Skip to main content
Log in

Comparison between various concentrations of commercial and synthesized silver nanoparticles on biochemical parameters and growth of Stevia rebaudiana B.

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Nanoparticles are particles between 1 and 100 nm in size that has the ability to modify their physio-chemical properties compared to other material. In the present study, leaves of Stevia rebaudiana B. were used to extracts to synthesize Ag nanoparticles from AgNO3 (1 mM concentration) and then studied the effects of these commercial and synthesized Ag nanoparticles on biochemical (chlorophyll content, anthocyanin, flavonoid, carbohydrate, protein and DPPH) and growth characteristics of Stevia at different concentrations (0, 10, 20, 40 mM). UV–visible spectroscopy was used to identify the formation of Ag and analyzed synthesized Ag nanoparticles at 300–700 nm. Absorption maxima at 435 nm wavelength confirmed their synthesis. Examining synthesized AgNPs from S. rebaudiana extract using SEM micrograph showed a 25 nm dimension and spherical shape. Application of synthesized and commercial AgNPs at various concentrations on Stevia showed a dependency on concentrations that at 10 and 20 mM of AgNP, an increase in leaf area, shoot height and dry and fresh weight was recorded. At the biochemical level, applying 40 mM of synthesized AgNP resulted in increased chlorophyll content which led to accumulation of biomass besides soluble anthocyanin, flavonoid and carbohydrate and also total protein and DPPH, compared to plants treated with commercial AgNP. Moreover, the results demonstrated that increasing AgNP concentration enhances glycoside content in both treatments. Based on our findings, synthesized AgNP is more effective in accelerating the growth and improve the quality of natural product in Stevia plants than commercial AgNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdul Rahuman, A., Jayaseelan, C., Ramkumar, R., & Perumal, P. (2013). Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschu sesculentus and its antifungal activity. Industrial Crops and Products, 45, 423–429.

    Article  CAS  Google Scholar 

  • Albrecht, M. A. (2006). Green chemistry and the health implications of nanoparticles. Evans C Raston C. Green Chemistry, 8, 417–432.

    CAS  Google Scholar 

  • Arase, F., Arase, H., Nishitani, M., Egusa, N., Nishimoto, S., Sakurai, N., et al. (2012). AA8 involved in lateral root formation interacts with the TIR1 auxin receptor and ARF transcription factors in Arabidopsis. PLoS ONE, 7, 43–49.

    Article  CAS  Google Scholar 

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidasein beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asharani, P. V., Wu, Y. L., Gong, Z., & Valiyaveettil, S. (2008). Toxicity of silver nanoparticles in zebra fish models. Nanotechnology, 19, 255102.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Briskin, D. P. (2000). Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiology, 124, 507–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bujak, T., Nizioł-Łukaszewska, Z., Gaweł-Bęben, K., Seweryn, A., Kucharek, M., Rybczyńska-Tkaczyk, K., et al. (2015). The application of different Stevia rebaudiana leaf extracts in the “green synthesis” of AgNPs. Green Chemistry Letters and Reviews, 8, 3–4.

    Article  CAS  Google Scholar 

  • Comotto, M., Casazza, A. A., Aliakbarian, B., Caratto, V., Ferretti, M., & Perego, P. (2014). Influence of TiO2 nanoparticles on growth and phenolic compounds production in photosynthetic microorganisms. Scientific World Journal, 9, 324–333.

    Google Scholar 

  • Daayf, F., Ongena, M., Boulanger, R., Hadrami, I. E., & Belanger, R. R. (2000). Induction of phenolic compounds in two cultivars of cucumber by treatment of healthy and powdery mildew-infected plants with extracts of Reynoutria sachalinensis. Journal of Chemical Ecology, 26, 1579–1593.

    Article  CAS  Google Scholar 

  • El-Temsah, Y. S., & Joner, E. J. (2012). Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology, 27, 42–49.

    Article  CAS  PubMed  Google Scholar 

  • Fuleki, T., & Francis, F. J. (1968). Quantitative methods for anthocyanins: Extraction and determination of total anthocyanin in cranberries. Journal of Food Science, 33, 72–77.

    Article  CAS  Google Scholar 

  • Garcia-Sanchez, S., Bernales, I., & Cristobal, S. (2015). Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics, 16, 341–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghorbanpour, M., & Hadian, J. (2015). Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Saturejakhuzestanica grown in vitro. Carbon, 94, 749–759.

    Article  CAS  Google Scholar 

  • Govorov, A. O., & Carmeli, I. (2007). Hybrid structures composed of photosynthetic system and metal nanoparticles: Plasmon enhancement effect. Nano Letters, 7(3), 620–625.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H., & Yang, X. (2004). Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydrate Research, 339, 2627–2631.

    Article  CAS  PubMed  Google Scholar 

  • Jasim, B., Thomas, R., Mathew, J., & Radhakrishnan, E. K. (2017). Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal, 25, 443–447.

    Article  CAS  PubMed  Google Scholar 

  • Kanipandian, N., Kannan, S., Ramesh, R., Subramanian, P., & Thirumurugan, R. (2014). Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Materials Research Bulletin, 49, 494–502.

    Article  CAS  Google Scholar 

  • Khan, M. N., Mobin, M., Abbas, Z. K., Almutairi, K. A., & Siddiqui, Z. H. (2017). Role of nanomaterials in plants under challenging environments. Plant Physiology and Biochemistry, 110, 194–209.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. S., Kuk, E., & Yu, K. N. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine, 3, 95–101.

    Article  CAS  PubMed  Google Scholar 

  • Kohan-Baghkheirati, E., & Geisler-Lee, J. (2015). Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nanomaterials, 5, 436–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnaraj, C., Jagan, E. G., Ramachandran, R., Abirami, S. M., Mohan, N., & Kalaichelvan, P. T. (2012). Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant Growth Metabolism, Process Biochemistry, 47, 651–658.

    Article  CAS  Google Scholar 

  • Kumar, A., & Nirmala, V. (2004). Gastric antiulcer activity of the leaves of Caesalpinia pulcherrima. Indian Journal of Pharmaceutical Sciences, 66(5), 676–678.

    Google Scholar 

  • Kumari, M., Mukherjee, A., & Chandrasekaran, N. (2010). Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. Science of the Total Environment, 407, 5243.

    Article  CAS  Google Scholar 

  • Larcher, W. (2000). Expression of ascorbic acid oxidase in zucchini squash (Cucurbita pepo L.). Plant Physiology, 96, 159–165.

    Google Scholar 

  • Li, W. R., Xie, X. B., Shi, Q. S., Duan, S. S., Ouyang, Y. S., & Chen, Y. B. (2011). Antibacterial effect of silver nanoparticles on Staphylococcus aureus. BioMetals, 24, 135–141.

    Article  CAS  PubMed  Google Scholar 

  • Lim, D., Roh, J. Y., Eom, H. J., Choi, J. Y., Hyun, J., & Choi, J. (2012). Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditi selegans. Environmental Toxicology and Chemistry, 31, 585–592.

    Article  CAS  PubMed  Google Scholar 

  • Majlesi, Z., Ramezani, M., & Gerami, M. (2018). Investigation on some main glycosides content of Stevia rebaudian B. under different concentration of commercial and synthesized silver nanoparticles. PBR, 4(1), 1–10.

    Google Scholar 

  • Masarovicova, E., & Kralova, K. (2013). Metal nanoparticles and plants. Ecological Chemistry and Engineering S, 20, 9–22.

    Article  CAS  Google Scholar 

  • Mazumdar, H., & Ahmed, G. U. (2011). Synthesis of silver nanoparticles and its adverse effect germination. The International Journal of Advanced Biotechnology Research, 2, 404–413.

    CAS  Google Scholar 

  • Mirzajani, F., Askari, H., Hamzelou, S., Schober, Y., Rompp, A., & Ghassempour, A. (2014). Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicology and Environmental Safety, 108, 335–339.

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria, P., Rana, N. K., & Yadav, S. K. J. (2008). Bio-synthesis of nanoparticles: Technological concepts and future applications. Nanoparticle Research, 10, 507–517.

    Article  CAS  Google Scholar 

  • Navarro, E., Baun, A., & Behra, R. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372–386.

    Article  CAS  PubMed  Google Scholar 

  • Padalia, H., Jadeja, R., & Chanda, S. (2016). Review: Screening of silver nanoparticle synthetic efficacy of some medicinal plants of Saurashtra region. In V. K. Gupta (Ed.), Natural products: Research review (Vol. 3, pp. 63–83). New Delhi: Daya Publishing House.

    Google Scholar 

  • Park, Y., Hong, Y., Weyers, A., Kim, Y., & Linhardt, R. (2011). Polysaccharides and phytochemicals: A natural reservoir for the green synthesis of gold and silver nanoparticles. IRT Nano Biotechnology, 5, 69–78.

    CAS  Google Scholar 

  • Perreault, F., Samadani, M., & Dewez, D. (2014). Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemnagibba L. Nanotoxicology, 8, 374–382.

    Article  CAS  PubMed  Google Scholar 

  • Phukan, U. J., Jeena, G. S., & Shukla, R. K. (2016). WRKY transcription factors: Molecular regulation and stress responses in plants. Frontiers in Plant Science, 7, 760–767.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitta-Alvarez, S. I., Spollansky, T. C., & Giulietti, A. M. (2000). ‘The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme and Microbial Technology, 26, 491–504.

    Article  Google Scholar 

  • Qi, M., Liu, Y., & Li, T. (2013). Nano-TiO2improves the photosynthesis of tomato leaves under mild heat stress. Biological Trace Element Research, 156, 323–328.

    Article  CAS  PubMed  Google Scholar 

  • Qian, H., Peng, X., Han, X., Ren, J., Sun, L., & Fu, Z. (2013). Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Science, 25, 1947–1955.

    Article  CAS  Google Scholar 

  • Ramezani, M., Rahmani, F., & Dehestani, A. (2017). Study of physio-biochemical responses elicited by potassium phosphite in downy mildew-infected cucumber plants. Arch Phytopathology Plant Protect, 50, 540–554.

    Article  Google Scholar 

  • Rashmezad, M. A., Asgary, E. A., Tafvizi, F., & Mirzaie, A. (2015). Comparative study on cytotoxicity effect of biological and commercial synthesized nano silver on human gastric carcinoma and normal lung fibroblast cell lines. Tehran University Medical Journal, 72, 799–807.

    Google Scholar 

  • Raveendran, P., Fu, J., & Wallen, S. L. (2005). A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chemistry, 8, 34–38.

    Article  Google Scholar 

  • Rezvani, N., Sorooshzadeh, A., & Farhadi, N. (2012). Effect of nano-silver on growth of saffron in flooding stress. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 6, 11–16.

    Google Scholar 

  • Salama, H. M. H. (2012). Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology, 3, 190–197.

    Google Scholar 

  • Savithramma, N., Ankanna, S., & Bhumi, G. (2012). Effect of nanoparticles on seed germination and seedling growth of Boswellia Ovalifoliolata—An endemic and endangered medicinal tree taxon. Nano Vision, 2, 61–68.

    Google Scholar 

  • Schluttenhofer, C., & Yuan, L. (2015). Regulation of specialized metabolism by WRKY transcription factors. Plant Physiology, 167, 295–306.

    Article  CAS  PubMed  Google Scholar 

  • Shah, V., & Belozerova, I. (2009). Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air and Soil Pollution, 197, 143–148.

    Article  CAS  Google Scholar 

  • Sharma, P., Bhatt, D., Zaidi, M. G. H., Pardha Saradhi, P., Khanna, P. K., & Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology, 167, 2225–2233.

    Article  CAS  PubMed  Google Scholar 

  • Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthone on the auto oxidation of soybean in Cylcodextrin emulsion. Journal of Agricultural and Food Chem, 40, 945–948.

    Article  CAS  Google Scholar 

  • Siddiqui, M. H., Al-Whaibi, M. H., Faisal, M., & Al Sahli, A. A. (2014). Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbitapepo L. Environmental Toxicology and Chemistry, 33, 2429–2437.

    Article  CAS  PubMed  Google Scholar 

  • Sivaram, L., & Mukundan, U. (2003). In vitro culture study on Stevia rebaudiana. In Vitro Cellular & Developmental Biology – Plant, 39, 520–523.

    Article  Google Scholar 

  • Song, J., & Kim, B. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32, 79–84.

    Article  CAS  PubMed  Google Scholar 

  • Sosan, A., Svistunenko, D., Straltsova, D., Tsiurkina, K., Smolich, I., & Lawson, T. (2016). Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. The Plant Journal, 85, 245–257.

    Article  CAS  PubMed  Google Scholar 

  • Suber, L., Sondi, I., Matijevi, E., & Goia, D. V. J. (2005). Preparation and the mechanisms of formation of silver particles of different morphologies in homogeneous solutions. Journal of Colloid Interface Science, 288, 489–495.

    Article  CAS  PubMed  Google Scholar 

  • Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V., & Kannan, N. (2012). Silica nanoparticles for increased silica availability in maize (Zea mays L) seeds under hydroponic conditions. Current Nanoscience, 8(6), 902–908.

    Article  CAS  Google Scholar 

  • Syu, Y., Hung, J. H., & Chen, J. C. (2014). Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry, 83, 57–64.

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar, J. C., & Raliya, R. (2013). ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsiste tragonoloba L.). Agricultural Sciences, 2, 48–57.

    Google Scholar 

  • Tiwari, D. K., Dasgupta-Schubert, N., Villaseñor-Cendejas, L. M., Villegas, J., CarretoMontoya, L., & Borjas-García, S. E. (2014). Interfacing carbon nanotubes (CNT) with plants: Enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nano agriculture. Applied Nanoscience, 4, 577–591.

    Article  CAS  Google Scholar 

  • Vannini, C., Vannini, G., Domingo, E., Onelli, B., Prinsi, M., Marsoni, L., et al. (2013). Bracale Morphological and proteomic responses of Eruca sativa exposed to silver Nanoparticles or silver nitrate. PLoS ONE, 8, e68752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vecerova, K., Vecera, Z., Docekal, B., Oravec, M., Pompeiano, A., & Tríska, J. (2016). Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Environmental Pollution, 218, 207–218.

    Article  CAS  PubMed  Google Scholar 

  • Xu, S., Lou, T., Zhao, N., Gao, Y., Dong, L., Jiang, D., et al. (2011). Presoaking with hemin improves salinity tolerance during wheat seed germination. Acta Physiologiae Plantarum, 33, 1173–1183.

    Article  Google Scholar 

  • Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57, 508–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555–559.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Sana Institute for providing the opportunity to conduct this research. Sari, Iran.

Funding

This paper was supported by Sana Institute, Iran.

Author information

Authors and Affiliations

Authors

Contributions

MR: design the experiment, ZM: perform the experiment, MG and MR: analysis the data, MR and MG and ZM: interpret the data and final revision of the manuscript. MR and MG and ZM: approved the final revision of manuscript.

Corresponding author

Correspondence to Mahyar Gerami.

Ethics declarations

Consent for publication

Not applicable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, M., Gerami, M. & Majlesi, Z. Comparison between various concentrations of commercial and synthesized silver nanoparticles on biochemical parameters and growth of Stevia rebaudiana B.. Plant Physiol. Rep. 24, 141–152 (2019). https://doi.org/10.1007/s40502-018-0413-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-018-0413-5

Keywords

Navigation