Skip to main content

Advertisement

Log in

Antimicrobial Peptides

  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The review provides deep understanding on antimicrobial peptides, properties, mechanisms, role in treating diseases, computational drug design, and database updates.

Recent Findings

Recent research has highlighted the growing concern of antibiotic resistance, and has prompted the search for alternative treatments. In response, advances in technology have led to the discovery of novel antimicrobial peptides from a variety of organisms. These peptides are being investigated as potential therapeutics for communicable diseases in humans, animals, and plants. However, a major challenge is to ensure that the effectiveness of these peptides in treating infections is not compromised by the development of resistance. Currently, there is ongoing research to evaluate the safety and efficacy of these novel AMPs in clinical trials, and to determine their potential role in the drug market.

Summary

Microbes, including COVID-19, biofilm-related infections, and antimicrobial resistance, are significant threats to human health. AMPs have potential as effective treatments due to their broad-spectrum activity and specific modes of action. However, developing AMPs as drugs may be limited by factors such as toxicity, protease susceptibility and high production costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol. 2020;11:1–21.

    Article  Google Scholar 

  2. Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, et al. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front Cell Infect Microbiol. 2021;11:1–26.

    Article  Google Scholar 

  3. Mahlapuu M, Björn C, Ekblom J. Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit Rev Biotechnol. 2020;40:978–92. https://doi.org/10.1080/07388551.2020.1796576.

    Article  PubMed  CAS  Google Scholar 

  4. Drexelius MG, Neundorf I. Application of antimicrobial peptides on biomedical implants: Three ways to pursue peptide coatings. Int J Mol Sci. 2021;22.

  5. Brady D, Grapputo A, Romoli O. Insect Cecropins, Antimicrobial Peptides with Potential Therapeutic Applications. Int J Mol Sci. 2019;20:5862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Santos-silva CA, Zupin L, Oliveira-lima M, Maria L, Vilela B, Bezerra-neto JP, et al. Plant Antimicrobial Peptides : State of the Art , In Silico Prediction and Perspectives in the Omics Era. 2020;

  7. Dijksteel GS, Ulrich MMW, Middelkoop E, Boekema BKHL. Review: Lessons Learned From Clinical Trials Using Antimicrobial Peptides (AMPs). Front Microbiol. 2021;12.

  8. Pirtskhalava M, Amstrong AA, Grigolava M, Chubinidze M, Alimbarashvili E, Vishnepolsky B, et al. DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res. 2021;49:D288–97.

    Article  PubMed  CAS  Google Scholar 

  9. Lewies A, Du Plessis LH, Wentzel JF. Antimicrobial Peptides: the Achilles’ Heel of Antibiotic Resistance? Probiotics Antimicrob Proteins. 2019;11:370–81.

    Article  PubMed  CAS  Google Scholar 

  10. Special Report 2022. Atlanta, GA: U.S. Department of Health and Human Services C. CDC. COVID-19: U.S. Impact on Antimicrobial Resistance. 2022.

  11. Eun-HyungFranches JJT. Viral Infections. Clin Respir Med. 2020;32:527.

    Google Scholar 

  12. Gordon YJ, Romanowski EG, McDermott AM. Mini review: A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res. 2005;30:505–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Findlay F, Proudfoot L, Stevens C, Barlow PG. Cationic host defense peptides; novel antimicrobial therapeutics against Category A pathogens and emerging infections. Pathog Glob Health. 2016;110:137–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dawgu M. Antimicrobial peptides. Curr Top Med Chem. 2017;17:507.

    Article  Google Scholar 

  15. Kang HK, Kim C, Seo CH, Park Y. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J Microbiol. 2017;55:1–12.

    Article  PubMed  CAS  Google Scholar 

  16. Midura-Nowaczek K, Markowska A. Antimicrobial peptides and their analogs: Searching for new potential therapeutics. Perspect Medicin Chem. 2014;6:73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen CH, Lu TK. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics (Basel). 2020;9(1):24. https://doi.org/10.3390/antibiotics9010024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Breen S, Solomon PS, Bedon F, Vincent D. Surveying the potential of secreted antimicrobial peptides to enhance plant disease resistance. Front Plant Sci. 2015;6:1–21.

    Article  Google Scholar 

  19. Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol. 2006;7:131–7.

    Article  PubMed  CAS  Google Scholar 

  20. Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol. 2018;9:1–23.

    Article  Google Scholar 

  21. Dijksteel GS, Ulrich MMW, Middelkoop E, Boekema BKHL, Kesarwani V, Gupta R, et al. Efficacy of Indolicidin, CAMA, lactoferricin (17–30) and their combination against multi-drug resistant enteroaggregative Escherichia coli. Front Microbiol. 2021;11:1–14. https://doi.org/10.1186/s40779-021-00343-2.

    Article  CAS  Google Scholar 

  22. Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44:1087–93.

    Article  Google Scholar 

  23. Ramazi S, Mohammadi N, Allahverdi A, Khalili E, Abdolmaleki P. A review on antimicrobial peptides databases and the computational tools. Database. 2022;2022:1–17.

    Article  Google Scholar 

  24. Zhang Q, Chen X, Li B, Lu C, Yang S, Long J, et al. A database of anti-coronavirus peptides. Sci Data. 2022;9:1–9.

    Article  Google Scholar 

  25. Edge L, Zhou J, Zhang Y. Plant Immunity : Danger Perception and Signaling. Cell. 2021;181:978–89. https://doi.org/10.1016/j.cell.2020.04.028.

    Article  CAS  Google Scholar 

  26. Bentham AR, Carlos J, Concepcion D, Mukhi N, Draeger M, Gorenkin D, et al. A molecular roadmap to the plant immune system. 2020;295:14916–35

  27. Rocha CP, Cabral HN, Marques C, Gonçalves AMM. A Global Overview of Aquaculture Food Production with a Focus on the Activity ’ s Development in Transitional Systems — The Case Study of a South European Country ( Portugal ). J Mar Sci Eng. 2022;10:417.

    Article  Google Scholar 

  28. Cao L, Klinger DH, Little DC, Lubchenco J, Shumway SE. A 20-year retrospective review of global aquaculture. Nature [Internet]. 2021;591 https://doi.org/10.1038/s41586-021-03308-6

  29. Costello C, Cao L, Gelcich S, Cisneros-mata MÁ, Free CM, Froehlich HE, et al. The future of food from the sea. Nature [Internet]. 2020;588:95 https://doi.org/10.1038/s41586-020-2616-y

  30. Shrimp W, Vannamei L, East S. Food and Feeding Habits of Aquaculture Candidate a Potential Crustacean. 2013;4:1–5

  31. Torres-Corral Y, Santos Y. Predicting antimicrobial resistance of Lactococcus garvieae: PCR detection of resistance genes versus MALDI-TOF protein profiling. Aquaculture [Internet]. 2022;553:738098. Available from: https://www.sciencedirect.com/science/article/pii/S0044848622002149

  32. Li H, Li Q, Wang S, He J, Li C. Ammonia nitrogen stress increases susceptibility to bacterial infection via blocking IL-1R–Relish axis mediated antimicrobial peptides expression in shrimp. Aquaculture [Internet]. 2023;563:738934. Available from: https://www.sciencedirect.com/science/article/pii/S0044848622010511

  33. Zhang L, Wu Y, Yao Z, Wang X, Chen J, Yang W, et al. A high-throughput screening approach for bacterial quorum sensing inhibitors (QSIs) against Aeromonas hydrophila infection. Aquaculture [Internet]. 2022;560:738488. Available from: https://www.sciencedirect.com/science/article/pii/S0044848622006044

  34. Fenton D, Phillips D, Maddison A, George CH, Ryves J, Jones HD. Cupid, a cell permeable peptide derived from amoeba, capable of delivering GFP into a diverse range of species. Sci Rep. 2020;10:1–11. https://doi.org/10.1038/s41598-020-70532-x.

    Article  CAS  Google Scholar 

  35. Amparyup P, Sungkaew S, Charoensapsri W, Chumtong P, Yocawibun P, Tapaneeyaworawong P, et al. RNA-seq transcriptome analysis and identification of the theromacin antimicrobial peptide of the copepod Apocyclops royi. Dev Comp Immunol [Internet]. 2022;135:104464. Available from: https://www.sciencedirect.com/science/article/pii/S0145305X22001264

  36. Chen Z, Wang X, Han P, Liu Y, Hong D, Li S, et al. Discovery of novel antimicrobial peptides, Brevilaterin V, from Brevibacillus laterosporus S62–9 after regulated by exogenously-added L-valine. LWT [Internet]. 2022;155:112962. Available from: https://www.sciencedirect.com/science/article/pii/S0023643821021150

  37. Mishra P, Ch S, Hong SJ, Biswas S, Roy S. Antimicrobial peptide S100A12 (calgranulin C) inhibits growth, biofilm formation, pyoverdine secretion and suppresses type VI secretion system in Pseudomonas aeruginosa. Microb Pathog [Internet]. 2022;169:105654. Available from: https://www.sciencedirect.com/science/article/pii/S0882401022002674

  38. Ye P, Wang J, Liu M, Li P, Gu Q. Purification and characterization of a novel bacteriocin from Lactobacillus paracasei ZFM54. LWT [Internet]. 2021;143:111125. Available from: https://www.sciencedirect.com/science/article/pii/S0023643821002784

  39. Wu S, Yun J, Wang R, Zhang W, Hao L, Pei P. Analysis of the effects of antifungal peptide P-1 from Bacillus pumilus HN-10 on energy metabolism of Trichothecium roseum. Food Biosci [Internet]. 2022;47:101668. Available from: https://www.sciencedirect.com/science/article/pii/S2212429222001274

  40. Wang S, Zhang Y, Mandlaa, Sun Z, Chen Z. Properties and mechanism of the antimicrobial peptide APT produced by Lactobacillus ALAC-4. LWT [Internet]. 2022;165:113713. Available from: https://www.sciencedirect.com/science/article/pii/S002364382200648X

  41. Viju N, Punitha SMJ, Satheesh S. Antibiofilm activity of symbiotic Bacillus species associated with marine gastropods. Ann Microbiol. 2020;70:11. https://doi.org/10.1186/s13213-020-01554-z.

    Article  Google Scholar 

  42. Víglaš J, Dobiasová S, Viktorová J, Ruml T, Repiská V, Olejníková P, et al. Peptaibol-containing extracts of trichoderma atroviride and the fight against resistant microorganisms and cancer cells. Molecules. 2021;26:1–19.

    Article  Google Scholar 

  43. Wang K, Jiao X, Chu J, Liu P, Han S, Hu Z, et al. Bait microalga harboring antimicrobial peptide for controlling Vibrio infection in Argopecten irradians aquaculture. Aquaculture [Internet]. 2023;565:739128. Available from: https://www.sciencedirect.com/science/article/pii/S0044848622012455

  44. Hammami R, Ben Hamida J, Vergoten G, Fliss I, Scholthof KBG, Adkins S, et al. Antimicrobial peptides. Nucleic Acids Res [Internet]. 2020;11:1–21. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123739605005967

  45. Zhang Y, Zhang X, Dai K, Zhu M, Liang Z, Pan J, et al. Bombyx mori Akirin hijacks a viral peptide vSP27 encoded by BmCPV circRNA and activates the ROS-NF-κB pathway against viral infection. Int J Biol Macromol [Internet]. 2022;194:223–32. Available from: https://www.sciencedirect.com/science/article/pii/S0141813021026064

  46. Wu P-P, Shu R-H, Gao X-X, Li M-M, Zhang J-H, Zhang H, et al. Immulectin-2 from the ghost moth, Thitarodes xiaojinensis (Lepidoptera: Hepialidae), modulates cellular and humoral responses against fungal infection. Dev Comp Immunol [Internet]. 2022;133:104429. Available from: https://www.sciencedirect.com/science/article/pii/S0145305X2200091X

  47. Lee RH, Oh JD, Hwang JS, Lee HK, Shin D. Antitumorigenic effect of insect-derived peptide poecilocorisin-1 in human skin cancer cells through regulation of Sp1 transcription factor. Sci Rep. 2021;11:1–10. https://doi.org/10.1038/s41598-021-97581-0.

    Article  CAS  Google Scholar 

  48. Shen P, Ding K, Wang L, Tian J, Huang X, Zhang M, et al. In vitro and in vivo antimicrobial activity of antimicrobial peptide Jelleine-I against foodborne pathogen Listeria monocytogenes. Int J Food Microbiol [Internet]. 2023;387:110050. Available from: https://www.sciencedirect.com/science/article/pii/S0168160522005220

  49. Krishnan M, Choi J, Jang A, Choi S, Yeon J, Jang M. Molecular mechanism underlying the TLR4 antagonistic and antiseptic activities of papiliocin, an insect innate immune response molecule. Immunol Inflamm. 2022;119:1–12.

    Google Scholar 

  50. Kim J, Jacob B, Jan M, Kwak C, Lee Y, Son K, et al. Development of a novel short 12- meric papiliocin-derived peptide that is effective against Gram- negative sepsis. Sci Rep. 2019;9:1–13.

    Google Scholar 

  51. Liu L, He M, Yang Z, Wang H, Zhang X, He J, et al. Myticofensin, a novel antimicrobial peptide family identified from Mytilus coruscus. Fish Shellfish Immunol [Internet]. 2022;131:817–26. Available from: https://www.sciencedirect.com/science/article/pii/S1050464822007331

  52. Yang S, Li J, Aweya JJ, He S, Deng S, Weng W, et al. Antimicrobial activity of PvH4a, a peptide derived from histone H4 of Penaeus vannamei. Aquaculture [Internet]. 2022;549:737807. Available from: https://www.sciencedirect.com/science/article/pii/S0044848621014708

  53. Yang S, Li J, Aweya JJ, He S, Deng S, Weng W, et al. CXCL20a, a bactericidal chemokine, consists of four structural fragments with potent bactericidal activity. Aquaculture [Internet]. 2022;561:738633. Available from: https://www.sciencedirect.com/science/article/pii/S0044848622007499

  54. Long S, Chen F, Wang K-J. Characterization of two new Scygonadin homologous SCY4 and SCY5 in Scylla paramamosain. Aquaculture [Internet]. 2022;559:738428. Available from: https://www.sciencedirect.com/science/article/pii/S0044848622005440

  55. Yang Y, Chen F, Chen HY, Peng H, Hao H, Wang KJ. A Novel Antimicrobial Peptide Scyreprocin From Mud Crab Scylla paramamosain Showing Potent Antifungal and Anti-biofilm Activity. Front Microbiol. 2020;24(11):1589. https://doi.org/10.3389/fmicb.2020.01589.

    Article  Google Scholar 

  56. Olleik H, Baydoun E, Perrier J, Hijazi A, Raymond J, Manzoni M, et al. Temporin-SHa and its analogs as potential candidates for the treatment of helicobacter pylori. Biomolecules. 2019;9(10):598. https://doi.org/10.3390/biom9100598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Cuesta SA, Reinoso C, Morales F, Pilaquinga F, Morán-Marcillo G, Proaño-Bolaños C, et al. Novel antimicrobial cruzioseptin peptides extracted from the splendid leaf frog, Cruziohyla calcarifer. Amino Acids. 2021;53:853–68. https://doi.org/10.1007/s00726-021-02986-w.

    Article  PubMed  CAS  Google Scholar 

  58. Morán-Marcillo G, Sánchez Hinojosa V, de los Monteros-Silva NE, Blasco-Zúñiga A, Rivera M, Naranjo RE, et al. Picturins and Pictuseptins, two novel antimicrobial peptide families from the skin secretions of the Chachi treefrog, Boana picturata. J Proteomics [Internet]. 2022;264:104633. Available from: https://www.sciencedirect.com/science/article/pii/S1874391922001579

  59. Aliyu A, Ibrahim YKE, Tytler BA. Characterization of Some Novel Antimicrobial Peptides from African Common Toad. Sclerophrys regularis Niger J Biotechnol. 2022;38:84–91.

    Article  Google Scholar 

  60. Hirano M, Saito C, Yokoo H, Goto C, Kawano R, Misawa T, et al. Development of antimicrobial stapled peptides based on magainin 2 sequence. Molecules. 2021;26:1–9.

    Article  Google Scholar 

  61. Fan X-L, Yu S-S, Zhao J-L, Li Y, Zhan D-J, Xu F, et al. Brevinin-2PN, an antimicrobial peptide identified from dark-spotted frog (Pelophylax nigromaculatus), exhibits wound-healing activity. Dev Comp Immunol [Internet]. 2022;137:104519. Available from: https://www.sciencedirect.com/science/article/pii/S0145305X22001811

  62. Ramezanzadeh M, Saeedi N, Mesbahfar E, Farrokh P, Salimi F, Rezaei A. Design and characterization of new antimicrobial peptides derived from aurein 1.2 with enhanced antibacterial activity. Biochimie [Internet]. 2021;181:42–51. Available from: https://www.sciencedirect.com/science/article/pii/S0300908420303084

  63. Dong M, Kwok SH, Humble JL, Liang Y, Tang SW, Moghadam MK, et al. OPEN BING , a novel antimicrobial peptide isolated from Japanese medaka plasma , targets bacterial envelope stress response by suppressing cpxR expression. Sci Rep [Internet]. 2021;1–17 https://doi.org/10.1038/s41598-021-91765-4

  64. Sathyan N, Muhammed Musthafa S, Anju M V, Archana K, Athira PP, Prathap N, et al. Functional characterization of a histone H2A derived antimicrobial peptide HARRIOTTIN-1 from sicklefin chimaera, Neoharriotta pinnata. Dev Comp Immunol [Internet]. 2023;138:104554. Available from: https://www.sciencedirect.com/science/article/pii/S0145305X22002166

  65. Varga J, Varga JFA, Brunner SR, Cheng G, Min D, Aucoin MG, et al. Identification and characterization of a novel peptide from rainbow trout ( Oncorhynchus mykiss ) with antimicrobial activity against Streptococcus iniae Identification and characterization of a novel peptide from rainbow trout ( Oncorhynchus mykiss ) wit. Dev Comp Immunol [Internet]. 2022;137:104518. https://doi.org/10.1016/j.dci.2022.104518.

    Article  PubMed  CAS  Google Scholar 

  66. Feng J, Jia Z, Yuan G, Zhu X, Liu Q, Wu K, et al. Expression and functional characterization of three β-defensins in grass carp (Ctenopharyngodon idella). Dev Comp Immunol [Internet]. 2023;140:104616. Available from: https://www.sciencedirect.com/science/article/pii/S0145305X22002786

  67. Yuan Z, Aweya JJ, Li J, Wang Z, Huang S, Zheng M, et al. Synergistic antibacterial effects of low-intensity ultrasound and peptide LCMHC against Staphylococcus aureus. Int J Food Microbiol [Internet]. 2022;373:109713. Available from: https://www.sciencedirect.com/science/article/pii/S0168160522001854

  68. Li Y, Gong Y, Chen Y, Qu B, Zhang S. Identification and functional characterization of Cofilin-1 as a new member of antimicrobial protein. Dev Comp Immunol [Internet]. 2022;127:104281. Available from: https://www.sciencedirect.com/science/article/pii/S0145305X21002895

  69. Xiong H, Jiang Y, Ji T, Zhang Y, Wei W, Yang H. The identification of a nuclear factor Akirin with regulating the expression of antimicrobial peptides in red swamp crayfish (Procambarus clarkii). Int J Biol Macromol [Internet]. 2021;183:707–17. Available from: https://www.sciencedirect.com/science/article/pii/S0141813021009260

  70. Lee Y, Kim N, Roh H, Park J, Kim M, Lee J, et al. Hepcidin-1 in olive flounder (Paralichthys olivaceus): Gene expression, antimicrobial and therapeutic effects of synthetic peptides against bacterial and viral infections. Aquaculture [Internet]. 2022;560:738480. Available from: https://www.sciencedirect.com/science/article/pii/S0044848622005968

  71. Mignone G, Shwaiki LN, Arendt EK, Coffey A. Inhibitory activity of two synthetic Pharabitis nil (L.) antimicrobial peptides against common spoilage yeasts. Appl Food Res [Internet]. 2022;2:100168. Available from: https://www.sciencedirect.com/science/article/pii/S2772502222001287

  72. Liu H, Liang J, Xiao G, Vargas-De-La-Cruz C, Simal-Gandara J, Xiao J, et al. Active sites of peptides Asp-Asp-Asp-Tyr and Asp-Tyr-Asp-Asp protect against cellular oxidative stress. Food Chem [Internet]. 2022;366:130626. Available from: https://www.sciencedirect.com/science/article/pii/S0308814621016320

  73. Wang X, He L, Huang Z, Zhao Q, Fan J, Tian Y, et al. Isolation, identification and characterization of a novel antimicrobial peptide from Moringa oleifera seeds based on affinity adsorption. Food Chem [Internet]. 2023;398:133923. Available from: https://www.sciencedirect.com/science/article/pii/S0308814622018854

  74. Shen C, Lin Y, Mohammadi TN, Masuda Y, Honjoh K, Miyamoto T. Characterization of novel antimicrobial peptides designed on the basis of amino acid sequence of peptides from egg white hydrolysate. Int J Food Microbiol [Internet]. 2022;378:109802. Available from: https://www.sciencedirect.com/science/article/pii/S0168160522002744

  75. Ashokbhai JK, Basaiawmoit B, Das S, Sakure A, Maurya R, Bishnoi M, et al. Antioxidative, antimicrobial and anti-inflammatory activities and release of ultra-filtered antioxidative and antimicrobial peptides during fermentation of sheep milk: In-vitro, in-silico and molecular interaction studies. Food Biosci [Internet]. 2022;47:101666. Available from: https://www.sciencedirect.com/science/article/pii/S2212429222001250

  76. Omidbakhsh Amiri E, Farmani J, Raftani Amiri Z, Dehestani A, Mohseni M. Antimicrobial activity, environmental sensitivity, mechanism of action, and food application of αs165–181 peptide. Int J Food Microbiol [Internet]. 2021;358:109403. Available from: https://www.sciencedirect.com/science/article/pii/S0168160521003627

  77. Klubthawee N, Adisakwattana P, Hanpithakpong W. A novel, rationally designed, hybrid antimicrobial peptide, inspired by cathelicidin and aurein, exhibits membrane-active mechanisms against Pseudomonas aeruginosa. Sci Rep [Internet]. 2020;10:1–17. https://doi.org/10.1038/s41598-020-65688-5.

    Article  CAS  Google Scholar 

  78. Loo S, Tay SV, Kam A, Tang F, Fan JS, Yang D, et al. Anti-fungal hevein-like peptides biosynthesized from quinoa cleavable hololectins. Molecules. 2021;26:1–17.

    Article  Google Scholar 

  79. Song J, Ma P, Huang S, Wang J, Xie H, Jia B. Acylation of the antimicrobial peptide CAMEL for cancer gene therapy. Drug Deliv [Internet]. 2020;27:964–73. https://doi.org/10.1080/10717544.2020.1787556.

    Article  PubMed  CAS  Google Scholar 

  80. Hansen IKØ, Lövdahl T, Simonovic D, Hansen K, Andersen AJC, Devold H, et al. Antimicrobial activity of small synthetic peptides based on the marine peptide turgencin a: Prediction of antimicrobial peptide sequences in a natural peptide and strategy for optimization of potency. Int J Mol Sci. 2020;21:1–18.

    Article  Google Scholar 

  81. Islam MM, Kim D, Kim K, Park SJ, Akter S, Kim J, Bang S, Kim S, Kim J, Lee JC, Hong CWSM. Engineering of lysin by fusion of antimicrobial peptide ( cecropin A ) enhances its antibacterial properties against Acinetobacter baumannii. Front Microbiol. 2022;13:1–13.

    Article  CAS  Google Scholar 

  82. Neff JA, Bayramov DF, Patel EA, Miao J. Novel antimicrobial peptides formulated in chitosan matrices are effective against biofilms of multidrug-resistant wound pathogens. Mil Med. 2020;185:637–43.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Vergis J, Malik S, Pathak R, Kumar M, Ramanjaneya S, Kurkure N, et al. Efficacy of Indolicidin, CAMA, lactoferricin (17–30) and their combination against multi-drug resistant enteroaggregative Escherichia coli. Int J Infect Dis [Internet]. 2020;101:11. https://doi.org/10.1016/j.ijid.2020.09.066.

    Article  Google Scholar 

  84. Luo X, Song Y, Cao Z, Qin Z, Dessie W, He N, et al. Evaluation of the antimicrobial activities and mechanisms of synthetic antimicrobial peptide against food-borne pathogens. Food Biosci [Internet]. 2022;49:101903. Available from: https://www.sciencedirect.com/science/article/pii/S2212429222003637

  85. Lima LS, Ramalho SR, Sandim GC, Parisotto EB, de Cássia Orlandi Sardi J, Rodrigues Macedo ML, et al. Prevention of hospital pathogen biofilm formation by antimicrobial peptide KWI18. Microb Pathog [Internet]. 2022;172:105791. Available from: https://www.sciencedirect.com/science/article/pii/S0145305X2200180X

  86. Gao S, Zhai X, Cheng Y, Zhang R, Wang W, Hou H. Starch/PBAT blown antimicrobial films based on the synergistic effects of two commercial antimicrobial peptides. Int J Biol Macromol [Internet]. 2022;204:457–65. Available from: https://www.sciencedirect.com/science/article/pii/S0141813022002069

  87. Tonk M, Valdés JJ, Cabezas-cruz A, Vilcinskas A. Potent activity of hybrid arthropod antimicrobial peptides linked by glycine spacers. Int J Mol Sci. 2021;22:1–16.

    Article  Google Scholar 

  88. Javia A, Misra A, Thakkar H. Liposomes encapsulating novel antimicrobial peptide Omiganan: Characterization and its pharmacodynamic evaluation in atopic dermatitis and psoriasis mice model. Int J Pharm [Internet]. 2022;624:122045. Available from: https://www.sciencedirect.com/science/article/pii/S0378517322006007

  89. Teixeira MA, Antunes JC, Seabra CL, Tohidi SD, Reis S, Amorim MTP, et al. Tiger 17 and pexiganan as antimicrobial and hemostatic boosters of cellulose acetate-containing poly(vinyl alcohol) electrospun mats for potential wound care purposes. Int J Biol Macromol [Internet]. 2022;209:1526–41. https://doi.org/10.1016/j.ijbiomac.2022.04.130.

    Article  PubMed  CAS  Google Scholar 

  90. Malhotra K, Singh Y. Antibacterial Polymeric and Peptide Gels/Hydrogels to Prevent Biomaterial-Related Infections. In: Li B, Moriarty TF, Webster T, Xing M, editors. Racing Surf Pathog Implant Infect Adv Antimicrob Strateg [Internet]. Cham: Springer International Publishing; 2020; 543–81 https://doi.org/10.1007/978-3-030-34475-7_23

  91. Lima PG, Freitas CDT, Oliveira JTA, Neto NAS, Amaral JL, Silva AFB, et al. Synthetic antimicrobial peptides control Penicillium digitatum infection in orange fruits. Food Res Int [Internet]. 2021;147:110582. Available from: https://www.sciencedirect.com/science/article/pii/S0963996921004816

  92. Van EM, Boerefijn S, Cen L, Rosa M, Morren MJH, Van Der ECK, et al. Original Article Cathelicidin-inspired antimicrobial peptides as novel antifungal compounds. Int Soc Hum Anim Mycol. 2020;58:1073–84.

    Google Scholar 

  93. De Cesare GB, Cristy SA, Garsin DA, Lorenz MC. Antimicrobial peptides: A new frontier in antifungal therapy. MBio. 2020;11:1–21.

    Google Scholar 

  94. Swidergall M, Ernst JF. Interplay between Candida albicans and the antimicrobial peptide armory. Eukaryot Cell. 2014;13:950–7.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Doron S. Bacterial Infections : Overview. Bacteriol Amsterdam Amsterdam Netherlands. 2008;3:273–82.

    Google Scholar 

  96. Strempel N, Strehmel J, Overhage J. Potential Application of Antimicrobial Peptides in the Treatment of Bacterial Biofilm Infections. Curr Pharm Des Pharm Des. 2015;21:67–84.

    Article  CAS  Google Scholar 

  97. Lei J, Sun LC, Huang S, Zhu C, Li P, He J, et al. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 2019;11:3919–31.

    PubMed  PubMed Central  CAS  Google Scholar 

  98. Zhang QY, Bin Yan Z, Meng YM, Hong XY, Shao G, Ma JJ, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res [Internet]. 2021;8:1–25. https://doi.org/10.1186/s40779-021-00343-2.

    Article  CAS  Google Scholar 

  99. Sun Y, Shang D. Inhibitory Effects of Antimicrobial Peptides on Lipopolysaccharide-Induced Inflammation. Mediators Inflamm. 2015;2015:167572. https://doi.org/10.1155/2015/167572

  100. Möller C, Heinbockel L, Garidel P, Gutsmann T, Mauss K, Weindl G, et al. Toxicological and Safety Pharmacological Profiling of the Anti-Infective and Anti-Inflammatory Peptide Pep19–2.5. Microorganisms. 2022;10(12):2412. https://doi.org/10.3390/microorganisms10122412

  101. Hua Y, Liu D, Zhang D, Wang X, Wei Q, Qin W. Extracellular AMP Suppresses Endotoxemia-Induced Inflammation by Alleviating Neutrophil Activation. Front Immunol. 2020;11:1–13.

    Article  Google Scholar 

  102. Krishnan M, Choi J, Jang A, Kim Y. A novel peptide antibiotic, pro10-1d, designed from insect defensin shows antibacterial and anti-inflammatory activities in sepsis models. Int J Mol Sci. 2020;21:1–24.

    Article  Google Scholar 

  103. Henneke P, Dramsi S, Mancuso G, Chraibi K, Pellegrini E, Theilacker C, et al. Lipoproteins Are Critical TLR2 Activating Toxins in Group B Streptococcal Sepsis. J Immunol. 2008;180:6149–58.

    Article  PubMed  CAS  Google Scholar 

  104. Keestra-Gounder AM, Nagao PE. Inflammasome activation by Gram-positive bacteria: Mechanisms of activation and regulation. Front Immunol. 2023;14:1–16.

    Article  Google Scholar 

  105. Malanovic N, Lohner K. Antimicrobial peptides targeting Gram-positive bacteria. Pharmaceuticals (Basel). 2016;9(3):59. https://doi.org/10.3390/ph9030059.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Meng S, Xu H, Wang F. Research Advances of Antimicrobial Peptides and Applications in Food Industry and Agriculture. Curr Protein Pept Sci. 2010;11:264–73.

    Article  PubMed  CAS  Google Scholar 

  107. Montesinos E. Antimicrobial peptides and plant disease control. FEMS Microbiol Lett. 2007;270:1–11.

    Article  PubMed  CAS  Google Scholar 

  108. Ahmed A, Siman-Tov G, Hall G, Bhalla N, Narayanan A. Human antimicrobial peptides as therapeutics for viral infections. Viruses. 2019;11:1–26.

    Article  CAS  Google Scholar 

  109. Jerold Gordon Y, Eric G. Romanowski AMM NIH Public Access. Curr Eye Res. 2006;30:505–15.

    Google Scholar 

  110. Jung Y-J, Kang K-K. Application of Antimicrobial Peptides for Disease Control in Plants. Plant Breed Biotechnol. 2014;2:1–13.

    Article  Google Scholar 

  111. Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, et al. Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol. 2011;12:938–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Luo Y, Zhang D, Dong X, Zhao P, Chen L, Song X, et al. resistance in tobacco against tobacco mosaic virus. Fedreation Eur Microbiol Soc. 2010;313:120–6.

    Article  CAS  Google Scholar 

  113. Reperant LA, Brown IH, Haenen OL, de Jong MD, Osterhaus ADME, Papa A, et al. Companion Animals as a Source of Viruses for Human Beings and Food Production Animals. J Comp Pathol. 2016;155:S41-53.

    Article  PubMed  CAS  Google Scholar 

  114. Castel G, Chtéoui M, Caignard G, Préhaud C, Méhouas S, Réal E, et al. Peptides That Mimic the Amino-Terminal End of the Rabies Virus Phosphoprotein Have Antiviral Activity. J Virol. 2009;83:10808–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Neshani A, Zare H, Akbari Eidgahi MR, Khaledi A, Ghazvini K. Epinecidin-1, a highly potent marine antimicrobial peptide with anticancer and immunomodulatory activities. BMC Pharmacol Toxicol. 2019;20:1–11.

    Article  CAS  Google Scholar 

  116. Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020;30:343–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Wang L, Wang Y, Ye D, Liu Q. International Journal of Antimicrobial Agents Review of the 2019 novel coronavirus ( SARS-CoV-2) based on current evidence. Int J Antimicrob Agents. 2020;55:105948. https://doi.org/10.1016/j.ijantimicag.2020.105948.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Qiang XL, Xu P, Fang G, Liu W Bin, Kou Z. Using the spike protein feature to predict infection risk and monitor the evolutionary dynamic of coronavirus. Infect Dis Poverty. 2020;9(1):33. https://doi.org/10.1186/s40249-020-00649-8

  119. Xia S, Yan L, Xu W, Agrawal AS, Algaissi A, Tseng CTK, et al. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci Adv. 2019;5(4):eaav4580. https://doi.org/10.1126/sciadv.aav4580

  120. Pant S, Singh M, Ravichandiran V, Murty USN, Srivastava HK. Peptide-like and small-molecule inhibitors against Covid-19. J Biomol Struct Dyn. 2021;39(8):2904–13. https://doi.org/10.1080/07391102.2020.1757510.

    Article  PubMed  CAS  Google Scholar 

  121. Qureshi A, Thakur N, Tandon H, Kumar M. AVPdb: A database of experimentally validated antiviral peptides targeting medically important viruses. Nucleic Acids Res. 2014;42:1147–53.

    Article  Google Scholar 

  122. Qureshi A, Thakur N, Kumar M. HIPdb: A Database of Experimentally Validated HIV Inhibiting Peptides. PLoS One. 2013;8.

  123. Jan A, Hayat M, Wedyan M, Alturki R, Gazzawe F, Ali H, et al. Target-AMP: Computational prediction of antimicrobial peptides by coupling sequential information with evolutionary profile. Comput Biol Med [Internet]. 2022;151:106311. Available from: https://www.sciencedirect.com/science/article/pii/S0010482522010198

  124. Al-Khdhairawi A, Sanuri D, Akbar R, Lam SD, Sugumar S, Ibrahim N, et al. Machine learning and molecular simulation ascertain antimicrobial peptide against Klebsiella pneumoniae from public database. Comput Biol Chem [Internet]. 2023;102:107800. Available from: https://www.sciencedirect.com/science/article/pii/S1476927122001803

  125. Li C, Sutherland D, Hammond SA, Yang C, Taho F, Bergman L, et al. AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens. BMC Genomics [Internet]. 2022;23:1–15. https://doi.org/10.1186/s12864-022-08310-4.

    Article  Google Scholar 

  126. Oyama LB, Olleik H, Carolina A, Teixeira N, Guidini MM, Pickup JA, et al. In silico identi fi cation of two peptides with antibacterial activity against multidrug-resistant Staphylococcus aureus. Biofilms Microbiomes. 2022;8:1–14.

    Google Scholar 

Download references

Acknowledgements

The authors are very much grateful to School of Life Sciences, B S Abdur Rahman Crescent Institute of Science and Technology, Chennai for providing research facilities and also for their constant support and encouragement.

Author information

Authors and Affiliations

Authors

Contributions

NSMH analyzed data, designed art work, and wrote manuscript. VS analyzed data, and wrote manuscript. HS Conceived supervised and involved in validation and project administration and edited manuscript.

Corresponding author

Correspondence to S. Hemalatha.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohaideen, N.S.M.H., Vaani, S. & Hemalatha, S. Antimicrobial Peptides. Curr. Pharmacol. Rep. 9, 433–454 (2023). https://doi.org/10.1007/s40495-023-00342-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-023-00342-y

Keywords

Navigation