zinovieva, O., Zinoviev, A., Ploshikhin, V.: Three-dimensional modeling of the microstructure evolution during metal additive manufacturing. Comput. Mater. Sci. 141, 207–220 (2018)

    Article  Google Scholar 

  92. Qiu, C.L., Chen, H.X., Liu, Q., Yue, S., Wang, H.M.: On the solidification behaviour and cracking origin of a nickel-based superalloy during selective laser melting. Mater. Charact. 148, 330–344 (2019)

    Article  Google Scholar 

  93. Carter, L.N., Wang, X., Read, N., Khan, R., Aristizabal, M., Essa, K., Attallah, M.M.: Process optimisation of selective laser melting using energy density model for nickel based superalloys. Mater. Sci. Technol. 32, 657–661 (2016)

    Article  Google Scholar 

  94. Fousova, M., Dvorsky, D., Vronka, M., Vojtech, D., Lejcek, P.: The Use of Selective Laser Melting to Increase the Performance of AlSi9Cu3Fe Alloy. Materials 2018, 11 (1918)

    Google Scholar 

  95. Casati, R., Lemke, J., Alarcon, A., Vedani, M.: Aging Behavior of High-Strength Al Alloy 2618 Produced by Selective Laser Melting. Metall. Mater. Trans. A 48, 575–579 (2017)

    Article  Google Scholar 

  96. Tradowsky, U., White, J., Ward, R.M., Read, N., Reimers, W., Attallah, M.M.: Selective laser melting of AlSi10Mg: Influence of post-processing on the microstructural and tensile properties development. Mater. Des. 105, 212–222 (2016)

    Article  Google Scholar 

  97. Chen, B., Moon, S.K., Yao, X., Bi, G., Shen, J., Umeda, J., Kondoh, K. Strength and strain hardening of a selective laser melted AlSi10Mg alloy. Scr. Mater. 2017, 141, 45–49. Metals 2020, 10, 102 21 of 23

  98. Aversa, A., Lorusso, M., Cattano, G., Manfredi, D., Calignano, F., Ambrosio, E.P., Biamino, S., Fino, P., Lombardi, M., Pavese, M.: A study of the microstructure and the mechanical properties of an Al-Si-Ni alloy produced via selective laser melting. J. Alloys Compd. 695, 1470–1478 (2017)

    Article  Google Scholar 

  99. Ma, P., Jia, Y.D., Prashanth, K.G., Scudino, S., Yu, Z.S., Eckert, J.: Microstructure and phase formation in Al-20Si-5Fe-3Cu-1Mg synthesized by selective laser melting. J. Alloys Compd. 657, 430–435 (2016)

    Article  Google Scholar 

  100. Tian, Z., Zhang, C., Wang, D., Liu, W., Fang, X., Wellmann, D., Zhao, Y., Tian, Y.: A review on laser powder bed fusion of inconel 625 nickel-based alloy. Appl. Sci. 10(1), 81 (2019)

    Article  Google Scholar 

  101. Clare, A.T., Chalker, P.R., Davies, S., Sutcli-e, C.J., Tsopanos, S.: Selective laser melting of high aspect ratio 3D nickel–titanium structures two way trained for MEMS applications. Int. J. Mech. Mater. Des. 4, 181–187 (2008)

    Article  Google Scholar 

  102. DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., Zhang, W.: Additive manufacturing of metallic components-Process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)

    Article  Google Scholar 

  103. Wang, X., Carter, L.N., Pang, B., Attallah, M.M., Loretto, M.H.: Microstructure and yield strength of SLM-fabricated CM247LC Ni-Superalloy. Acta Mater. 128, 87–95 (2017)

    Article  Google Scholar 

  104. R. Lachmayer, Y. A. Zghair, C. Klose and F. Nürnberger. Introducing selective laser melting to manufacture machine elements, international design conference – design. 831–842 (2016)

  105. Spears, T.G., Gold, A.: In-procress sensing in selective laser melting (SLM) additive manufacturing, Integrating materials and Manufacturing. Innovation 5, 16–40 (2016)

    Google Scholar 

  106. Asgari, H., Baxter, C., Hosseinkhani, K., Mohammadi, M.: On microstructure and mechanical properties of additively manufactured AlSi10Mg 200C usingrecycled powder. Mater. Sci. Eng: A 707, 148–158 (2017)

    Article  Google Scholar 

  107. Olakanmi, E.O., Cochrane, R.F., Dalgarno, K.W.: A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog. Mater. Sci. 74, 401–477 (2015)

    Article  Google Scholar 

  108. Bin Anwar, A., Cuong Pham, Q.: Selective laser melting of AlSi10Mg: effects of scan direction, part placement and inert gas flow velocity on tensile strength. J. Mater. Process. Technol. 240, 388–396 (2017)

    Article  Google Scholar 

  109. Trevisan, F., et al.: On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. Materials 10, 76 (2017)

    Article  Google Scholar 

  110. Krishnan, M., et al.: On the effect of process parameters on properties ofAlSi10Mg parts produced by DMLS. Rapid Prototype. J. 20, 449–458 (2014)

    Article  Google Scholar 

  111. Kempen, K., Thijs, L., Van Humbeeck, J., Kruth, J.-P.: Processing AlSi10Mg by selective laser melting: parameter optimization and material characterization. Mater. Sci. Technol. 31, 917–923 (2015)

    Article  Google Scholar 

  112. Read, N., Wang, W., Essa, K., Attallah, M.M.: Selective laser melting of AlSi10Mgalloy: process optimization and mechanical properties development. Mater. Des. 65, 417–424 (2015)

    Article  Google Scholar 

  113. Spierings, A.B., Herres, N., Levy, G.: Influence of the particle size distribution on surface quality and mechanical properties in additive manufactured stainless steel parts. In: Annual international solid freeform fabrication symposium, pp. 397–406. USA. University of Texas in Austin, Texas (2010)

    Google Scholar 

  114. Delgado, J., Ciurana, J.: Rodríguez CA Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int J Adv Manuf Technol 60, 601–610 (2012)

    Article  Google Scholar 

  115. Cherry, J.A., Davies, H.M., Mehmood, S., Lavery, N.P., Brown, S.G.R., Sienz, J.: Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76, 869–879 (2014)

    Article  Google Scholar 

  116. Król, M., Kujawa, M., Dobrzański, L.A.: Tański T Influence of technological parameters on additive manufacturing steel parts in selective laser sintering. Arch. Mater. Sci. Eng. 67(2), 84–92 (2014)

    Google Scholar 

  117. Yakout, Mostafa, Andrea Cadamuro, M. Elbestawi, and Stephen Veldhuis. "The selection of process parameters in additive manufacturing for aerospace alloys." International Journal of Advanced Manufacturing Technology 92 (2017)

  118. Wang, L., Dong, C., Kong, D., Man, C., Liang, J., Wang, C., Li, X. The Effect of Manufacturing Parameters on the Mechanical and Corrosion Behavior of Selective Laser Melted 15‐5PH Stainless Steel. Steel Research International. 1900447 (2019)

  119. Choo, H., Sham, K.-L., Bohling, J., Ngo, A., Xiao, X., Ren, Y., Depond, P.J., Matthews, M.J., Garlea, E.: Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel. Mater. Des. 164, 107534 (2019)

    Article  Google Scholar 

  120. Pan, Lu., Cheng-Lin, Z., Liang, W., Tong, L., Xiao-Cheng, Li.: Research on mechanical properties and microstructure by selective laser melting of 316L stainless steel. Materials Research Express. 6(12), 12657 (2019)

    Google Scholar 

  121. Larimian, Aban, Kannan, Manigandan, Grzesiak, Dariusz, AlMangour, Bandar, Borkar, Tushar: Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Materials Science and Engineering: A. 770, 138455 (2020)

    Article  Google Scholar 

  122. Hacısalihoğlu, Ilyas, Yıldiz, Fatih, Çelik, Ayhan: The effects of build orientation and hatch spacing on mechanical properties of medical Ti–6Al–4V alloy manufactured by selective laser melting. Mater. Sci. Eng. A. 802, 140649 (2021)

    Article  Google Scholar 

  123. Amir mahyar Khorasani: Ian Gibson, Umar Shafique Awan, Alireza Ghaderi, The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V. Addit. Manuf. 25, 176–186 (2019)

    Google Scholar 

  124. Koutiri, I., Pessard, E., Peyre, P., Amlou, O., De Terris, T.: Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J. Mater. Process. Technol. 255, 536–546 (2018)

    Article  Google Scholar 

  125. Polozov, I., Sufiiarov, V., Kantyukov, A., Popovich, A.: Selective Laser Melting of Ti2AlNb-based intermetallic alloy using elemental powders: Effect of process parameters and post-treatment on microstructure, composition, and properties. Intermetallics 112, 106554 (2019)

    Article  Google Scholar 

  126. Tucho, W.M., Lysne, V.H., Austbø, H., Sjolyst-Kverneland, A., Hansen, V.: Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. J. Alloy. Compd. 740, 910–925 (2018)

    Article  Google Scholar 

  127. Cherry, J.A., Davies, H.M., Mehmood, S., et al.: Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76, 869–879 (2015)

    Article  Google Scholar 

  128. Wohlers, T.T. Caffrey, T., Wohlers Report : 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report,” Wohlers Associates.(2015).

  129. Strano, G., Hao, L., Everson, R.M., Evans, K.E.: Surface roughness analysis, modeling and prediction in selective laser melting. J. Mater. Process. Technol. 213(4), 589–597 (2013)

    Article  Google Scholar 

  130. Krishnan, M., Atzeni, E., Canali, R., Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L.: On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS". Rapid Prototyping Journal 6(20), 449–458 (2014)

    Article  Google Scholar 

  131. Rao, Bheemavarapu Subba, Thella Babu Rao.: "Mechanical and Tribological Properties of 3D printed Al-Si alloys and composites: a Review." Silicon: 1–32 (2021)

  132. Delgado, J., Ciurana, J., Rodríguez, C.A.: Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int J Adv Manuf Technol 60, 601–610 (2012)

    Article  Google Scholar 

  133. Calignano, F., Manfredi, D., Ambrosio, E.P., et al.: Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int J Adv Manuf Technol 67, 2743–2751 (2013)

    Article  Google Scholar 

  134. Naiju, C.D., Annamalai, K., Manoj, P.K., Ayaz, K.M.: Investigation on the Effect of Process Parameters on Hardness of Components Produced by Direct Metal Laser Sintering (DMLS). Advanced Materials Research 488–489, 1414–2141 (2013)

    Google Scholar 

  135. Kuo, C.C., Yang, X.Y.: Optimization of direct metal printing process parameters for plastic injection mold with both gas permeability and mechanical properties using design of experiments approach. Int J Adv Manuf Technol 109, 1219–1235 (2020)

    Article  Google Scholar 

  136. Keshavarzkermani, A., Marzbanrad, E., Esmaeilizadeh, R., Mahmoodkhani, Y., Ali, U., Enrique, P.D., Zhou, N.Y., Bonakdar, A., Toyserkani, E.: An investigation into the effect of process parameters on melt pool geometry, cell spacing, and grain refinement during laser powder bed fusion. Opt. Laser Technol. 116, 83–91 (2019)

    Article  Google Scholar 

  137. Levkulich, N.C., Semiatin, S.L., Gockel, J.E., Middendorf, J.R., DeWald, A.T., Klingbeil, N.W.: The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V. Addit. Manuf. 28, 475–484 (2019)

    Google Scholar 

  138. Manfredi, D., et al.: From powders to dense metal parts: characterization of commercial AlSiMg alloy processed through direct metal laser sintering. Materials 6, 856–869 (2013)

    Article  Google Scholar 

  139. Bai, Yuchao, Cuiling Zhao, Yu., Zhang, Hao Wang: Microstructure and mechanical properties of additively manufactured multi-material component with maraging steel on CrMn steel. Mater. Sci. Eng.: A 802, 140630 (2021)

    Article  Google Scholar 

  140. Kučerová, Ludmila, Burdová, Karolina, Jeníček, Štěpán, Chena, Iveta: Effect of solution annealing and precipitation hardening at 250 °C–550 °C on microstructure and mechanical properties of additively manufactured 12709 maraging steel. Mater. Sci. Eng: A 814, 141195 (2021)

    Article  Google Scholar 

  141. Song J., Tang Q., Feng Q., Ma S., Han Q., Setchi R. (2021) Effect of Remelting Process on Surface Quality and Tensile Behaviour of a Maraging Steel Manufactured by Selective Laser Melting. In: Scholz S.G., Howlett R.J., Setchi R. (eds) Sustainable Design and Manufacturing , Sustainable Design and Manufacturing (2020 )251–260

  142. Félix-Martínez, C., Ibarra-Medina, J., Fernández-Benavides, D.A. et al. Effect of the parametric optimization and heat-treatment on the 18Ni-300 maraging steel microstructural properties manufactured by directed energy deposition. Int J Adv Manuf Technol (2021).

  143. Hovig, E.W., Azar, A.S., Solberg, K., et al.: An investigation of the anisotropic properties of heat-treated maraging steel grade 300 processed by laser powder bed fusion. Int J Adv Manuf Technol 114, 1359–1372 (2021)

    Article  Google Scholar 

  144. Lee, S.H.W., Choo, H.L., Mok, S.H., et al.: Permeability and Mechanical Properties of Additively Manufactured Porous Maraging 300 Steel. Lasers Manuf. Mater. Process. 8, 28–44 (2021)

    Article  Google Scholar 

  145. Bai, Y., Yang, Y., Wang, Di., Zhang, M.: Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng., A 703, 116–123 (2017)

    Article  Google Scholar 

  146. Tian, J., Huang, Z., Qi, W., Li, Y., Liu, J., Hu, G. Dependence of microstructure, relative density and hardness of 18Ni-300 maraging steel fabricated by selective laser melting on the energy density. InChinese Materials Conference (pp. 229-241). Springer, Singapore (2017)

  147. Apparao, D., and MV Jagannadha Raju. "Experimental Investigation on Maraging Steel Metal Deposition Using DMLS Process." In International Conference on Emerging Trends in Engineering (ICETE), pp. 721–730. Springer, Cham, 2020.

  148. Casalino, G., et al.: Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Opt. Laser Technol. 65, 151–158 (2015)

    Article  Google Scholar 

  149. Wang, Y., Luo, L., Liu, T., Wang, B., Luo, L., Zhao, J., Wang, L., Yanqing, Su., Guo, J., Hengzhi, Fu.: Tuning process parameters to optimize microstructure and mechanical properties of novel maraging steel fabricated by selective laser melting. Mater. Sci. Eng., A 823, 141740 (2021)

    Article  Google Scholar 

  150. Sarafan, S., Wanjara, P., Gholipour, J., Bernier, F., Osman, M., Sikan, F., Molavi-Zarandi, M., Soost, J., Brochu, M.: Evaluation of maraging steel produced using hybrid additive/subtractive manufacturing. Journal of Manufacturing and Materials Processing 5(4), 107 (2021)

    Article  Google Scholar 

  151. Suzuki, A., Nishida, R., Takata, N., Kobashi, M., Kato, M.: Design of laser parameters for selectively laser melted maraging steel based on deposited energy density. Addit. Manuf. 28, 160–168 (2019)

    Google Scholar 

  152. Bai, Yuchao, Lee, Yan Jin, Li, Chaojiang, Wang, Hao: Densification behavior and influence of building direction on high anisotropy in selective laser melting of high-strength 18Ni-Co-Mo-Ti maraging steel. Metall. Mater. Trans. A 51(11), 5861–5879 (2020)

    Article  Google Scholar 

  153. Yao, Y., Huang, Y., Chen, Bo., Tan, C., Yi, Su., Feng, J.: Influence of processing parameters and heat treatment on the mechanical properties of 18Ni300 manufactured by laser based directed energy deposition. Opt. Laser Technol. 105, 171–179 (2018)

    Article  Google Scholar 

  154. Mutua, James, et al.: Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater. Des. 139, 486–497 (2018)

    Article  Google Scholar 

  155. ] Li, Gan, Cheng Guo, Wen Feng Guo, Hong Xing Lu, Lin Ju Wen, Xiao Gang Hu, and Qiang Zhu. "Influence of Selective Laser Melting Process Parameters on Densification Behavior, Surface Quality and Hardness of 18Ni300 Steel." In Key Engineering Materials, vol. 861, pp. 77–82. Trans Tech Publications Ltd, 2020.

  156. Fortunato, A., Lulaj, A., Melkote, S., Liverani, E., Ascari, A., Umbrello, D.: Milling of maraging steel components produced by selective laser melting. Int. J. Adv. Manuf. Technol. 94(5), 1895–1902 (2018)

    Article  Google Scholar 

  157. Mugwagwa, L., Yadroitsev, I., Matope, S.: Effect of process parameters on residual stresses, distortions, and porosity in selective laser melting of maraging steel 300. Metals 9(10), 1042 (2019)

    Article  Google Scholar 

  158. Apparao, D., Jagannadha Raju, M.V.: Experimental investigation on hardness, microstructure and surface roughness of maraging steel parts produced by direct metal laser sintering technique. Int J Mech Prod Eng Res Dev (IJMPERD) 8(2), 629–636 (2018)

    Google Scholar 

  159. Sachdeva, A., Singh, S., Sharma, V.S.: Investigating surface roughness of parts produced by SLS process. Int J Adv Manuf Technol 64, 1505–1511 (2013)

    Article  Google Scholar 

  160. Wüst, P., Edelmann, A., Hellmann, R.: Areal surface roughness optimization of maraging steel parts produced by hybrid additive manufacturing. Materials 13(2), 418 (2020)

    Article  Google Scholar 

  161. Shamsdini, SeyedAmirReza., Shakerin, Sajad, Hadadzadeh, Amir, Amirkhiz, Babak Shalchi, Mohammadi, Mohsen: A trade-off between powder layer thickness and mechanical properties in additively manufactured maraging steels. Mater. Sci. Eng.: A 776, 139041 (2020)

    Article  Google Scholar 

  162. Chadha, Kanwal, Tian, Yuan, Bocher, Philippe, Spray, John G., Jr, Clodualdo Aranas: Microstructure evolution, mechanical properties and deformation behavior of an additively manufactured maraging steel. Materials 13(10), 2380 (2020)

    Article  Google Scholar 

  163. de Souza, Adriano, Fagali, Kassim S., Al-Rubaie, Sabrina Marques, Zluhan, Bruno, Santos, Edson Costa: Effect of laser speed, layer thickness, and part position on the mechanical properties of maraging 300 parts manufactured by selective laser melting. Mater. Sci. Eng.: A 767, 138425 (2019)

    Article  Google Scholar 

  164. Yasa, Evren, Karolien Kempen, Jean-Pierre Kruth, Lore Thijs, and Jan Van Humbeeck. "Microstructure and mechanical properties of maraging steel 300 after selective laser melting." In Solid freeform fabrication symposium proceedings. 383–396 (2010)

  165. Król, M., Snopiński, P., Hajnyš, J., Pagáč, M., Łukowiec, D.: Selective laser melting of 18NI-300 maraging steel. Materials 13(19), 4268 (2020)

    Article  Google Scholar 

  166. Shamsdini, SeyedAmirReza., Ghoncheh, M.H., Sanjari, Mehdi, Pirgazi, Hadi, Amirkhiz, Babak Shalchi, Kestens, Leo, Mohammadi, Mohsen: Plastic deformation throughout strain-induced phase transformation in additively manufactured maraging steels. Mater. Des. 198, 109289 (2021)

    Article  Google Scholar 

  167. Cyr, E., Lloyd, A., Mohammadi, M.: Tension-compression asymmetry of additively manufactured Maraging steel. J. Manuf. Process. 35, 289–294 (2018)

    Article  Google Scholar 

  168. Bhardwaj, T., Shukla, M.: Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel. Mater. Sci. Eng., A 734, 102–109 (2018)

    Article  Google Scholar 

  169. Damon, J., Hanemann, T., Dietrich, S., Graf, G., Lang, K.-H., Schulze, V.: Orientation dependent fatigue performance and mechanisms of selective laser melted maraging steel X3NiCoMoTi18-9-5. Int. J. Fatigue 127, 395–402 (2019)

    Article  Google Scholar 

  170. Tan, C., Zhou, K., Kuang, M., Ma, W., Kuang, T.: Microstructural characterization and properties of selective laser melted maraging steel with different build directions. Sci. Technol. Adv. Mater. 19(1), 746–758 (2018)

    Article  Google Scholar 

  171. Bhardwaj, T., Shukla, M.: Direct metal laser sintering of maraging steel: effect of building orientation on surface roughness and microhardness. Materials Today: Proceedings 5(9), 20485–20491 (2018)

    Google Scholar 

  172. Ansell, T.Y., Ricks, J.P., Park, C., Tipper, C.S., Luhrs, C.C.: Mechanical Properties of 3D-Printed Maraging Steel Induced by Environmental Exposure. Metals 10(2), 218 (2020)

    Article  Google Scholar 

  173. Schmidova, Eva, Přemysl Hojka, Bohumil Culek, Filip Klejch, and Michal Schmid. "Dynamic strength and anisotropy of DMLS manufactured maraging steel." Komunikácie: Communications (Scientific Letters of the University of Žilina), volume 21, issue: 3 (2019)

  174. Song, J., Tang, Q., Feng, Q., Ma, S., Setchi, R., Liu, Y., Han, Q., Fan, X., Zhang, M.: Effect of heat treatment on microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting. Opt. Laser Technol. 120, 105725 (2019)

    Article  Google Scholar 

  175. Vishwakarma, Jaydeep, Chattopadhyay, K., Santhi, N.C., Srinivas.: Effect of build orientation on microstructure and tensile behaviour of selectively laser melted M300 maraging steel. Materials Science and Engineering: A 798, 140130 (2020)

    Article  Google Scholar 

  176. Yao, Yi., Wang, K., Wang, X., Li, L., Cai, W., Kelly, S., Esparragoza, N., Rosser, M., Yan, F.: Microstructural heterogeneity and mechanical anisotropy of 18Ni-330 maraging steel fabricated by selective laser melting: The effect of build orientation and height. J. Mater. Res. 35(15), 2065–2076 (2020)

    Article  Google Scholar 

  177. Kim, Dohyung, Kim, Taehwan, Ha, Kyeongsik, Oak, Jeong-Jung., Jeon, Jong Bae, Park, Yongho, Lee, Wookjin: Effect of heat treatment condition on microstructural and mechanical anisotropies of selective laser melted maraging 18Ni-300 steel. Metals 10(3), 410 (2020)

    Article  Google Scholar 

  178. Mutua, James, et al.: Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater. Des. 139, 486–49 (2018)

    Article  Google Scholar 

  179. Fernandes, Rui F., de Jesus, Joel, Borrego, Luís., Vilhena, Luís., Ramalho, Amílcar., Ferreira, José AM.: Influence of Deposition Plane Angle and Saline Corrosion on Fatigue Crack Growth in Maraging Steel Components Produced by Laser Powder Bed Fusion. Metals 12(3), 433 (2022)

    Article  Google Scholar 

  180. Mooney, B., Kourousis, K.I., Raghavendra, R., Agius, D.: Process phenomena influencing the tensile and anisotropic characteristics of additively manufactured maraging steel. Mater. Sci. Eng., A 745, 115–125 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

BheemavarapuSubba Rao: Conceptualization, Methodology, Data collection, Writing-review, and editing. Thella Babu Rao: Review, Editing, and Supervision.

All authors have read and agreed to publish a version of the manuscript.

Corresponding author

Correspondence to Bheemavarapu Subba Rao.

Ethics declarations

This article is a review article.

Consent to participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest. This review article does not contain any studies with human participants or Animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, B.S., Rao, T.B. Effect of Process Parameters on Powder Bed Fusion Maraging Steel 300: A Review. Lasers Manuf. Mater. Process. 9, 338–375 (2022). https://doi.org/10.1007/s40516-022-00182-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-022-00182-6

Keywords

Navigation