Skip to main content
Log in

Kinematic and dynamic modeling of a planar parallel manipulator served as CNC tool holder

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper introduces a novel planar parallel manipulator used as the tool holder in a 4-axis CNC machine. The manipulator has two translational and one rotational degree-of-freedom (DOF) while one of the translational DOFs is decoupled from the other two DOFs. The inverse and direct position kinematics of the manipulator are solved in closed form. Velocity, acceleration and singularity analyses are implemented using Jacobian matrices and it is shown that the proposed manipulator can be easily designed to have a singularity-free workspace. An analytical method is presented to determine workspace of the manipulator. A closed form solution is also presented for the inverse and direct dynamics of the manipulator by Newton–Euler method. Moreover, a kinematic conditioning index and a dynamic conditioning index are evaluated on the workspace revealing that the manipulator has a good dexterity especially in the center of the workspace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Merlet J-P (2012) Parallel robots. Springer, Berlin

    MATH  Google Scholar 

  2. Huang Z, Li Q, Ding H (2013) Theory of parallel mechanisms. Springer, Berlin

    Book  Google Scholar 

  3. Chen S-L, You I-T (2000) Kinematic and singularity analyses of a six DOF 6-3-3 parallel link machine tool. Int J Adv Manuf Technol 16(11):835–842

    Article  Google Scholar 

  4. Chen S-L, Liu Y-C (2001) Post-processor development for a six degrees-of-freedom parallel-link machine tool. Int J Adv Manuf Technol 18(4):254–265

    Article  Google Scholar 

  5. Harib K, Srinivasan K (2003) Kinematic and dynamic analysis of Stewart platform-based machine tool structures. Robotica 21(5):541–554

    Article  Google Scholar 

  6. Zhao J-W, Fan K-C, Chang T-H, Li Z (2002) Error analysis of a serial-parallel type machine tool. Int J Adv Manuf Technol 19(3):174–179

    Article  Google Scholar 

  7. Chang T-H, Chen S-L, Kang C-A, Inasaki I (2002) Design optimization of the linkage dimension for a hybrid-type parallel kinematic machine tool. Proc Inst Mech Eng, Part K: J Multi-body Dyn 216(2):143–156

  8. Fan K-C, Wang H, Zhao J-W, Chang T-H (2003) Sensitivity analysis of the 3-PRS parallel kinematic spindle platform of a serial-parallel machine tool. Int J Mach Tools Manuf 43(15):1561–1569

    Article  Google Scholar 

  9. Gao F, Peng B, Zhao H, Li W (2006) A novel 5-DOF fully parallel kinematic machine tool. Int J Adv Manuf Technol 31:201–207

    Article  Google Scholar 

  10. Son S, Kim T, Sarma SE, Slocum A (2009) A hybrid 5-axis CNC milling machine. Precis Eng 33(4):430–446

    Article  Google Scholar 

  11. Slocum A (1992) Precision machine design. Society of manufacturing engineers, ISBN: 0872634922

  12. Wu J, Wang J, Li T, Wang L (2007) Dynamic analysis of the 2-DOF planar parallel manipulator of a heavy duty hybrid machine tool. Int J Adv Manuf Technol 34(3):413–420

  13. Wu J, Wang J, Li T, Wang L, Guan L (2008) Dynamic dexterity of a planar 2-DOF parallel manipulator in a hybrid machine tool. Robotica 26(1):93–98

    Article  Google Scholar 

  14. Wu J, Wang J, Wang L, Li T (2009) Dynamic model and force control of the redundantly actuated parallel manipulator of a 5-DOF hybrid machine tool. Robotica 27(1):59–65

    Article  Google Scholar 

  15. Shao H, Wang L, Guan L, Wu J (2009) Dynamic manipulability and optimization of a redundant three DOF planar parallel manipulator. In: ASME/IFToMM international conference on reconfigurable mechanisms and robots, pp 302–308

  16. Wu J, Chen X, Li T, Wang L (2013) Optimal design of a 2-DOF parallel manipulator with actuation redundancy considering kinematics and natural frequency. Robot Comp Integr Manuf 29(1):80–85

    Article  Google Scholar 

  17. Wu J, Wang D, Wang L (2015) A control strategy of a 2-DOF heavy duty parallel manipulator. J Dyn Syst Meas Control 137(6):061007-1–061007-10

    Google Scholar 

  18. Rezaei A, Akbarzadeh A (2013) Position and stiffness analysis of a new asymmetric 2PRR-PPR parallel CNC machine. Adv Robot 27(2):133–145

    Article  Google Scholar 

  19. Nam Y-J, Park M-K (2006) Kinematics and optimization of 2-DOF parallel manipulator with revolute actuators and a passive leg. J Mech Sci Technol 20(6):828–839

    Article  Google Scholar 

  20. Lee J-H, Nam Y-J, Park M-K (2010) Kinematics and optimization of a 2-DOF parallel manipulator with a passive constraining leg and linear actuators. J Mech Sci Technol 24(1):19–23

    Article  Google Scholar 

  21. Zarkandi S, Mohammadi Daniali HR (2011) Direct kinematic analysis of a family of 4-Dof parallel manipulators with a passive constraining leg. Trans Can Soc Mech Eng 35(3):437–459

    Google Scholar 

  22. Briot S, Bonev IA (2009) Pantopteron: a new fully decoupled 3DOF translational parallel robot for pick-and-place applications. J Mech Robot 1(2):021001-1–021001-9

    Article  Google Scholar 

  23. Jin Y, Chen I-M, Yang G (2006) Kinematic design of a 6-DOF parallel manipulator with decoupled translation and rotation. IEEE Trans Robot 22(3):545–551

    Article  Google Scholar 

  24. Hunt K (1978) Kinematic geometry of mechanisms. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  25. Gosselin CM, Angeles J (1990) Singularity analysis of closed-loop kinematic chains. IEEE Trans Robot Autom 6(3):281–290

    Article  Google Scholar 

  26. Li Y, Xu Q (2005) Kinematics and dexterity analysis for a novel 3-DOF translational parallel manipulator. In: Proceedings of IEEE international conference on robotics and automation, Barcelona, Spain, April 18–22, pp 2955–2960

  27. Salisbury JK, Graig J (1982) Articulated hands: force control and kinematic issues. Int J Robot Res 1(1):4–17

    Article  Google Scholar 

  28. Gosselin CM (1990) Dexterity indices for planar and spatial robotic manipulators. In: Proceedings IEEE intenational conference robotics and automation, pp 650–655

  29. Yoshikawa T (1985) Dynamic manipulability of robot manipulators In: IEEE international conference on robotics and automation, pp 1033–1038

  30. Asada H (1983) A geometrical representation of manipulator dynamics and its application to arm design. J Dyn Syst Meas Control 105(3):131–135

    Article  MATH  Google Scholar 

  31. Tadokoro S, Kimura I, Takamori T (1991) A measure for evaluation of dynamic dexterity based on stochastic interpretation of manipulator motion.In: Fifth international conference on advanced robotics, pp 509–514

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Zarkandi.

Appendices

Appendix 1

(a) Calculation of \(\dot{\theta }^{2}\) as a function of \({\varvec{\uprho }}\) and \({\dot{\varvec{\uprho }}}\)

Considering the velocity equation (24), the term \(\dot{\theta }\) can be obtained as

$$\begin{aligned} \dot{\theta }=\mathbf{k}^{T}{\dot{\varvec{\uprho }}} \end{aligned}$$
(71)

where k is a \(3\times 1\) vector, and is defined as

$$\begin{aligned} \mathbf{k}=[{\begin{array}{lll} {k_1 }&{} {k_2 }&{} {k_3 } \\ \end{array} }]^{T}=\mathbf{J}^{T}{} \mathbf{l}_3 \end{aligned}$$
(72)

and

$$\begin{aligned} \mathbf{l}_3 =[{\begin{array}{lll} 0&{} 0&{} 1 \\ \end{array} }]^{T} \end{aligned}$$
(73)

As a consequence, the term \(\dot{\theta }^{2}\) will be obtained as

$$\begin{aligned} \dot{\theta }^{2}={\dot{\varvec{\uprho }}}^{T}{} \mathbf{G}_1 {\dot{\varvec{\uprho }}} \end{aligned}$$
(74)

where

$$\begin{aligned} \mathbf{G}_1 =\left[ {{\begin{array}{lll} {k_1^2 }&{}\quad {k_1 k_3 }&{}\quad {k_1 k_3 } \\ {k_1 k_3 }&{} \quad {k_3^2 }&{} \quad {k_3^2 } \\ {k_1 k_3 }&{}\quad {k_3^2 }&{}\quad {k_3^2 } \\ \end{array} }} \right] _{3\times 3} \end{aligned}$$
(75)

(b) Calculation of \(\dot{\alpha }_i \) and \(\dot{\alpha }_i^2 \) as a function of \({\varvec{\uprho }}\) and \({\dot{\varvec{\uprho }}}\).

Parameter \(\dot{\alpha }_i \) can be obtained through multiplying both sides of Eq. (15) by Ed \(_{i}\) as follows

$$\begin{aligned} \dot{\alpha }_i =\frac{(\mathbf{Ed}_i )^{T}{\dot{\mathbf{h}}}+(\mathbf{Ed}_i )^{T}{} \mathbf{Eb}_i \dot{\theta }}{d_i^2 }, \quad i = 1, 2 \end{aligned}$$
(76)

or

$$\begin{aligned} \dot{\alpha }_i =\mathbf{t}_i^T {\dot{\varvec{\uppsi }}}, \quad i = 1, 2 \end{aligned}$$
(77)

where t \(_{i}\) is a \(3\times 1\) vector, and is defined as

$$\begin{aligned} \mathbf{t}_i =d_i^{-2} [{\begin{array}{lll} 0&{} {d_{i,x} }&{} {\mathbf{d}_i^T \mathbf{b}_i } \\ \end{array} }]^{T} \end{aligned}$$
(78)

Substituting the value of \({\dot{\varvec{\uppsi }}}\) from Eq. (24) into Eq. (77), we have

$$\begin{aligned} \dot{\alpha }_i =\mathbf{u}_i^T {\dot{\varvec{\uprho }}} \end{aligned}$$
(79)

where u \(_{i}\) is a \(3\times 1\) vector, as follows

$$\begin{aligned} \mathbf{u}_i =[{\begin{array}{lll} {u_{1,i} }&{} {u_{2,i} }&{} {u_{3,i} } \\ \end{array} }]^{T}=(\mathbf{M}^{-1}{} \mathbf{K})^{T}{} \mathbf{t}_i \end{aligned}$$
(80)

As a result, the variable \(\dot{\alpha }_i^2 \) will be

$$\begin{aligned} \dot{\alpha }_i^2 ={\dot{\varvec{\uprho }}}^{T}{} \mathbf{G}_{2,i} {\dot{\varvec{\uprho }}}, \quad i = 1, 2 \end{aligned}$$
(81)

where

$$\begin{aligned} \mathbf{G}_{2,i} =\left[ {{\begin{array}{lll} {u_{1,i}^2 }&{} \quad {u_{1,i} u_{3,i} }&{}\quad {u_{1,i} u_{3,i} } \\ {u_{1,i} u_{3,i} }&{}\quad {u_{3,i}^2 }&{}\quad {u_{3,i}^2 } \\ {u_{1,i} u_{3,i} }&{}\quad {u_{3,i}^2 }&{}\quad {u_{3,i}^2 } \\ \end{array} }} \right] _{3\times 3} \end{aligned}$$
(82)

(c) Calculation of \(\dot{d}_i \dot{\alpha }_i \) and \(\ddot{\alpha }_i \) as a function of \({\varvec{\uprho }}\) and \({\dot{\varvec{\uprho }}}\).

Multiplying both sides of Eq. (25a) by Ed \(_{i}\), yields

$$\begin{aligned}&d_i (d_i \ddot{\alpha }_i +\dot{d}_i \dot{\alpha }_i )=(\mathbf{Ed}_i )^{T}{\ddot{\mathbf{h}}}\nonumber \\&\quad -(\mathbf{Ed}_i )^{T}{} \mathbf{b}_i \dot{\theta }^{2}+(\mathbf{Ed}_i )^{T}{} \mathbf{Eb}_i \ddot{\theta }, \quad i = 1, 2 \end{aligned}$$
(83)

Eqs. (83) can be rewritten as

$$\begin{aligned} d_i (d_i \ddot{\alpha }_i +\dot{d}_i \dot{\alpha }_i )=-(\mathbf{Ed}_i )^{T}{} \mathbf{b}_i \dot{\theta }^{2}+d_i^2 \mathbf{t}_i^T {\ddot{\varvec{\uppsi }}}, \quad i = 1, 2 \end{aligned}$$
(84)

Taking into account Eq. (79), the term \(\dot{d}_i \dot{\alpha }_i \) is obtained as follows

$$\begin{aligned} \dot{d}_i \dot{\alpha }_i ={\dot{\varvec{\uprho }}}^{T}{} \mathbf{G}_{3,i} {\dot{\varvec{\uprho }}}, \quad i = 1, 2 \end{aligned}$$
(85)

where

$$\begin{aligned}&{} \mathbf{G}_{3,1} =\left[ {{\begin{array}{lll} {u_{1,1} }&{} \quad {u_{2,1} }&{}\quad {u_{3,1} } \\ 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{} \quad 0 \\ \end{array} }} \right] _{3\times 3} ,\nonumber \\&\quad \mathbf{G}_{3,2} =\left[ {{\begin{array}{lll} 0&{}\quad 0&{}\quad 0 \\ {u_{1,2} }&{}\quad {u_{2,2} }&{}\quad {u_{3,2} } \\ 0&{}\quad 0&{}\quad 0 \\ \end{array} }} \right] _{3\times 3} \end{aligned}$$
(86)

Now, introducing Eqs. (74), (85) and (33) into (84), and solving the resultant equation for \(\ddot{\alpha }_i \), gives

$$\begin{aligned} \ddot{\alpha }_i =\mathbf{v}_i^T {\ddot{\varvec{\uprho }}}+{\dot{\varvec{\uprho }}}^{T}{} \mathbf{G}_{4,i} {\dot{\varvec{\uprho }}}, \quad i = 1, 2 \end{aligned}$$
(87)

where

$$\begin{aligned}&{} \mathbf{v}_i =d_i^{-2} \mathbf{J}^{T}{} \mathbf{t}_i \end{aligned}$$
(88)
$$\begin{aligned}&{} \mathbf{G}_{4,i} =d_i^{-2} (-2d_i \mathbf{G}_{3,i} -(\mathbf{Ed}_i )^{T}\mathbf{b}_i \mathbf{G}_1 \nonumber \\&\quad +\,(\mathbf{t}_i^T \mathbf{M}^{-1}{} \mathbf{l}_1 )\mathbf{N}_1 +(\mathbf{t}_i^T \mathbf{M}^{-1}{} \mathbf{l}_2 )\mathbf{N}_2 ) \end{aligned}$$
(89)

and

$$\begin{aligned} \mathbf{l}_1 =[{\begin{array}{lll} 1&{} 0&{} 0 \\ \end{array} }]^{T}, \quad \mathbf{l}_2 =[{\begin{array}{lll} 0&{} 1&{} 0 \\ \end{array} }]^{T} \end{aligned}$$
(90)

Appendix 2

$$\begin{aligned}&{\tilde{\mathbf{A}}}_{1,i} ={\tilde{\mathbf{C}}}+\mathbf{Es}_u \mathbf{v}_i^T , \quad {\tilde{\mathbf{A}}}_{2,i} =({\tilde{\mathbf{F}}}\nonumber \\&\quad +\,\mathbf{n}_i \mathbf{l}_i^T +d_i \mathbf{En}_i \mathbf{v}_i^T +\mathbf{Es}_l \mathbf{v}_i^T ), \quad i = 1, 2 \end{aligned}$$
(91)

where

$$\begin{aligned} {\tilde{\mathbf{F}}}=\left[ {{\begin{array}{lll} 0&{}\quad 0&{}\quad 1 \\ 0&{} \quad 0&{}\quad 0 \\ \end{array} }} \right] _{2\times 3} \end{aligned}$$
(92)

Moreover, \({\tilde{\mathbf{B}}}_{1,i} \) and \({\tilde{\mathbf{B}}}_{2,i} \) constitute of \(3\times 3\) submatrices \(\mathbf{G}_{5,i} \), \(\mathbf{G}_{6,i} \), \(\mathbf{G}_{7,i} \) and \(\mathbf{G}_{8,i} \), as follows

$$\begin{aligned} {\tilde{\mathbf{B}}}_{1,i} =\left[ {{\begin{array}{l} {\mathbf{G}_{5,i} } \\ {\mathbf{G}_{6,i} } \\ \end{array} }} \right] _{6\times 3} , \quad {\tilde{\mathbf{B}}}_{2,i} =\left[ {{\begin{array}{l} {\mathbf{G}_{7,i} } \\ {\mathbf{G}_{8,i} } \\ \end{array} }} \right] _{6\times 3} \end{aligned}$$
(93)

where

$$\begin{aligned} \begin{array}{lll} &{}&{}{} \mathbf{G}_{5,i} =(\mathbf{Es}_u )^{T}{\hat{\mathbf{i}}}{} \mathbf G _{4,i} -\mathbf{s}_u^T {\hat{\mathbf{i}}}{} \mathbf G _{2,i} \\ &{}&{}{} \mathbf{G}_{6,i} =(\mathbf{Es}_u )^{T}{\hat{\mathbf{j}}}{} \mathbf G _{4,i} -\mathbf{s}_u^T {\hat{\mathbf{j}}}{} \mathbf G _{2,i} \\ &{}&{}{} \mathbf{G}_{7,i} =-(d_i \mathbf{n}_i +\mathbf{s}_l )^{T}{\hat{\mathbf{i}}}{} \mathbf G _{2,i} +(d_i \mathbf{En}_i +\mathbf{Es}_l )^{T}{\hat{\mathbf{i}}}{} \mathbf G _{4,i}\\ &{}&{}\qquad \qquad +\,2(\mathbf{En}_i )^{T}{\hat{\mathbf{i}}}{} \mathbf G _{3,i} \\ &{}&{}{} \mathbf{G}_{8,i} =-(d_i \mathbf{n}_i +\mathbf{s}_l )^{T}{\hat{\mathbf{j}}}{} \mathbf G _{2,i} +(d_i \mathbf{En}_i +\mathbf{Es}_l )^{T}{\hat{\mathbf{j}}}{} \mathbf G _{4,i}\\ &{}&{}\qquad \qquad +\,2(\mathbf{En}_i )^{T}{\hat{\mathbf{j}}}{} \mathbf G _{3,i} \\ \end{array} \end{aligned}$$
(94)

Appendix 3

$$\begin{aligned} {\tilde{\mathbf{a}}}_{1,i}= & {} \mathbf{z}_1^T {\tilde{\mathbf{A}}}_{1,i} +\mathbf{z}_2^T {\tilde{\mathbf{A}}}_{2,i} +d_i^{-1} (I_u +I_l +m_l d_i^2 )\mathbf{v}_i^T , \nonumber \\ {\tilde{\mathbf{b}}}_{1,i}= & {} -(\mathbf{z}_1 +\mathbf{z}_2 )^{T} \end{aligned}$$
(95)
$$\begin{aligned} {\tilde{\mathbf{a}}}_{2,i}= & {} -m_l \mathbf{n}_i^T {\tilde{\mathbf{A}}}_{2,i} , \quad {\tilde{\mathbf{b}}}_{2,i} =m_l \mathbf{n}_i^T \end{aligned}$$
(96)
$$\begin{aligned} \mathbf{G}_{9,i}= & {} (\mathbf{z}_{1,x} \mathbf{G}_{5,i} +\,\mathbf{z}_{1,y} \mathbf{G}_{6,i} +\,\mathbf{z}_{2,x} \mathbf{G}_{7,i} \nonumber \\&\quad +\,\mathbf{z}_{2,y} \mathbf{G}_{8,i} +d_i^{-1} (I_u +I_l +m_l d_i^2 )\mathbf{G}_{4,i} ) \end{aligned}$$
(97)
$$\begin{aligned} \mathbf{G}_{10,i}= & {} -(m_l \mathbf{n}_{i,x} \mathbf{G}_{7,i} +m_l \mathbf{n}_{i,y} \mathbf{G}_{8,i} ) \end{aligned}$$
(98)

with

$$\begin{aligned} \mathbf{z}_1= & {} m_u d_i^{-1} \left( \left| {\mathbf{s}_u^T \mathbf{En}_i } \right| \mathbf{n}_i -\left| {\mathbf{s}_u^T \mathbf{n}_i } \right| \mathbf{En}_i\right) \end{aligned}$$
(99)
$$\begin{aligned} \mathbf{z}_2= & {} m_l d_i^{-1} \left( \left| {(\mathbf{d}_i +\mathbf{s}_l )^{T}{} \mathbf{En}_i } \right| \mathbf{n}_i -\left| {(\mathbf{d}_i +\mathbf{s}_l )^{T}{} \mathbf{n}_i } \right| \mathbf{En}_i\right) \nonumber \\ \end{aligned}$$
(100)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarkandi, S. Kinematic and dynamic modeling of a planar parallel manipulator served as CNC tool holder. Int. J. Dynam. Control 6, 14–28 (2018). https://doi.org/10.1007/s40435-016-0292-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0292-4

Keywords

Navigation