Skip to main content
Log in

Intelligent control of robotic manipulators: a comprehensive review

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Technological advancements in robotics significantly impact the design of robotic manipulators and their control. Manipulators find applications in electrical, mechanical, and process industries to reduce labor and improve accuracy. Controlling manipulators is challenging because of their complex dynamics and nonlinear properties. Researchers are exploring many ways to implement the effective control method, including classical and modern techniques. In all the applications, robotic manipulators interact with the real world. Therefore, they require an understanding of input–output relations, which raises the need for intelligent control methods. The revolutionized growth in artificial intelligence has significantly influenced robotic manipulators' control. This paper presents a detailed review of intelligent control techniques implemented on robotic manipulator systems. These intelligent control methods include artificial neural networks, fuzzy logic control, expert systems, metaheuristic algorithm, machine learning control, etc. These intelligent methods for robotic manipulators have gained more attention because they emulate human intelligence, which finds application in diverse fields of science and engineering. In this paper, authors have investigated and compared metaheuristic algorithm and their application in robotic manipulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mohan, V., Chhabra, H., Rani, A., & Singh, V. (2019). An expert 2DOF fractional order fuzzy PID controller for nonlinear systems. Neural Computing and Applications, 31(8), 4253–4270.

    Article  Google Scholar 

  2. Castillo, O., & Melin, P. (2003). Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach. Applied Soft Computing, 3(4), 363–378.

    Article  Google Scholar 

  3. Sharma, R., Gaur, P., & Mittal, A. P. (2015). Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Transactions, 58, 279–291. https://doi.org/10.1016/j.isatra.2015.03.013

    Article  Google Scholar 

  4. Perez, J., Perez, J. P., Soto, R., Flores, A., Rodriguez, F., & Meza, J. L. (2012). Trajectory tracking error using PID control law for two-link robot manipulator via adaptive neural networks. Procedia Technology, 3, 139–146. https://doi.org/10.1016/j.protcy.2012.03.015

    Article  Google Scholar 

  5. Kathuria, T., Kumar, V., Rana, K. P. S., & Azar, A. T. (2018). Control of a three-link manipulator using fractional-order pid controller. In Fractional Order Systems, 477–510. Academic Press.

  6. Nagrath, I. J., Shripal, P. P., & Chand, A. (1995). Development and implementation of intelligent control strategy for robotic manipulator. In Proceedings of IEEE/IAS International Conference on Industrial Automation and Control, 215–220. IEEE.

  7. Lee, T. H. et al. (2020). Expert control system. AccessScience, McGraw-Hill Education.

  8. Linkens, D. A., & Chen, M. Y. (1995). Expert control systems—2. Design principles and methods. Engineering Applications of Artificial Intelligence8(5), 527–537.

  9. Teoh, E. K., & Wong, C. Y. (1991). An expert system for real-time control of the sir-3 robotic system. In 1991, IEEE International Sympoisum on Circuits and Systems (pp. 2709–2712). IEEE.

  10. Jin, L., Li, S., Yu, J., & He, J. (2018). Robot manipulator control using neural networks: A survey. Neurocomputing, 285, 23–34.

    Article  Google Scholar 

  11. Hu, H., & Woo, P. Y. (2006). Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators. IEEE Transactions on Industrial Electronics, 53(3), 929–940. https://doi.org/10.1109/TIE.2006.874261

    Article  Google Scholar 

  12. Jin, B. (1993). Robotic manipulator trajectory control using neural networks. In Proceedings of 1993 international conference on neural networks (Vol. 2, pp. 1793–1796). IEEE.

  13. Kim, S. H., Jang, C. W., Chai, C. H., & Choi, H. G. (1997). Trajectory control of robotic manipulators using chaotic neural networks. In Proceedings of international conference on neural networks (ICNN'97) (Vol. 3, pp. 1685–1688). IEEE. https://doi.org/10.1109/ICNN.1997.614148

  14. Wang, L., Chai, T., & Zhai, L. (2009). Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Transactions on Industrial Electronics, 56(9), 3296–3304.

    Article  Google Scholar 

  15. Zhu, Q. G., Chen, Y., & Wang, H. R. (2009). The RBF neural network control for the uncertain robotic manipulator. In 2009 International Conference on Machine Learning and Cybernetics (vol. 3, pp. 1266–1270). IEEE.

  16. Rahmani, B., & Belkheiri, M. (2016). Robust adaptive control of robotic manipulators using neural networks: Application to a two link planar robot. In 2016 8th International conference on modelling, identification and control (ICMIC) (pp. 839–844). IEEE. https://doi.org/10.1109/ICMIC.2016.7804231.

  17. Lee, M. J., & Choi, Y. K. (2004). An adaptive neurocontroller using RBFN for robot manipulators. IEEE Transactions on Industrial Electronics, 51(3), 711–717.

    Article  Google Scholar 

  18. Li, S., Zhang, Y., & Jin, L. (2016). Kinematic control of redundant manipulators using neural networks. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2243–2254. https://doi.org/10.1109/TNNLS.2016.2574363

    Article  Google Scholar 

  19. Bai, Y., & Wang, D. (2006). Fundamentals of fuzzy logic control—fuzzy sets, fuzzy rules and defuzzifications. In Advanced fuzzy logic technologies in industrial applications (pp. 17–36). Springer, London.

  20. de Silva, C. W. (1995). Applications of fuzzy logic in the control of robotic manipulators. Fuzzy Sets and Systems, 70(2–3), 223–234.

    Article  Google Scholar 

  21. Karahan, O., & Ataşlar-Ayyıldız, B. (2019). Optimal design of fuzzy PID controller with CS algorithm for trajectory tracking control. In Science and information conference (pp. 174–188). Springer, Cham.

  22. Huang, S. J., & Lian, R. J. (1997). A hybrid fuzzy logic and neural network algorithm for robot motion control. IEEE Transactions on Industrial Electronics, 44(3), 408–417.

    Article  Google Scholar 

  23. Tsai, C. H., Wang, C. H., & Lin, W. S. (2000). Robust fuzzy model-following control of robot manipulators. IEEE Transactions on Fuzzy Systems, 8(4), 462–469. https://doi.org/10.1109/91.868952

    Article  Google Scholar 

  24. Zhu, D., Mei, T., Luo, M., & Guan, K. (2009). Fuzzy SVM controller for robotic manipulator based on GA and LS algorithm. In 2009 Sixth international conference on fuzzy systems and knowledge discovery (vol. 6, pp. 263–266). IEEE.

  25. Sharma, R., Rana, K. P. S., & Kumar, V. (2014). Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Systems with Applications, 41(9), 4274–4289.

    Article  Google Scholar 

  26. Kumar, V., & Rana, K. P. S. (2017). Nonlinear adaptive fractional order fuzzy PID control of a 2-link planar rigid manipulator with payload. Journal of the Franklin Institute, 354(2), 993–1022. https://doi.org/10.1016/j.jfranklin.2016.11.006

    Article  Google Scholar 

  27. Muñoz-Vázquez, A. J., Gaxiola, F., Martínez-Reyes, F., & Manzo-Martínez, A. (2019). A fuzzy fractional-order control of robotic manipulators with PID error manifolds. Applied soft computing, 83, 105646. https://doi.org/10.1016/j.asoc.2019.105646

    Article  Google Scholar 

  28. Bingül, Z., & Karahan, O. (2011). A fuzzy logic controller tuned with PSO for 2 DOF robot trajectory control. Expert Systems with Applications, 38(1), 1017–1031.

    Article  Google Scholar 

  29. Yilmaz, B. M., Tatlicioglu, E., Savran, A., & Alci, M. (2021). Adaptive fuzzy logic with self-tuned membership functions based repetitive learning control of robotic manipulators. Applied Soft Computing, 104, 107183. https://doi.org/10.1016/j.asoc.2021.107183

    Article  Google Scholar 

  30. Kumar, A., & Kumar, V. (2017). Evolving an interval type-2 fuzzy PID controller for the redundant robotic manipulator. Expert Systems with Applications, 73, 161–177.

    Article  Google Scholar 

  31. Li, T. H. S., & Huang, Y. C. (2010). MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators. Information Sciences, 180(23), 4641–4660.

    Article  Google Scholar 

  32. Martínez-Soto, R., Castillo, O., & Aguilar, L. T. (2014). Type-1 and Type-2 fuzzy logic controller design using a Hybrid PSO–GA optimization method. Information Sciences, 285, 35–49. https://doi.org/10.1016/j.ins.2014.07.012

    Article  Google Scholar 

  33. Cruz-Bernal, A. (2013). Meta-heuristic optimization techniques and its applications in robotics. Recent Advances on Meta-Heuristics and Their Application to Real Scenarios, 53.

  34. Khan, A. T., Li, S., Kadry, S., & Nam, Y. (2020). Control framework for trajectory planning of soft manipulator using optimized RRT algorithm. IEEE Access, 8, 171730–171743.

    Article  Google Scholar 

  35. Mohan, V., Chhabra, H., Rani, A., & Singh, V. (2018). Robust self-tuning fractional order PID controller dedicated to non-linear dynamic system. Journal of Intelligent & Fuzzy Systems, 34(3), 1467–1478. https://doi.org/10.3233/JIFS-169442

    Article  Google Scholar 

  36. Loucif, F., Kechida, S., & Sebbagh, A. (2020). Whale optimizer algorithm to tune PID controller for the trajectory tracking control of robot manipulator. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(1), 1–11.

    Article  Google Scholar 

  37. Ayala, H. V. H., & dos Santos Coelho, L. (2012). Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator. Expert Systems with Applications, 39(10), 8968–8974. https://doi.org/10.1016/j.eswa.2012.02.027

    Article  Google Scholar 

  38. Chhabra, H., Mohan, V., Rani, A., & Singh, V. (2016). Multi objective PSO tuned fractional order PID control of robotic manipulator. In The international symposium on intelligent systems technologies and applications (pp. 567–572). Springer, Cham.

  39. Sharma, R., Rana, K. P. S., & Kumar, V. (2014). Statistical analysis of GA based PID controller optimization for robotic manipulator. In 2014 International conference on issues and challenges in intelligent computing techniques (ICICT) (pp. 713–718). IEEE.

  40. Singh, R., & Prasad, L. B. (2018). Optimal trajectory tracking of robotic manipulator using ant colony optimization. In 2018 5th IEEE Uttar Pradesh section international conference on electrical, electronics and computer engineering (UPCON) (pp. 1–6). IEEE.

  41. Gaidhane, P. J., & Nigam, M. J. (2018). A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems. Journal of computational science, 27, 284–302.

    Article  Google Scholar 

  42. Khan, A. H., Li, S., & Luo, X. (2019). Obstacle avoidance and tracking control of redundant robotic manipulator: An RNN-based metaheuristic approach. IEEE Transactions on Industrial Informatics, 16(7), 4670–4680.

    Article  Google Scholar 

  43. Kumar, A., & Kumar, V. (2017). Hybridized ABC-GA optimized fractional order fuzzy pre-compensated FOPID control design for 2-DOF robot manipulator. AEU-International Journal of Electronics and Communications, 79, 219–233. https://doi.org/10.1016/j.aeue.2017.06.008

    Article  Google Scholar 

  44. Sharma, R., Rana, K. P. S., & Kumar, V. (2014). Comparative study of controller optimization techniques for a robotic manipulator. In Proceedings of the third international conference on soft computing for problem solving (pp. 379–393). Springer, New Delhi.

  45. Duriez, T., Brunton, S. L., & Noack, B. R. (2017). Machine learning control-taming nonlinear dynamics and turbulence (vol. 116). Cham, Switzerland: Springer.

  46. Huang, H. C., & Chuang, C. C. (2020). Artificial bee colony optimization algorithm incorporated with fuzzy theory for real-time machine learning control of articulated robotic manipulators. IEEE Access, 8, 192481–192492.

    Article  Google Scholar 

  47. Diveev, A., Konstantinov, S., Shmalko, E., & Dong, G. (2021). Machine learning control based on approximation of optimal trajectories. Mathematics, 9(3), 265.

    Article  Google Scholar 

  48. Sahu, V. S. D. M., Samal, P., & Panigrahi, C. K. (2021). Modelling, and control techniques of robotic manipulators: A review. Materials Today: Proceedings.

  49. Yeasmin, S., & Shill, P. C. (2017). GA-based adaptive fuzzy logic controller for a robotic arm in the presence of moving obstacle. In 2017 3rd International conference on electrical information and communication technology (EICT) (pp. 1–6). IEEE.

  50. Zennir, Y., Mechhoud, E. A., Seboui, A., & Bendib, R. (2017). Multi-controller approach with PSO-PI λ D μ controllers for a robotic wrist. In 2017 5th International conference on electrical engineering-boumerdes (ICEE-B) (pp. 1–7). IEEE.

  51. Liu, Y., Jiang, D., Yun, J., Sun, Y., Li, C., Jiang, G., & Fang, Z. (2021). Self-tuning control of manipulator positioning based on fuzzy PID and PSO algorithm. Frontiers in Bioengineering and Biotechnology9.

  52. Liu, J., Yang, J., Liu, H., Tian, X., & Gao, M. (2017). An improved ant colony algorithm for robot path planning. Soft Computing, 21(19), 5829–5839.

    Article  Google Scholar 

  53. Kumar, A., & Kumar, V. (2017). Artificial bee colony based design of the interval type-2 fuzzy PID controller for robot manipulator. In TENCON 2017–2017 IEEE Region 10 Conference (pp. 602–607). IEEE.

  54. Patle, B. K., Pandey, A., Jagadeesh, A., & Parhi, D. R. (2018). Path planning in uncertain environment by using firefly algorithm. Defence Technology, 14(6), 691–701.

    Article  Google Scholar 

  55. Tripathi, S., Shrivastava, A., & Jana, K. C. (2020). GWO based PID controller optimization for robotic manipulator. In Intelligent Computing techniques for smart energy systems (pp. 943–951). Springer, Singapore.

  56. Obadina, O. O., Thaha, M. A., Mohamed, Z., & Shaheed, M. H. (2022). Grey-box modelling and fuzzy logic control of a Leader–Follower robot manipulator system: A hybrid Grey Wolf–Whale Optimisation approach. ISA Transactions.

  57. Du, M., Guo, Z., & Meng, C. (2019). Tuning of SMC parameters for robotic manipulator based on whale optimization algorithm. In 2019 WRC symposium on advanced robotics and automation (WRC SARA) (pp. 248–253). IEEE.

  58. Mu, Y., Zhang, L., Chen, X., & Gao, X. (2016). Optimal trajectory planning for robotic manipulators using chicken swarm optimization. In 2016 8th International conference on intelligent human-machine systems and cybernetics (IHMSC) (Vol. 2, pp. 369–373). IEEE.

  59. Sharma, R., Gaur, P., & Mittal, A. P. (2015). Performance evaluation of cuckoo search algorithm based FOPID controllers applied to a robotic manipulator with actuator. In 2015 International conference on advances in computer engineering and applications (pp. 356–363). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Rawat.

Ethics declarations

Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 97 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, D., Gupta, M.K. & Sharma, A. Intelligent control of robotic manipulators: a comprehensive review. Spat. Inf. Res. 31, 345–357 (2023). https://doi.org/10.1007/s41324-022-00500-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-022-00500-2

Keywords

Navigation