Skip to main content
Log in

Dynamic compressive behaviour of Ti-6Al-4V alloy processed by electron beam melting under high strain rate loading

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

This paper documents an investigation into the compressive deformation behaviour of electron beam melting (EBM) processing titanium alloy (Ti-6Al-4V) parts under high strain loading conditions. The dynamic compression tests were carried out at a high strain rate of over 1×103/s using the split Hopkinson pressure bar (SHPB) test system and for comparison the quasi-static tests were performed at a low strain rate of 1×10−3/s using a numerically controlled hydraulic materials test system (MTS) testing machine at an ambient temperature. Furthermore, microstructure analysis was carried out to study the failure mechanisms on the deformed samples. The Vickers micro-hardness values of the samples were measured before and after the compression tests. The microstructures of the compressed samples were also characterized using optical microscopy. The particle size distribution and chemical composition of powder material, which might affect the mechanical properties of the specimens, were investigated. In addition, the numerical simulation using commercial explicit finite element software was employed to verify the experimental results from SHPB test system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Murr L, Gaytan SM (2014) Electron beam melting, comprehensive materials processing. Elsevier, Burlington, pp 135–161

    Book  Google Scholar 

  2. Klöden B (2014) Additive manufacturing—electron beam melting. Available: www.ifam-dd.fraunhofer.de. Accessed 15 May 2014

  3. Facchini L, Magalini E, Robotti P et al (2009) Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp J 15(3):171–178

    Article  Google Scholar 

  4. Koike M, Martinez K, Guo L et al (2011) Evaluation of titanium alloy fabricated using electron beam melting system for dental applications. J Mater Process Technol 211(8):1400–1408

    Article  Google Scholar 

  5. Murr LE, Esquivel EV, Quinones SA et al (2009) Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V. Mater Charact 60(2):96–105

    Article  Google Scholar 

  6. Murr LE, Quinones SA, Gaytan SM et al (2009) Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater 2(1):20–32

    Article  Google Scholar 

  7. Li X, Wang C, Zhang W et al (2009) Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater Lett 63(3):403–405

    Article  Google Scholar 

  8. Harrysson OLA, Cansizoglu O, Marcellin-Little DJ et al (2008) Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng 28(3):366–373

    Article  Google Scholar 

  9. Parthasarathy J, Starly B, Raman S et al (2010) Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater 3(3):249–259

    Article  Google Scholar 

  10. Murr LE, Gaytan SM, Medina F et al (2010) Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting. Mater Sci Eng 527(7):1861–1868

    Article  Google Scholar 

  11. Parthasarathy J, Starly B, Raman S (2011) A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. J Manuf Process 13(2):160–170

    Article  Google Scholar 

  12. Heinl P, Müller L, Körner C et al (2008) Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater 4(5):1536–1544

    Article  Google Scholar 

  13. Mohammadhosseini A, Fraser D, Masood SH et al (2013) Compressive properties of Ti-6Al-4V built by electron beam melting. Adv Mater Res 811:108–112

    Article  Google Scholar 

  14. Mohammadhosseini A, Fraser D, Masood SH et al (2013) Microstructure and mechanical properties of Ti-6Al-4V manufactured by electron beam melting process. Mater Res Innov 17:106–112

    Article  Google Scholar 

  15. Hosseini AM, Masood SH, Fraser D et al (2012) Mechanical properties investigation of HIP and as-built EBM parts. Adv Mater Res 576:216–219

    Article  Google Scholar 

  16. Khan AS, Suh YS, Kazmi R (2004) Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. Int J Plast 20(12):2233–2248

    Article  MATH  Google Scholar 

  17. Nemat-Nasser S, Guo WG, Nesterenko VF et al (2001) Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: experiments and modeling. Mech Mater 33(8):425–439

    Article  Google Scholar 

  18. Follansbee PS, Gray GT (1989) An analysis of the low temperature, low and high strain-rate deformation of Ti-6Al-4V. Metall Trans A 20(5):863–874

    Article  Google Scholar 

  19. Biswas N, Ding JL, Balla VK et al (2012) Deformation and fracture behavior of laser processed dense and porous Ti6Al4V alloy under static and dynamic loading. Mater Sci Eng 549:213–221

    Article  Google Scholar 

  20. Wu XJ, Gorham DA (1997) Stress equilibrium in the split Hopkinson pressure bar test. J de Phys IV 7(C3):C3-91–C3-96

    Google Scholar 

  21. Gray G (2003) Classic split-Hopkinson pressure bar testing. ASM Handbook, Ohio, pp 462–476

    Google Scholar 

  22. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. In: Proceedings of the seventh international symposium on ballistics, The Hague, The Netherlands, pp 541–547

  23. Field JE, Walley SM, Proud WG et al (2004) Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 30(7):725–775

    Article  Google Scholar 

  24. Edwards M (2006) Properties of metals at high rates of strain. Mater Sci Technol 22(4):453–462

    Article  Google Scholar 

  25. Davoodi B, Gavrus A, Ragneau E (2005) A technique for measuring the dynamic behaviour of materials at elevated temperatures with a compressive SHPB. WIT Trans Eng Sci 51:153

    Google Scholar 

  26. Dodd B (1992) Adiabatic shear localization: occurrence, theories, and applications. Pergamon Press, New York

    Google Scholar 

  27. Zener C, Hollomon J (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15(1):22–32

    Article  Google Scholar 

  28. Peirs J, Tirry W, Amin-Ahmadi B et al (2013) Microstructure of adiabatic shear bands in Ti6Al4V. Mater Charact 75:79–92

    Article  Google Scholar 

  29. Yin WH, Xu F, Ertorer O et al (2013) Mechanical behavior of microstructure engineered multi-length-scale titanium over a wide range of strain rates. Acta Mater 61(10):3781–3798

    Article  Google Scholar 

  30. Odeshi AG, Al-Ameeri S, Bassim MN (2005) Effect of high strain rate on plastic deformation of a low alloy steel subjected to ballistic impact. J Mater Process Technol 162–163:385–391

    Article  Google Scholar 

  31. Odeshi AG, Bassim MN, Al-Ameeri S et al (2005) Dynamic shear band propagation and failure in AISI 4340 steel. J Mater Process Technol 169(2):150–155

    Article  Google Scholar 

  32. Song WQ, Sun S, Zhu S et al (2012) Compressive deformation behavior of a near-beta titanium alloy. Mater Des 34:739–745

    Article  Google Scholar 

  33. Murr LE, Ramirez AC, Gaytan SM et al (2009) Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti-6Al-4V targets. Mater Sci Eng 516(1):205–216

    Article  Google Scholar 

  34. Lee G, Lee YH, Lee S et al (2004) Dynamic deformation behavior and ballistic impact properties of Ti-6Al-4V alloy having equiaxed and bimodal microstructures. Metall Mater Trans A 35(10):3103–3112

    Article  Google Scholar 

  35. Guden M, Celik E, Akar E et al (2005) Compression testing of a sintered Ti6Al4V powder compact for biomedical applications. Mater Charact 54(4):399–408

    Article  Google Scholar 

  36. Tu Z, Lu Y (2009) Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations. Int J Impact Eng 36(1):132–146

    Article  MathSciNet  Google Scholar 

  37. Zhou X, Hao H, Kuznetsov VA et al (2006) Numerical calculation of concrete slab response to blast loading. Trans Tianjin Univ 12(Suppl):94–99

    Google Scholar 

  38. Shui-Sheng YU, Yu-Bin LU, Yong CAI (2013) The strain-rate effect of engineering materials and its unified model. Latin Am J Solids Struct 10(4):833–844

    Article  Google Scholar 

  39. Almasri AH, Voyiadjis GZ (2007) Effect of strain rate on the dynamic hardness in metals. J Eng Mater Technol 129(4):505–512

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Victorian Direct Manufacturing Centre (VDMC), Camplex Pty Ltd for their financial support to this project and also the Titanium Technologies Theme of the Future Manufacturing Flagship within CSIRO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Masood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadhosseini, A., Masood, S.H., Fraser, D. et al. Dynamic compressive behaviour of Ti-6Al-4V alloy processed by electron beam melting under high strain rate loading. Adv. Manuf. 3, 232–243 (2015). https://doi.org/10.1007/s40436-015-0119-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-015-0119-0

Keywords

Navigation