Skip to main content
Log in

Mathematical model to study the impact of anthropogenic activities on forest biomass and forest-dependent wildlife population

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper proposes and analyses a nonlinear mathematical model to study the impact of anthropogenic activities on forest biomass and forest-dependent wildlife populations using a system of differential equations. It is assumed that the growth of forest biomass, forest-dependent wildlife populations, and the human population follow logistic equations. The effect of forest biomass depletion on the survival of forest-dependent wildlife populations is investigated by introducing a function that denotes the dependence on forest biomass. The system’s behaviour near all ecologically acceptable equilibria is studied, and to confirm the analytical conclusions, a numerical simulation is performed. The model analysis shows that as forest biomass declines due to an increase in human population and its associated activities, the population of wildlife species also declines, and if no measures are taken, both forest biomass and the wildlife population may become extinct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

Data used for numerical simulations can be obtained from the cited references and within the manuscript. The MATLAB codes can be provided upon request from the corresponding author.

References

  1. Bologna M, Aquino G (2020) Deforestation and world population sustainability: a quantitative analysis. Sci Rep 10(1):1–9. https://doi.org/10.1038/s41598-020-63657-6

    Article  Google Scholar 

  2. MNRT (2015) National forest resources monitoring and assessment of Tanzania mainland (naforma). Technical report, Tanzania Forest Services Agency, Dar es Salaam,Tanzania

  3. FAO, UNEP (2020) The State of the World’s Forests 2020 (SOFO): forests, biodiversity and people. Technical report, FAO and UNEP, Rome, Italy. https://doi.org/10.4060/ca8642en

  4. Kideghesho JR (2015) Realities on deforestation in Tanzania: trends, drivers, implications and the way Forward. In: Zlatic M (ed) Precious forests. IntechOpen, Rijeka. Chap. 2. https://doi.org/10.5772/61002

  5. Kaeslin E, Williamson D (2010) Forests, people and wildlife: challenges for a common future. Unasylva 61(236):3–10

    Google Scholar 

  6. Bwalya SM (2011) Household dependence on forest income in selected rural communities in Zambia. Zamb Soc Sci J 2(1):67–86

    Google Scholar 

  7. Goshu MD, Endalew MF (2022) Mathematical modeling on conservation of depleted forestry resources. Nat Resour Model 35:1–21

    Article  MathSciNet  Google Scholar 

  8. Jyotsna K, Tandon A (2017) A mathematical model to study the impact of mining activities and pollution on forest resources and wildlife population. J Biol Syst 25(02):207–230. https://doi.org/10.1142/S0218339017500115

    Article  MathSciNet  Google Scholar 

  9. Pratama MAA, Zikkah RN, Anggriani N, Supriatna AK (2020) A mathematical model to study the effects of population pressure on two-patch forest resources. In: AIP conference proceedings, vol 2264, pp 1–9. AIP Publishing LLC, Bali, Indonesia. https://doi.org/10.1063/5.0023844

  10. Lata K, Misra AK, Shukla JB (2018) Modeling the effect of deforestation caused by human population pressure on wildlife species. Nonlinear Anal Model Control 23(3):303–320. https://doi.org/10.15388/NA.2018.3.2

    Article  MathSciNet  Google Scholar 

  11. Lata K, Misra AK (2017) Modeling the effect of economic efforts to control population pressure and conserve forestry resources. Nonlinear Anal Model Control 22(4):473–488. https://doi.org/10.15388/NA.2017.4.4

    Article  MathSciNet  Google Scholar 

  12. Wu W, Li Y, Hu Y, Chang Y, Xiong Z (2019) Anthropogenic effect on forest landscape pattern and Cervidae habitats in northeastern china. J Geog Sci 29(7):1098–1112. https://doi.org/10.1007/s11442-019-1647-5

    Article  Google Scholar 

  13. Jyotsna K, Tandon A (2017) A mathematical model studying the survival of forest resource-dependent wildlife population in the presence of population pressure-induced mining activities. Nat Resour Model 30(4):12139. https://doi.org/10.1111/nrm.12139

    Article  MathSciNet  Google Scholar 

  14. Sinha SK, Pal J, Jyotsna K (2022) A dynamical study on the adverse effects of industrial activities in the forest and wildlife region through modelling. Model Earth Syst Environ 1–13

  15. Fanuel IM, Kajunguri D, Moyo F (2023) Modelling the impact of human population and its associated pressure on forest biomass and forest–dependent wildlife population. J Appl Math. https://doi.org/10.1155/2023/4826313

    Article  MathSciNet  Google Scholar 

  16. Pathak R, Verma V, Agarwal M (2021) Impact of human activities on forest resources and wildlife population. Comput Ecol Softw 11(2):83–99

  17. Mekonen S (2020) Coexistence between human and wildlife: the nature, causes and mitigations of human wildlife conflict around bale mountains national park, southeast ethiopia. BMC Ecol 20(51):1–9

    Google Scholar 

  18. Matandiko K (2023) In tanzania, wild animals kill one person every 52 hours. The Citizens. Available at: https://shorturl.at/jzABV (Accessed: May 16th, 2023)

  19. Freedman HI (1980) Deterministic mathematical models in population ecology, vol 57. Marcel Dekker Incorporated, New York

    Google Scholar 

  20. La Salle J (1961) Stability by Liapunov’s direct method with applications. Academic Press, Cambridge

    Google Scholar 

  21. Gümüş ÖA (2014) Global and local stability analysis in a nonlinear discrete-time population model. Adv Differ Equ 2014(1):1–9. https://doi.org/10.1186/1687-1847-2014-299

    Article  MathSciNet  Google Scholar 

  22. Seydel R (2009) Practical bifurcation and stability analysis, vol 5. Springer, New York

    Google Scholar 

  23. Castillo-Chavez C, Song B (2004) Dynamical models of tuberculosis and their applications. Math Biosci Eng 1(2):361–404

    Article  MathSciNet  Google Scholar 

  24. Freedman HI, Ruan SG (1995) Uniform persistence in functional differential equations. J Differ Equ 115(1):173–192

    Article  MathSciNet  Google Scholar 

  25. Misra AK, Lata K, Shukla JB (2014) Effects of population and population pressure on forest resources and their conservation: a modeling study. Environ Dev Sustain 16(2):361–374. https://doi.org/10.1007/s10668-013-9481-x

    Article  Google Scholar 

  26. Panja P (2020) Is the forest biomass a key regulator of global warming? A mathematical modelling study. Geol Ecol Landsc 6(1):66–74. https://doi.org/10.1080/24749508.2020.1752021

    Article  Google Scholar 

  27. Misra AK, Lata K (2015) A mathematical model to achieve sustainable forest management. Int J Model Simul Sci Comput 6(4):1550040. https://doi.org/10.1142/S1793962315500403

    Article  Google Scholar 

  28. Chaudhary M, Dhar J, Misra OP (2015) A mathematical model for the conservation of forestry biomass with an alternative resource for industrialization: a modified leslie gower interaction. Model Earth Syst Environ 1(4):1–10. https://doi.org/10.1007/s40808-015-0056-8

    Article  Google Scholar 

  29. Chen F (2005) On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay. J Comput Appl Math 180(1):33–49. https://doi.org/10.1016/j.cam.2004.10.001

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the Nelson Mandela African Institution of Science and Technology (NM-AIST) for providing good learning facilities and working conditions.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

The study conception, design, material preparation, and analysis were contributions made by all authors. Ibrahim Fanuel drafted the initial manuscript, and all authors provided feedback on previous versions. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to Ibrahim M. Fanuel.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Appendices

Appendix A: Proof of Lemma 1

Proof

Following Chaudhary et al. [28] and Chen [29], the proof is as follows. Consider the first equation of the system (1). When \(B \rightarrow L\) the rest of the variables become zero, this gives,

$$\begin{aligned} \dfrac{{\text {d}}B}{{\text {d}}t}\le sB \left( 1-\dfrac{B}{L}\right) \implies \limsup _{t\rightarrow \infty } B\le L. \end{aligned}$$

Further, from equations two, three, and four of the system, respectively, we get Eqs. (A1), (A2) and (A3).

$$\begin{aligned}{} & {} \dfrac{{{\text {d}}W}}{{{\text {d}}t}}\le {r(L)W}\left( 1-\dfrac{{W}}{{K(L)}}\right) \implies \limsup _{t\rightarrow \infty } {W}\le {K(L)}. \nonumber \\ \end{aligned}$$
(A1)
$$\begin{aligned}{} & {} \dfrac{{{\text {d}}N}}{{{\text {d}}t}}\le {\theta N}\left( 1 -\dfrac{{N}}{{M}}\right) + \lambda \beta _1LN,\nonumber \\{} & {} \qquad \implies \limsup _{{t}\rightarrow \infty }{N}\le \dfrac{{M}}{{\theta }}\left( \theta +\lambda \beta _1 L \right) ={N_{m}} \quad \mathrm{(Say)}. \nonumber \\\end{aligned}$$
(A2)
$$\begin{aligned}{} & {} \dfrac{{{\text {d}}H}}{{{\text {d}}t}}\le \gamma N_m-\gamma _1H,\nonumber \\{} & {} \qquad \implies \limsup _{t\rightarrow \infty }{H}\le \dfrac{{\gamma N_m}}{\gamma _1}={H_{m} }\quad \mathrm{(Say)}. \end{aligned}$$
(A3)

\(\square \)

Appendix B: Proof of Theorem 3

Proof

To prove Theorem (3), we start by linearising the system (1), about \(E^*\) by using the following transformations:

\(B=B^*+b\), \(W=W^*+w\), \(N=N^*+n\), \(H=H^*+h\), where b, w, n and h are small perturbations around the equilibrium \(E^*\). The following linearised system is obtained:

$$\begin{aligned} {\left\{ \begin{array}{ll} \dfrac{{\text {d}}b}{{\text {d}}t}{=}{-}\left( \dfrac{sB^*}{L}{+}\beta _2B^*H^* \right) b{-}\alpha B^*w{-}\beta _1B^*n{-}\beta _2{B^{*}}^2h ,\\ \dfrac{{\text {d}}w}{{\text {d}}t}{=} \left( r'(B^*) W^*\left( 1{-}\dfrac{W^*}{K(B^*)} \right) {+}\dfrac{r(B^*) {W^*}^2K'(B^*)}{{K(B^*)}^*2} \right) b \\ ~~~~~~~~-\left( \dfrac{r(B^*) W^*}{K(B^*)} \right) w-\nu _1W^*n{-}\nu _2W^*h,\\ \dfrac{{\text {d}}n}{{\text {d}}t}=\lambda \beta _1N^*b-\sigma N^*w-\dfrac{\theta N^*}{M}n,\\ \dfrac{{\text {d}}h}{{\text {d}}t}=\gamma n -\gamma _1h. \end{array}\right. } \nonumber \\ \end{aligned}$$
(B4)

Following Lata [10], we considered the positive definite function (B5),

$$\begin{aligned} V=\dfrac{1}{2}\left( \dfrac{1}{B^*}b^2+\dfrac{k_1}{W^*}w^2+k_2n^2+k_3h^2 \right) , \end{aligned}$$
(B5)

where \(k_1\), \(k_2\) and \(k_3\) are positive constants. Upon differentiating function (B5) with respect to t along the solutions of linearized system (B4), the following is obtained:

$$\begin{aligned} \dfrac{{\text {d}}V}{{\text {d}}t}={} & {} -\left( \dfrac{s}{L}+\beta _2H^* \right) b^2- \alpha bw-\beta _1bn-\beta _2 B^*bh\nonumber \\{} & {} -k_1\left( \dfrac{r(B^*)}{K(B^*)} \right) w^2-k_1\nu _1wn \nonumber \\{} & {} -k_1\nu _2wh +k_1\left( r'(B^*)\left( 1-\dfrac{W^*}{K(B^*)} \right) \right. \nonumber \\{} & {} \left. +\dfrac{r(B^*) {W^*}K'(B^*)}{{K(B^*)}^2} \right) bw \nonumber \\{} & {} +k_2\lambda \beta _1N^*bn-k_2N^*\sigma wn-k_2\dfrac{\theta N^*}{M}n^2 \nonumber \\{} & {} +k_3\gamma nh - k_3\gamma _1 h^2. \end{aligned}$$
(B6)

Eq. (B6) can be arranged as follows:

$$\begin{aligned} \dfrac{{\text {d}}V}{{\text {d}}t}={} & {} -\left( \dfrac{s}{L}+\beta _2H^* \right) b^2-k_1\left( \dfrac{r(B^*)}{K(B^*)} \right) w^2\nonumber \\{} & {} -k_2\dfrac{\theta N^*}{M}n^2-k_3 \gamma _1 h^2\nonumber \\{} & {} +\left( -\alpha +k_1r'(B^*) \right) bw-k_1\left( \dfrac{r'(B^*)W^*}{K(B^*)}\right. \nonumber \\{} & {} \left. -\dfrac{r(B^*) {W^*}K'(B^*)}{{K(B^*)}^2} \right) bw+\left( -\beta _1+k_2\lambda \beta _1 N^* \right) bn\nonumber \\{} & {} -\beta _2 bh -\left( k_1\nu _1+k_2\sigma N^*\right) wn\nonumber \\{} & {} -k_1\nu _2wh+k_3\gamma nh. \end{aligned}$$
(B7)

Choosing \( k_1=\dfrac{1}{\eta }, \) \( k_2=\dfrac{1}{\lambda N^*},\) and \(k_3=1\) which are all positive constants, Eq. (B7) is written as the sum of quadratic expressions

$$\begin{aligned} \dfrac{{\text {d}}v}{{\text {d}}t}={} & {} -\left[ \dfrac{1}{2}\left( \dfrac{s}{L}+\beta _2H^* \right) b^2+k_1\left( \dfrac{r'(B^*)W^*}{K(B^*)}\right. \right. \nonumber \\{} & {} \left. \left. -\dfrac{r(B^*)K'(B^*)W^*}{(K(B^*))^2}\right) bw+\dfrac{k_1}{3}\left( \dfrac{r(B^*)}{K(B^*)} \right) w^2 \right] \nonumber \\{} & {} -\left[ \dfrac{k_1}{3}\left( \dfrac{r(B^*)}{K(B^*)}\right) w^2+\left( k_1\nu _1+k_2\sigma N^* \right) wn\right. \nonumber \\{} & {} \left. +\dfrac{k_2}{2}\left( \dfrac{\theta N^*}{M}\right) n^2\right] \nonumber \\{} & {} -\left[ \dfrac{k_2}{2}\left( \dfrac{\theta N^*}{M} \right) n^2-k_3\gamma nh +\dfrac{k_3}{3} \gamma _1h^2 \right] \nonumber \\{} & {} -\left[ \dfrac{k_3}{3} \gamma _1 h^2+k_1\nu _2 wh+\dfrac{k_1}{3}\left( \dfrac{r(B^*)}{K(B^*)}\right) w^2 \right] \nonumber \\{} & {} -\left[ \dfrac{1}{2}\left( \dfrac{s}{L}+\beta _2H^* \right) b^2 +\beta _2bh+ \dfrac{k_3}{3} \gamma _1 h^2\right] \end{aligned}$$
(B8)

When \(\dfrac{{\text {d}}V}{{\text {d}}t}<0\), the model system (1) becomes locally asymptotically stable in the given region of attraction. Therefore, \(\dfrac{{\text {d}}V}{{\text {d}}t}\) is negative definite if and only if conditions (18)–(22) hold. \(\square \)

Appendix C: Proof of Theorem 4

Proof

We consider the following positive definite function [8] to prove the theorem

$$\begin{aligned} U{=}{} & {} \left( B{-}B^*{-}B^*\ln {\dfrac{B}{B^*}}\right) {+}l_1\left( W{-}W^*{-}W^*\ln {\dfrac{W}{W^*}} \right) \nonumber \\{} & {} +l_2\left( N-N^*-N^*\ln {\dfrac{N}{N^*}} \right) \nonumber \\{} & {} +\dfrac{l_3}{2}\left( H-H^* \right) ^2, \end{aligned}$$
(C9)

where \(l_1\), \(l_2\) and \(l_3\) are positive constants. It can be easily checked that, \(U(B^*, W^*, N^*, H^*)=0\) and \(U(B, W, N, H)>0\) for all other positive values of \(\left\{ B, W, N, H\right\} -\left\{ B^*, W^*, N^*,\right. \)\(\left. H^* \right\} \).

On differentiating (C9) with respect to "t", the following is obtained:

$$\begin{aligned} \dfrac{{\text {d}}U}{{\text {d}}t}= & {} \left( \dfrac{B-B^*}{B}\right) \dfrac{{\text {d}}B}{{\text {d}}t}+l_1\left( \dfrac{W-W^*}{W}\right) \dfrac{{\text {d}}W}{{\text {d}}t}\\{} & {} +l_2\left( \dfrac{N-N^*}{N}\right) \dfrac{{\text {d}}N}{{\text {d}}t}+l_3\left( H-H^*\right) \dfrac{{\text {d}}H}{{\text {d}}t}. \end{aligned}$$

Substituting the values of \(\dfrac{{\text {d}}B}{{\text {d}}t}\), \(\dfrac{{\text {d}}W}{{\text {d}}t}\), \(\dfrac{{\text {d}}N}{{\text {d}}t}\) and \(\dfrac{{\text {d}}H}{{\text {d}}t}\) from the system (1), the following equation is obtained;

$$\begin{aligned} \dfrac{{\text {d}}U}{{\text {d}}t}{=}{} & {} \left( B{-}B^* \right) \left[ -\left( \dfrac{s}{L}{+}\beta _2H^*\right) \left( B-B^*\right) -\alpha (W-W^*)\right. \\{} & {} \left. -\beta _1(N-N^*)-\beta _2 B (H-H^*) \right] \\{} & {} +l_1\left( W-W^* \right) \left[ \alpha \eta \left( B-B^*\right) -\dfrac{\alpha \eta B}{K(B^*)}(W-W^*)\right. \\{} & {} \left. -\nu _1 (N-N^*)-\nu _2 (H-H^*)\right] \\{} & {} +l_1\left( W-W^* \right) \left[ -\left( \alpha \eta B W \varGamma (B)\right) \left( B-B^*\right) \right. \\{} & {} \left. -\left( \dfrac{\alpha \eta W^*}{K(B^*)}\right) \left( B-B^*\right) \right] \\{} & {} +l_2(N-N^*)\left[ -\dfrac{\theta }{M}(N-N^*)+\lambda \beta _1 (B-B^*)\right. \\{} & {} \left. -\sigma (W-W^*) \right] \\{} & {} +l_3(H-H^*)\left[ -(\gamma _1)(H-H^*)+\gamma (N-N^*)\right] . \end{aligned}$$

where,

$$\begin{aligned} \varGamma (B)= \left\{ \begin{array}{ll} \dfrac{\dfrac{1}{K(B)}-\dfrac{1}{K(B^*)}}{B-B^*}, &{}\quad B\ne B^*\\ \dfrac{-K'(B^*)}{(K(B^*))^2}, &{}\quad B=B^*. \end{array} \right. \end{aligned}$$

Utilizing mean value theorem, we have

$$\begin{aligned} \left| {\varGamma (B)}\right| = \dfrac{\lambda _1}{K_0^2}, \end{aligned}$$

such that \(0<K'(B)\le \lambda _1.\) Choosing \( l_1=\dfrac{1}{\eta }\), \(l_2=\dfrac{1}{\lambda }\) and \(l_3= 1\), consequently, \(\dfrac{{\text {d}}U}{{\text {d}}t}\) is reduced to:

$$\begin{aligned} \dfrac{{\text {d}}U}{{\text {d}}t} {=}{} & {} {-}\left[ \dfrac{1}{2}\left( \dfrac{s}{L}{+}\beta _2H^*\right) \left( B{-}B^*\right) ^2{+}l_1\zeta (B{-}B^*)(W{-}W^*)\right. \nonumber \\{} & {} \left. +\dfrac{l_1}{3}\dfrac{\alpha \eta B}{K(B^*)}\left( W-W^*\right) ^2 \right] \nonumber \\{} & {} -\left[ \dfrac{l_1}{3}\dfrac{\alpha \eta B}{K(B^*)}\left( W-W^*\right) ^2+\left( l_1\nu _1+l_2\sigma \right) (W-W^*)\right. \nonumber \\{} & {} \left. (N-N^*)+\dfrac{l_2\theta }{2M}(N-N^*)^2\right] \nonumber \\{} & {} -\left[ \dfrac{l_2\theta }{2M}(N-N^*)^2-l_3\gamma (N-N^*)(H-H^*)\right. \nonumber \\{} & {} \left. +\dfrac{l_3}{3}\gamma _1\left( H-H^*\right) ^2 \right] \nonumber \\{} & {} -\left[ \dfrac{l_3}{3}\gamma _1\left( H-H^*\right) ^2 +\beta _2 B(B-B^*)(H-H^*)\right. \nonumber \\{} & {} \left. +\dfrac{1}{2}\left( \dfrac{s}{L}+\beta _2H^*\right) \left( B-B^*\right) ^2\right] \nonumber \\{} & {} {-}\left[ \dfrac{l_1}{3}\dfrac{\alpha \eta B}{K(B^*)}\left( W{-}W^*\right) ^2{+}l_1\nu _2(W-W^*)(H{-}H^*)\right. \nonumber \\{} & {} \left. +\dfrac{l_3}{3} \gamma _1\left( H-H^*\right) ^2 \right] . \end{aligned}$$
(C10)

Where,

$$\begin{aligned} \zeta =\left[ \left( \alpha \eta B W \varGamma (B)\right) +\left( \dfrac{\alpha \eta W^*}{K(B^*)}\right) \right] . \end{aligned}$$

When \(\dfrac{{\text {d}}U}{{\text {d}}t}<0\), the model system (1) becomes globally asymptotically stable in the region of attraction \(E^*\). Therefore, \(\dfrac{{\text {d}}U}{{\text {d}}t}\) is negative if and only if conditions (23)–(27) hold. Theorem 4 follows. \(\square \)

Proof

Following Chen [29], we begin by defining the following condition: The model system (1) is said to be uniformly persistent if there are positive constants \(\varOmega _1\) and \(\varOmega _2\) such that each of the positive solutions \(\left( B, W, N, H \right) \) of the system with positive initial conditions \(\left( B_0, W_0, N_0, H_0 \right) \) satisfies Eq. (C11).

$$\begin{aligned} \varOmega _1\le \liminf _{t\rightarrow \infty } \mathcal {X}(t)\le \limsup _{t\rightarrow \infty }\mathcal {X}(t)\le \varOmega _2 \end{aligned}$$
(C11)

where \(\mathcal {X}(t)=\left( B, W, N, H \right) \).

From Lemma (1), we define \(\varOmega _2\) as

$$\begin{aligned} \varOmega _2=\max \left\{ L, K(L), N_m, H_m\right\} . \end{aligned}$$

It follows that \(\limsup _{t\rightarrow \infty }\mathcal {X}(t)\le \varOmega _2.\)

This is also true for any sufficiently small \(\epsilon _i>0\), there exists a \(T_i>0\), such that

$$\begin{aligned}{} & {} B<L+\epsilon _1 \quad \forall t\ge T_1,\\{} & {} W<K(L)+\epsilon _2 \quad \forall t\ge T_2,\\{} & {} N<N_m+\epsilon _3 \quad \forall t\ge T_3,\\{} & {} H<H_m+\epsilon _4 \quad \forall t\ge T_4. \end{aligned}$$

Now, taking \(\epsilon =\max \left\{ \epsilon _1, \epsilon _2, \epsilon _3, \epsilon _4\right\} \) and \(T=\max \left\{ T_1,\right. \)\(\left. T_2, T_3, T_4 \right\} \) it can be concluded that, for \(\epsilon >0\), there exists \(T>0\) such that for all \(t\ge T\), the following holds;

$$\begin{aligned} B<L+\epsilon ,\quad W<K(L)+\epsilon , \quad N<N_m+\epsilon , \quad H<H_m+\epsilon . \end{aligned}$$

Thus, the first equation of the model system (1), for all \(t\ge T\), can be written as

$$\begin{aligned} \begin{aligned} \dfrac{{\text {d}}B}{{\text {d}}t}&\ge sB \left( 1-\dfrac{B}{L}\right) -\alpha B(K(L)+\epsilon )\\&\quad -\beta _{1}B(N_m+\epsilon )-\beta _{2}B^2(H_m+\epsilon ),\\&=\left( s-\alpha (K(L)+\epsilon )-\beta _1(N_m+\epsilon ) \right) B\\&\quad -\left( \dfrac{s}{L}+\beta _2(H_m+\epsilon ) \right) B^2. \end{aligned} \end{aligned}$$

Further, we have

$$\begin{aligned} \liminf _{t\rightarrow \infty }B(t)\ge \dfrac{L(s-\alpha (K(L)+\epsilon )-\beta _1(N_m+\epsilon ))}{s+L\beta _2(H_m+\epsilon )}, \end{aligned}$$

which is true for every \(\epsilon >0\), hence,

$$\begin{aligned} \liminf _{t\rightarrow \infty }B(t)\ge \dfrac{L(s-\alpha K(L)-\beta _1N_m)}{s+L\beta _2H_m}= B_l \quad \mathrm{(Say)}, \end{aligned}$$

such that \(s>\alpha K(L)+\beta _1N_m.\)

From the second model equation, we have

$$\begin{aligned} \begin{aligned} \dfrac{{\text {d}}W}{{\text {d}}t}&\ge r(B_l)W\left( 1-\dfrac{W}{K(B_l)}\right) -\nu _{1}W(N_m+\epsilon )\\&\quad -\nu _{2}W(H_m+\epsilon ),\\&=\left( r(B_l)-\left( \nu _1(N_m+\epsilon )+\nu _2(H_m+\epsilon ) \right) \right) W \\&\quad -\dfrac{r(B_l)}{K(B_l)}. \end{aligned} \end{aligned}$$

It follows

$$\begin{aligned} \liminf _{t\rightarrow \infty }W(t)\ge \dfrac{K(B_l)(r(B_l){-}\nu _1(N_m{+}\epsilon ){-}\nu _2(H_m{+}\epsilon ))}{r(B_l)}, \end{aligned}$$

which is true for every \(\epsilon >0\), therefore,

$$\begin{aligned} \liminf _{t\rightarrow \infty }W(t)\ge \dfrac{K(B_l)(r(B_l){-}\nu _1N_m{-}\nu _2H_m)}{r(B_l)} {=} W_l \quad \mathrm{(Say)}, \end{aligned}$$

where \(r(B_l)>\nu _1N_m+\nu _2H_m\).

Similarly, the third and fourth equations of the system (1), respectively, yield

$$\begin{aligned} \begin{aligned} \dfrac{{\text {d}}N}{{\text {d}}t}&\ge \theta N\left( 1-\dfrac{N}{M}\right) -\sigma NW_l,\\&=\left( \theta -\sigma W_l \right) N -\dfrac{\theta N^2}{M}. \end{aligned} \end{aligned}$$

Hence, it follows

$$\begin{aligned} \liminf _{t\rightarrow \infty }N(t)\ge \dfrac{M(\theta -\sigma W_l)}{\theta }= N_l \quad \mathrm{(Say)}, \end{aligned}$$

where \(\theta >\sigma W_l.\)

$$\begin{aligned} \begin{aligned} \dfrac{{\text {d}}H}{{\text {d}}t}&\ge \gamma N_l-\gamma _{1}H,\\&=\gamma N_l-\gamma _1H. \end{aligned} \end{aligned}$$

Therefore, it follows

$$\begin{aligned} \liminf _{t\rightarrow \infty }H(t)\ge \dfrac{\gamma N_l}{\gamma _1}=H_l \quad \mathrm{(Say)}. \end{aligned}$$

It is worth noting that \(\varOmega _1=\min \left\{ B_l, W_l, N_l, H_l \right\} .\) Theorem 5 follows. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanuel, I.M., Mirau, S., Kajunguri, D. et al. Mathematical model to study the impact of anthropogenic activities on forest biomass and forest-dependent wildlife population. Int. J. Dynam. Control 12, 1314–1331 (2024). https://doi.org/10.1007/s40435-023-01265-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-023-01265-8

Keywords

Mathematics Subject Classification

Navigation