Skip to main content
Log in

Low temperature induced oxidative stress tolerance in oats (Avena sativa L.) genotypes

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Chilling tolerance adaptation in plant cell can be correlated with efficiency of antioxidant defence system, antioxidants and osmoprotectants. In this study, such responses were comparatively studied in four high yielding oats genotypes (OL-9, OL-10, OL-125, Kent) under control (25 °C) and chilling stress (5 °C) conditions. Cold temperature upregulated the activites of catalase, guaiacol peroxide, ascorbate peroxidase (APX), glutathione reductase in root and shoot of all four genotypes. The SOD enzyme activity was decreased in both organs by 32% with chilling stress. Chilling stress increased redox potential of plant cell significantly by increasing the level of ascorbate and glutathione in order to cope up the reactive oxygen species The concentration of proline, total phenol, total sugar, H2O2, soluble protein and free amino acids was increased with imposition of cold stress in both roots and shoots though a decline in MDA content was observed. The observed biochemical diversity revealed that catalase, APX, glutathione and sugars appeared to have greater role in conferring chilling tolerance in oats genotypes as indicated by their greater variations with cold stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

Ascorbate

APX:

Ascorbate peroxidise

AsA:

Reduced ascorbate

CAT:

Catalase

DHA:

Dehydroascorbate

DHAR:

Dehydroascorbate reductase

GPX:

Guaiacol peroxidise

GSH:

Reduced glutathione

GSSR:

Oxidized glutathione

GR:

Glutathione reductase

MDA:

Malondialdehyde

NBT:

Nitro blue tetrazolium

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid reactive substances

WSC:

Water soluble carbohydrates

References

  • Aghaee, A., Moradi, F., Zare-Maivan, H., Zarinkama, F., Irandoost, H. P., & Sharifi, P. (2011). Physiological responses of two rice (Oriyza sativa L.) genotypes to chilling stress at seedling stage. African Journal of Biotechnology, 10, 7617–7621.

    Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology, 55, 373–399.

    Article  CAS  Google Scholar 

  • Asada, K. (1999). The water–water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601–639.

    Article  PubMed  CAS  Google Scholar 

  • Baek, K. H., & Skinner, D. Z. (2003). Alteration of antioxidant enzyme gene expression during cold acclimation of near isogenic wheat lines. Plant Science, 165, 1221–1227.

    Article  CAS  Google Scholar 

  • Bates, H. S., Waldren, R. P., & Treane, D. (1973). Rapid estimation of free proline for water stress determination. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Becana, M., Aparicio-Tejo, P., Irigoyan, J. J., & Sanchez-Diaz, M. (1986). Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiology, 82, 1169–1171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beutler, E., Durron, O., & Kally, B. M. (1963). Improved method for determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61, 882–888.

    PubMed  CAS  Google Scholar 

  • Chance, B., & Maehly, A. C. (1955). Assay of catalase and peroxidises. Methods of Enzymology, 2, 764–765.

    Article  Google Scholar 

  • Chen, Z., & Gallie, D. R. (2004). The ascorbic acid redox state controls guard cells signaling and stomata movements. The Plant Cell, 16, 1143–1162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (2000). Effects of salicylic acid on oxidative stress and thermo-tolerance in tobacco. Journal of Plant Physiology, 156, 659–665.

    Article  CAS  Google Scholar 

  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185–212.

    Article  Google Scholar 

  • Fernandez, P. M., Villarroel, C., Balbontin, C., & Valenzuela, S. (2010). Validation of reference genes for real time qRT-PCR normalization during cold acclimation in Eucalyptus globulus. Trees Structure and Function, 24, 1109–1116.

    Article  CAS  Google Scholar 

  • Gajewska, E., & Sklodwska, M. (2008). Differential biochemical responses of wheat shoots and roots to nickel stress: Antioxidative reactions and proline accumulation. Plant Growth Regulation, 54, 179–188.

    Article  CAS  Google Scholar 

  • Goyal, M., & Asthir, B. (2010). Polyamine catabolism influence antioxidant defence mechanism in shoots and roots of five wheat genotypes under high temperature stress. Plant Growth Regulation, 60, 13–25.

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Kaur, L., Singh, V. P., & Gupta, V. P. (2012). Peroxidase: A marker for Ascochyta blight resistance in chickpea. Archives of Phytopathology and Plant Protection, 45, 42–46.

    Article  CAS  Google Scholar 

  • Khaledian, Y., Maali-Amiri, R., & Talei, A. (2015). Phenylproponoid & antioxidant changes in chickpea plants during cold stress. Russian Journal of Plant Physiology, 62(6), 772–778.

    Article  CAS  Google Scholar 

  • Kim, S. Y., Lim, J. H., Park, M. R., Kim, Y. J., Park, T. I. I., & Seo, Y. M. (2005). Enhanced antioxidant enzymes associated with reduced hydrogen peroxide in barley roots under salt stress. Journal of Biochemistry and Molecular Biology, 38, 218–224.

    PubMed  CAS  Google Scholar 

  • Law, M. Y., Charles, S. A., & Halliwell, B. (1983). Glutathione and ascorbic acid in spinach (Spinach oleracea) chloroplasts. The effect of hydrogen peroxide and paraquat. Biochemistry Journal, 210, 899–903.

    Article  CAS  Google Scholar 

  • Lee, Y. P., & Takahashi, T. (1966). An improved colorimetric determination of amino acids with the use of ninhydrin reagent. Analytical Biochemistry, 14, 71–75.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Mafakheri, A. B., Siosemardeh, P. C., Bahramnejad, Y., Struik, T., & Sohrabi, S. (2010). Effects of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Sciences, 4, 580–585.

    CAS  Google Scholar 

  • Montillet, J. L., Chamnongpol, S., Rustérucci, C., Dat, J., van de Cotte, B., Agnel, J. P., et al. (2005). Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiology, 138, 1516–1526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1987). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell Physiology, 22, 867–880.

    Google Scholar 

  • Parsad, T. K., Anderson, M. D., Martin, B. A., & Stewart, C. R. (1994). Evidence of chilling induced oxidative stress in maize seedling and a regulatory role for hydrogen peroxide. Plant Cell, 6, 65–74.

    Article  Google Scholar 

  • Peterson, D. M. (2004). Oats antioxidants. Journal of Cereal Science, 33, 115–129.

    Article  CAS  Google Scholar 

  • Shaedle, M., & Bassham, J. A. (1977). Chloroplast glutathione reductase. Plant Physiology, 59, 1011–1012.

    Article  Google Scholar 

  • Sharma, P., & Dubey, R. S. (2005). Drought induced oxidative stress and enhanced activities of antioxidative enzymes in growing rice seedling. Journal of Plant Growth Regulation, 46, 209–221.

    Article  CAS  Google Scholar 

  • Sinha, K. A. (1972). Calorimetric assay of catalase. Analytical Biochemistry, 47, 389–394.

    Article  PubMed  CAS  Google Scholar 

  • Stushnoff, C., Fowler, D. B., & Brule-Babel, A. (1984). Breeding and selection for resistance to low temperature. In P. B. Vose (Ed.), Plant breeding—A contemporary basis (pp. 115–136). Oxford: Pergamon Press.

    Chapter  Google Scholar 

  • Swain, T., & Hillis, W. E. (1959). Phenolic constituents of Prunus domestica quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10, 63–64.

    Article  CAS  Google Scholar 

  • Wenying, L., Kenming, Y., Tengfei, H., Feifei, L., Dongxu, Z., & Jianxia, L. (2013). The temperature induced physiological responses of Avene nuda L. A cold tolerant plant species. Scientific World Journal, Article ID 658793.

  • Xing, Y., Jia, W., & Zhang, J. (2007). AtMEK1 mediates stress induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis. Journal of Experimental Botany, 58, 2969–2981.

    Article  PubMed  CAS  Google Scholar 

  • Zaefyzadeh, M., Qualiyev, R. A., Babayeva, S. M., & Abbasov, M. A. (2009). The effect of interaction between genotypes and drought stress on superoxide dismutase and chlorophyll content in durum wheat landraces. Turkish Journal of Biology, 33, 1–7.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Goyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, M., Kaur, N. Low temperature induced oxidative stress tolerance in oats (Avena sativa L.) genotypes. Ind J Plant Physiol. 23, 316–324 (2018). https://doi.org/10.1007/s40502-018-0371-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-018-0371-y

Keywords

Navigation