Skip to main content
Log in

Aging Behavior of High-Strength Al Alloy 2618 Produced by Selective Laser Melting

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

High Si-bearing Al alloys are commonly used in additive manufacturing, but they have moderate mechanical properties. New high-strength compositions are necessary to spread the use of additively manufactured Al parts for heavy-duty structural applications. This work focuses on the microstructure, mechanical behavior, and aging response of an Al alloy 2618 processed by selective laser melting. Calorimetric analysis, electron microscopy, and compression tests were performed in order to correlate the mechanical properties with the peculiar microstructure induced by laser melting and thermal treatments

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. D. D. Gu, W. Meiners, K. Wissenbach, R. Poprawe: Int. Mater. Rev., 2012, vol. 57, pp. 133-164.

    Article  Google Scholar 

  2. Wholers Associates: Wholers report, 2016, ISBN 978-0-9913332-2-6.

  3. S. H. Huang, P. Liu, A. Mokasdar, L. Hou: Int. J. Adv. Manuf. Tech., 2013, vol. 67, pp. 1191-1203.

    Article  Google Scholar 

  4. W. E. Frazier: J. Mater. Eng. Perform., 2014, vol. 23, pp. 1917-1928.

    Article  Google Scholar 

  5. J.-P. Kruth, M. Badrossamay, E.Yasa, J. Deckers, L. Thijs, and J. Van Humbeeck: 16th International Symposium on Electromachining (ISEM XVI) edition 16, Shanghai 19–23 April 2010.

  6. S. Das: Adv. Eng. Mater., 2003, vol. 5, pp. 701–711.

    Article  Google Scholar 

  7. R. Casati, J. Lemke, M. Vedani: J. Mater. Sci. Tech., 2016, Vol. 32 Issue (8), pp. 738-744

    Article  Google Scholar 

  8. S. A. Khairallah, A. T. Anderson, A. Rubenchik, W. E. King: Acta Mater., 2016, vol. 108, pp. 36-45.

    Article  Google Scholar 

  9. S. Dadbakhsh, L. Hao: J Alloy Compd, 2012, vol. 541, pp. 328-334.

    Article  Google Scholar 

  10. E. Louvis, P. Fox, C. J. Sutcliffe: J. Mater. Proc. Tech., 2011, vol. 211, pp. 275–284.

    Article  Google Scholar 

  11. H.T. Kim, S.W. Nam, S.H. Hwang: J. Mater. Sci., 1996, vol. 31, pp. 2859-286.

    Article  Google Scholar 

  12. E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno: Prog. Mater. Sci., 2015, vol. 74, pp. 401-477.

    Article  Google Scholar 

  13. D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. Bultmann: Proceedings of the Sixth International Wlt Conference on Lasers in Manufacturing, 2011, Vol. 12, pp. 271–278.

    Google Scholar 

  14. K. Kempen, L. Thijs, J. Van Humbeeck, J.P. Kruth: Phys. Procedia., 2012, vol. 39, pp. 439–446.

    Article  Google Scholar 

  15. E. Brandl, U. Heckenberger, V. Holzinger, D. Buchbinder: Mat. Design, 2012, vol. 34, pp. 159–169.

    Article  Google Scholar 

  16. D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E.P. Ambrosio, E. Atzeni: Materials, 2013, vol. 6, pp. 856–869.

    Article  Google Scholar 

  17. L. Thijs, K. Kempen, J.P. Kruth, J. Van Humbeeck: Acta Mater., 2013, vol. 61, pp. 1809–1819.

    Article  Google Scholar 

  18. I. J. Polmear: Light Alloys: Metallurgy of the Light Metals. Wiley: Hoboken, 1995.

    Google Scholar 

  19. http://www.technology-licensing.com/etl/int/en/What-we-offer/Technologies-for-licensing/Metallics-and-related-manufacturing-technologies/Scalmalloy-RP.html

  20. A. B. Spierings, K. Dawson, M. Voegtlin, F. Palm, P. J. Uggowitzer: CIRP Annals—Manufacturing Technology, 2016, In Press.

  21. M. Ameli, B. Agnew, P.S. Leung, B. Ng, C.J. Sutcliffe, J. Singh, R. McGlen: Appl. Therm. Eng., 2013, vol. 52, pp. 498–504.

    Article  Google Scholar 

  22. M. Wong, S. Tsopanos, C. J. Sutcliffe, L. Owen: Rapid Prototyping J., 2007, vol. 13, pp. 291–297.

    Article  Google Scholar 

  23. B. Ahuja, M. Karg, K. Y. Nagulin, M. Schmidt: Phys. Procedia, 2014, vol. 56, pp. 135-146.

    Article  Google Scholar 

  24. H. Zhang, H. Zhu, T. Qi, Z. Hu, X. Zeng: Mater. Sci. Eng. A, 2016, vol. 656, pp. 47–54.

    Article  Google Scholar 

  25. Final Report Summary HI-STA-PART (High Strength Aluminium Alloy parts by Selective Laser Melting) FP7-JTI 325931

  26. M. Vedani, G. Angella, P. Bassani, D. Ripamonti, A. Tuissi: J. Therm. Anal. .Calorim., 2007, vol 87, pp. 277–284.

    Article  Google Scholar 

  27. P. Bassani, E. Gariboldi, and G. Vimercati: J. Therm. Anal. Calorim, 2007, vol. 87, pp. 247–253.

    Article  Google Scholar 

  28. S. C. Wang and M. J. Starink: Acta Mater., 2007, vol. 55, pp. 933–941.

    Article  Google Scholar 

  29. V. Radmilovic, R. Kilaas, U. Dahmen, and G. J. Shiflet: Acta Mater., 1999, vol. 47, pp. 3987–3997.

    Article  Google Scholar 

  30. ASM International. ASM Handbook, Volume 2 Properties and Selection: Nonferrous Alloys and Special-Purpose Materials ISBN: 978-0-87170-378-1

  31. I. N. A. Oguocha: Characterization of Alurninum Alloy 2618 and Its Composites Containing Alumina Particles PhD Thesis, 1998, University of Saskatchewan.

  32. F. Nový, M. Janeček, R. Král: J. Alloy Compd., 2009, vol. 487, pp. 146–151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Casati.

Additional information

Manuscript submitted July 12, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casati, R., Lemke, J.N., Alarcon, A.Z. et al. Aging Behavior of High-Strength Al Alloy 2618 Produced by Selective Laser Melting. Metall Mater Trans A 48, 575–579 (2017). https://doi.org/10.1007/s11661-016-3883-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3883-y

Keywords

Navigation