Skip to main content
Log in

Enhancing the performance in the offline controller tuning of robotic manipulators with chaos: a comparative study with differential evolution

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

The decision-making process regarding utilizing specific chaotic maps as number generators and the different ways they can be incorporated into differential evolution (DE), as well as the type of system and task for which chaos is functional in the controller tuning problem, is an open issue. This paper aims to address this need for more knowledge in the field by proposing sixteen different chaotic DE variants and presenting a formal study on the tuning of PID controllers through these variants for regulation and tracking tasks with robotic systems of incremental complexity. These systems include planar open-chain robotic manipulators with one, two, and six revolute joints. Concerning the proposed variants, they utilize pseudo-random numbers obtained from well-known chaotic maps, including Logistic, Sine, Hénon, and Lozi, at various DE stages such as initialization, mutation, crossover, and in all those stages. The comparative results based on descriptive and nonparametric statistics with respect to the proposed chaotic variants of DE and the DE using a general-purpose pseudo-random number generator such as Mersenne Twister (MT) indicates that using the single-state chaotic maps, especially the Sine map, increases the performance of the search process when used in the crossover stage or throughout the algorithm in complex systems. It is also observed that Sine map-based chaotic numbers can be useful enough during the search initialization for problems involving relatively less complex systems. Additionally, considering that chaotic maps require simple arithmetic operations, it is deduced that the variants that provide better results than the widely used MT also avoid the intricate operations involved in such a generator, reducing the computational burden to a good extent and increasing the area of application where this is a limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Algorithm 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

Data are available on request from the corresponding author.

Abbreviations

\(\alpha \) :

Control parameter for the Hénon and Lozi maps

\(\bar{\varvec{q}}\) :

Vector of desired angular positions

\({\bar{q}}_i\) :

Desired angular position for the ith link

\(\beta \) :

Control parameter for the Hénon and Lozi maps

\(\varvec{e}\) :

Vector of angular position errors

\(\varvec{F}\) :

Non-conservative forces vector

\(\varvec{g}\) :

Gravity vector

\(\varvec{q}\) :

Vector of angular positions

\(\varvec{u}\) :

Control input vector

\(\varvec{u}_{i}\) :

The ith offspring in differential evolution

\(\varvec{v}_{i}\) :

The ith mutant in differential evolution

\(\varvec{x}\) :

Vector of design variables

\(\varvec{x}_{\textrm{lb}}\) :

Lower-bound vector for the design variables

\(\varvec{x}_{ri}\) :

The ith individual from the population used during the mutation in differential evolution

\(\varvec{x}_{\textrm{ub}}\) :

Upper-bound vector for the design variables

\(\varvec{z}\) :

State vector

\(\varvec{z}_0\) :

Initial state vector

\(\dot{\bar{\varvec{q}}}\) :

Vector of desired angular velocities

\(\dot{{\bar{q}}}_i\) :

Desired angular velocity for the ith link

\(\dot{\varvec{e}}\) :

Vector of angular velocity errors

\(\dot{\varvec{q}}\) :

Vector of angular velocities

\(\dot{\varvec{z}}\) :

State equation

\({\dot{q}}_i\) :

Angular velocity of the ith link

\(\mu \) :

Control parameter for the Sine map

\(a\) :

Statistical significance for the Wilcoxon test

\(C\) :

Coriolis and centrifugal forces matrix

\(CR\) :

Crossover probability for differential evolution

\(dt\) :

Sampling time interval

\(F\) :

Scaling factor for differential evolution

\(G\) :

Current generation in differential evolution

\(g\) :

Acceleration of gravity in the Earth

\(G_{\max }\) :

Maximum number of generations for differential evolution

\(H_0\) :

Null hypothesis for the Wilcoxon test

\(H_a\) :

Alternative hypothesis for the Wilcoxon test

\(I_i\) :

Inertia of the ith link

\(ISE\) :

Integral squared error

\(J\) :

Objective function

\(j_\textrm{rand}\) :

The jth design variable used in the binomial crossover of differential evolution

\(K_d\) :

Diagonal matrix of derivative gains

\(K_i\) :

Diagonal matrix of integral gains

\(K_p\) :

Diagonal matrix of proportional gains

\(k_{dj}\) :

Derivative gain to calculate the jth control input

\(k_{ij}\) :

Integral gain to calculate the jth control input

\(k_{pj}\) :

Proportional gain to calculate the jth control input

\(l_{ci}\) :

Length to the mass center of the ith link

\(l_{i}\) :

Length of the ith link

\(M\) :

Inertia matrix

\(m_i\) :

Mass of the ith link

\(n\) :

Degrees of freedom

\(NP\) :

Population size for differential evolution

\(q_i\) :

Angular position of the ith link

\(r\) :

Control parameter for the Logistic map

\(t\) :

Time

\(t_f\) :

Final simulation time

\(u_i\) :

The ith control input

\(X_G\) :

Current population in differential evolution

\(z_{i,n+1}\) :

Next value for the ith state of a chaotic map

\(z_{i,n}\) :

Current value for the ith state of a chaotic map

\(z_{i}\) :

The ith state of a chaotic map

References

  1. Bock S, Boysen N (2021) Integrated real-time control of mixed-model assembly lines and their part feeding processes. Comput Oper Res 132:105344. https://doi.org/10.1016/j.cor.2021.105344

    Article  MathSciNet  Google Scholar 

  2. Panjwani B, Mohan V, Rani A, Singh V (2019) Optimal drug scheduling for cancer chemotherapy using two degree of freedom fractional order pid scheme. J Intell Fuzzy Syst 36:2273–2284. https://doi.org/10.3233/JIFS-169938

    Article  Google Scholar 

  3. Shauri RLA, Salleh NM, Hadi AKA (2014) Pid position control of 7-dof three-fingered robotic hand for grasping task. In: 2014 IEEE international conference on control system, computing and engineering (ICCSCE 2014), pp 70–74. IEEE, Penang, Malaysia. https://doi.org/10.1109/ICCSCE.2014.7072691

  4. Rao SS (2019) Engineering optimization theory and practice. https://doi.org/10.1002/9781119454816

  5. Wari E, Zhu W (2016) A survey on metaheuristics for optimization in food manufacturing industry. Appl Soft Comput 46:328–343. https://doi.org/10.1016/j.asoc.2016.04.034

    Article  Google Scholar 

  6. Mogos G (2016) Quantum random number generator vs. random number generator. In: 2016 International conference on communications (COMM). IEEE, Kuala Lumpur, Malaysia, pp 423–426. https://doi.org/10.1109/ICComm.2016.7528306

  7. Kyriazis M (1991) Applications of chaos theory to the molecular biology of aging. Exp Gerontol 26(6):569–572. https://doi.org/10.1016/0531-5565(91)90074-V

    Article  Google Scholar 

  8. Eslami M, Shareef H, Mohamed A (2011) Power system stabilizer design using hybrid multi-objective particle swarm optimization with chaos. J Cent South Univ 18(5):1579–1588. https://doi.org/10.1007/s11771-011-0875-3

    Article  Google Scholar 

  9. Teng W, Pan H, Ren J (2014) Neural network pid decoupling control based on chaos particle swarm optimization. In: Proceedings of the 33rd Chinese control conference. IEEE, Kunming, China, pp 5017–5020. https://doi.org/10.1109/ChiCC.2014.6895792

  10. Huang Q, Li T, Li Z, Hang Y, Yang S (2012) Research on pid control technique for chaotic ship steering based on dynamic chaos particle swarm optimization algorithm. In: Proceedings of the 10th world congress on intelligent control and automation. IEEE, Beijing, China, pp 1639–1643. https://doi.org/10.1109/WCICA.2012.6358140

  11. Qiming C, Yinman C, Ruiqing G, Yong Z (2009) The forward nn-pid controllers based on chaos pso-bp hybrid optimization algorithms for decoupling control system of ball mill. In: 2009 international conference on artificial intelligence and computational intelligence, vol 1, pp 189–193. https://doi.org/10.1109/AICI.2009.66

  12. Wu T, Cheng Y, Tan J, Zhou T (2008) The application of chaos genetic algorithm in the pid parameter optimization. In: 2008 3rd International conference on intelligent system and knowledge engineering, vol 1. IEEE, Xiamen, China, pp. 230–234. https://doi.org/10.1109/ISKE.2008.4730932

  13. Zhang Y, Yang X (2004) Design for beam-balanced system controller based on chaos genetic algorithm. In: International conference on information acquisition, 2004. Proceedings. IEEE, Hefei, China, pp. 448–451. https://doi.org/10.1109/ICIA.2004.1373410

  14. Davendra D, Zelinka I, Senkerik R (2010) Chaos driven evolutionary algorithms for the task of pid control. Comput Math Appl 60(4):1088–1104. https://doi.org/10.1016/j.camwa.2010.03.066

    Article  Google Scholar 

  15. Rodríguez-Molina A, Villarreal-Cervantes MG, Serrano-Pérez O, Solís-Romero J, Silva-Ortigoza R (2022) Optimal tuning of the speed control for brushless dc motor based on chaotic online differential evolution. Mathematics 10(12):1977. https://doi.org/10.3390/math10121977

    Article  Google Scholar 

  16. dos Santos Coelho L (2009) Tuning of pid controller for an automatic regulator voltage system using chaotic optimization approach. Chaos Solitons Fractals 39(4):1504–1514. https://doi.org/10.1016/j.chaos.2007.06.018

    Article  Google Scholar 

  17. Wang D-F, Han P, Ren Q (2002) Chaos optimization variable arguments pid controller, and its application to main steam pressure regulating system. In: Proceedings of the international conference on machine learning and cybernetics, vol 4. IEEE, Beijing, China, pp 2116–21204. https://doi.org/10.1109/ICMLC.2002.1175412

  18. Zuo XQ, Fan YS (2006) A chaos search immune algorithm with its application to neuro-fuzzy controller design. Chaos Solitons Fract 30(1):94–109. https://doi.org/10.1016/j.chaos.2005.08.126

    Article  MathSciNet  Google Scholar 

  19. Ma X-M, Guo L (2009) Optimization of pid parameters for mine hoisting dtc system based on chaos theory. In: 2009 international conference on artificial intelligence and computational intelligence, vol 2. IEEE, Shanghai, China, pp 128–131. https://doi.org/10.1109/AICI.2009.38

  20. Jiang C, Ma Y, Wang C (2006) Pid controller parameters optimization of hydro-turbine governing systems using deterministic-chaotic-mutation evolutionary programming (dcmep). Energy Convers Manag 47(9):1222–1230. https://doi.org/10.1016/j.enconman.2005.07.009

    Article  Google Scholar 

  21. Barakat M (2022) Novel chaos game optimization tuned-fractional-order pid fractional-order pi controller for load-frequency control of interconnected power systems. Prot Control Mod Power Syst 7(1):16. https://doi.org/10.1186/s41601-022-00238-x

    Article  Google Scholar 

  22. Wang S, Jiang Y, Yang H (2006) Chaos optimization strategy on fuzzy-immune-pid control of the turbine governing system. In: 2006 IEEE/RSJ international conference on intelligent robots and systems. IEEE, Beijing, China, pp 1594–1598. https://doi.org/10.1109/IROS.2006.282048

  23. Chen W, Meng X, Li J (2010) Pid controller design of maglev ball system based on chaos parameters optimization. In: 2010 International conference on machine vision and human–machine interface. IEEE, Kaifeng, China, pp 772–775. https://doi.org/10.1109/MVHI.2010.213

  24. Chen W, Li Q, Gu R (2010) Chaos optimization neural network control for the stability of double inverted pendulum. In: 2010 The 2nd international conference on industrial mechatronics and automation, vol 2, pp 491–494. https://doi.org/10.1109/ICINDMA.2010.5538264

  25. Lu Z, Shieh L-S, Chen G, Coleman NP (2005) Simplex sliding mode control for nonlinear uncertain systems via chaos optimization. Chaos Solitons Fract 23(3):747–755. https://doi.org/10.1016/j.chaos.2004.03.039

    Article  MathSciNet  Google Scholar 

  26. Rodríguez-Molina A, Mezura-Montes E, Villarreal-Cervantes MG, Aldape-Pérez M (2020) Multi-objective meta-heuristic optimization in intelligent control: a survey on the controller tuning problem. Appl Soft Comput 93:106342. https://doi.org/10.1016/j.asoc.2020.106342

    Article  Google Scholar 

  27. Spong MW (1989) Robot dynamics and control, 1st edn. Wiley, New York

    Google Scholar 

  28. Knospe C (2006) Pid control. IEEE Control Syst Mag 26(1):30–31. https://doi.org/10.1109/MCS.2006.1580151

    Article  Google Scholar 

  29. Issa M, Elbaset AA, Hassanien AE, Ziedan I (2019) In: Hassanien AE (ed) PID Controller tuning parameters using meta-heuristics algorithms: comparative analysis. Springer, Cham, pp 413–430. https://doi.org/10.1007/978-3-030-02357-7_20

  30. Ali A, Majhi S (2010) Pid controller tuning for integrating processes. ISA Trans 49(1):70–78. https://doi.org/10.1016/j.isatra.2009.09.001

    Article  Google Scholar 

  31. Reeves CR (ed) (1993) Modern heuristic techniques for combinatorial problems. Wiley, New York

    Google Scholar 

  32. Chong HY, Yap HJ, Tan SC, Yap KS, Wong SY (2021) Advances of metaheuristic algorithms in training neural networks for industrial applications. Soft Comput 25(16):11209–11233. https://doi.org/10.1007/s00500-021-05886-z

    Article  Google Scholar 

  33. Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization (natural computing series). Springer, Berlin

    Google Scholar 

  34. Matsumoto M, Nishimura T (1998) Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul 8(1):3–30. https://doi.org/10.1145/272991.272995

    Article  Google Scholar 

  35. Ghosh S, Zaman M, Sakauye G, Sampalli S (2021) An intrusion resistant scada framework based on quantum and post-quantum scheme. Appl Sci 11(5):2082

    Article  Google Scholar 

  36. Wang X, Chen S (2020) Chaotic image encryption algorithm based on dynamic spiral scrambling transform and deoxyribonucleic acid encoding operation. IEEE Access 8:160897–160914. https://doi.org/10.1109/ACCESS.2020.3020835

    Article  Google Scholar 

  37. Hamza R, Muhammad K, Lv Z, Titouna F (2017) Secure video summarization framework for personalized wireless capsule endoscopy. Pervasive Mob Comput 41:436–450. https://doi.org/10.1016/j.pmcj.2017.03.011

    Article  Google Scholar 

  38. Peitgen HO, Jürgens H, Saupe D (2004) Chaos and fractals: new frontiers of science. Springer, New York. https://books.google.com.mx/books?id=jVpS_u0Lg4gC

  39. Patel S, Thanikaiselvan V, Pelusi D, Nagaraj B, Arunkumar R, Amirtharajan R (2021) Colour image encryption based on customized neural network and dna encoding. Neural Comput Appl 33(21):14533–14550. https://doi.org/10.1007/s00521-021-06096-2

    Article  Google Scholar 

  40. Flores-Carapia R, Silva-García VM, Cardona-López MA (2023) A dynamic hybrid cryptosystem using chaos and Diffie-Hellman protocol: an image encryption application. Appl Sci 13(12):7168. https://doi.org/10.3390/app13127168

    Article  Google Scholar 

  41. Ahmad MF, Isa NAM, Lim WH, Ang KM (2022) Differential evolution with modified initialization scheme using chaotic oppositional based learning strategy. Alex Eng J 61(12):11835–11858. https://doi.org/10.1016/j.aej.2022.05.028

    Article  Google Scholar 

  42. Huberman BA, Zisook AB (1981) Power spectra of strange attractors. Phys Rev Lett 46:626–628. https://doi.org/10.1103/PhysRevLett.46.626

    Article  MathSciNet  Google Scholar 

  43. dos Santos Coelho L, Coelho AAR (2009) Model-free adaptive control optimization using a chaotic particle swarm approach. Chaos Solitons Fract 41(4):2001–2009. https://doi.org/10.1016/j.chaos.2008.08.004

  44. Chiou J-P, Chang C-F, Su C-T (2005) Variable scaling hybrid differential evolution for solving network reconfiguration of distribution systems. IEEE Trans Power Syst 20(2):668–674. https://doi.org/10.1109/TPWRS.2005.846096

  45. Li L-L, Wen S-Y, Tseng M-L, Wang C-S (2019) Renewable energy prediction: a novel short-term prediction model of photovoltaic output power. J Clean Prod 228:359–375. https://doi.org/10.1016/j.jclepro.2019.04.331

  46. Mezura-Montes E, Velázquez-Reyes J, Coello Coello CA (2006) A comparative study of differential evolution variants for global optimization. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. GECCO’06. Association for Computing Machinery, New York, NY, USA, pp 485–492. https://doi.org/10.1145/1143997.1144086

  47. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18. https://doi.org/10.1016/j.swevo.2011.02.002

  48. Rodríguez-Molina A, Villarreal-Cervantes MG, Álvarez-Gallegos J, Aldape-Pérez M (2019) Bio-inspired adaptive control strategy for the highly efficient speed regulation of the dc motor under parametric uncertainty. Appl Soft Comput 75:29–45. https://doi.org/10.1016/j.asoc.2018.11.002

    Article  Google Scholar 

  49. Rodríguez-Molina A, Villarreal-Cervantes MG, Aldape-Pérez M (2020) Indirect adaptive control using the novel online hypervolume-based differential evolution for the four-bar mechanism. Mechatronics 69:102384. https://doi.org/10.1016/j.mechatronics.2020.102384

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support of the Consejo Nacional de Humanidades, Ciencias y Tecnologías de México (CONAHCyT), the Universidad Autónoma de la Ciudad de México (UACM), and the Secretaría de Investigación y Posgrado (SIP) of the Instituto Politécnico Nacional (IPN).

Funding

This research was funded in part by the Universidad Autónoma de la Ciudad deMéxico (UACM) and by the Secretaría de Investigación y Posgrado (SIP) of the Instituto Politécnico Nacional (IPN).

Author information

Authors and Affiliations

Authors

Contributions

M.F.P.-O., O.S.-P., and A.R.-M. contributed to conceptualization; M.F.P.-O., A.R.- M., and M.G.V.-C contributed to methodology; G.H., M.E.S.-G., and V.M.S.-G. contributed to software; A.R.-M., M.G.V.-C., and V.M.S.-G. performed validation; M.G.V.-C and V.M.S.-G. carried out formal analysis; M.F.P.-O., O.S.-P., and M.G.V.-C performed investigation; O.S.-P. and M.G.V.-C contributed to resources; G.H. and M.E.S.-G. performed data curation; M.F.P.-O., A.R.-M., and M.G.V.-C. performed writing—original draft preparation; A.R.-M., G.H., and M.E.S.-G. performed writing—review and editing; G.H., M.E.S.-G., and V.M.S.-G. contributed to visualization; A.R.-M. and M.G.V.-C. performed supervision; A.R.-M. and M.G.V.-C. performed project administration; O.S.-P. and M.G.V.-C contributed to funding acquisition. All authors have read and agreed to the submitted version of the manuscript.

Corresponding authors

Correspondence to Alejandro Rodríguez-Molina or Miguel Gabriel Villarreal-Cervantes.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 250 KB)

Appendix A: Detailed results of the Wilcoxon signed-rank pairwise tests

Appendix A: Detailed results of the Wilcoxon signed-rank pairwise tests

Tables 8, 9, and 10 present the results of the Wilcoxon test for the R, 2R, and 6R manipulators, respectively. The tables include the task carried out by the manipulators, the DE variant, the Wilcoxon test, and the outcome of the test conducted on the distributions of J obtained at 0%, 25%, 50%, 75%, and 100% of the total available \(G_{\max }\) generations in DE. The results feature the p values of each test, representing the probability of accepting \(H_0\) and rejecting \(H_a\). Thus, when a p value \(<a\), \(H_a\) is accepted. The tables also display the sum of ranks calculated in each test. Each p value is accompanied by \((+)\) when the first alternative in the test outperforms the second, with \((-)\) when the opposite is true, and with \((\approx )\) when the two alternatives show no significant difference.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parra-Ocampo, M.F., Serrano-Pérez, O., Rodríguez-Molina, A. et al. Enhancing the performance in the offline controller tuning of robotic manipulators with chaos: a comparative study with differential evolution. Int. J. Dynam. Control (2024). https://doi.org/10.1007/s40435-024-01423-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40435-024-01423-6

Keywords

Navigation