Skip to main content
Log in

Global dynamics of a prey-predator model with Allee effect and additional food for the predators

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Provision of additional/alternative food to the predators for controlling predator-prey dynamics has been receiving considerable attention from theoretical as well as experimental biologists. This is due to environment friendly role played by the additional food in controlling and managing the interacting population. Theoretical investigations done on additional food provided predator-prey models reveal that provision of additional food to predators has a significant role to play in enhancement of commercially important predator species and also in reduction of prey population. The quality and quantity of the additional food provided to predators play vital role in shaping the dynamics of the interacting system. So far as our knowledge goes, all theoretical investigations carried out in this direction assume logistic growth for the prey species. In reality, the per capita growth rate of the prey population is often an increasing function at low prey density. Incorporation of this realistic growth rate induces Allee effect into the dynamics of the prey species. In this paper, we consider an additional food provided predator-prey model wherein the prey population is subjected to Allee effect. The model includes both strong and weak Allee effects. This article presents a comprehensive analysis of the considered model that highlights the influence of Allee effect in prey and additional food for the predators on the system dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kot M (2001) Elements of mathematical ecology. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  2. Holling CS (1959) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can Entomol 91(5):293–320

    Article  Google Scholar 

  3. Holling CS (1965) The functional response of predators to prey density and its role in mimicry and population regulation. Mem Entomol Soc Can 97(suppl. S45):5–60

    Article  Google Scholar 

  4. Holling CS (1966) The functional response of invertebarte predators to prey density. Mem Entomol Soc Can 98(suppl. S48):5–86

    Article  Google Scholar 

  5. Ruan S, Xiao D (2001) Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J Appl Math 61:1445–1472

    Article  MathSciNet  MATH  Google Scholar 

  6. Aguirre P, Gonzlez-Olivares E, Sez E (2009) Three limit cycles in a Leslie-Gower predatorprey model with additive Allee effect. SIAM J Appl Math 69:1244–1262

    Article  MathSciNet  MATH  Google Scholar 

  7. Gonzalez-Olivares E, Meneses-Alcay Hector, Gonzalez-Yanez Betsabe, Mena-Lorca Jaime, Rojas-Palma Alejandro, Ramos-Jiliberto Rodrigo (2011) Multiple stability and uniqueness of the limit cycle in a Gause-type predatorprey model considering the Allee effect on prey. Nonlinear Anal RWA 12:2931–2942

    Article  MATH  Google Scholar 

  8. Lidicker WZ Jr (2010) The Allee effect: its history and future importance. Open Ecol J 3:71–82

    Article  Google Scholar 

  9. Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends Ecol Evol 14(10):405–410

    Article  Google Scholar 

  10. Berec L, Angulo E, Counchamp F (2006) Multiple Allee effects and population management. Trends Ecol Evol 22(4):185–191

    Article  Google Scholar 

  11. Beth FTB, Hassall M (2005) The existence of an Allee effect in populations of Porcellio scaber(Isopoda: Oniscidea). Europ J Soil Biol 4:123–127

    Google Scholar 

  12. Frank MH, Langlais M, Sergei VP, Malchow H (2007) A diffusive SI model with Allee effect and application to FIV. Math Biosci 206:61–80

    Article  MathSciNet  MATH  Google Scholar 

  13. Gardner JL (2004) Winter flocking behaviour of speckled warblers and the Allee effect. Biol Conserv 118:195–204

    Article  Google Scholar 

  14. Hurford A, Hebblewhite M, Lewis MA (2006) A spatially explicit model for an Allee effect: why wolves recolonize so slowly in Greater Yellowstone. Theor Popul Biol 70:244–254

    Article  MATH  Google Scholar 

  15. Kuussaari M, Saccheri I, Camara M, Hanski I (1998) Allee effect and population dynamics in the Glanville fritillary butterfly. Oikos 82(2):384–392

    Article  Google Scholar 

  16. Penteriani V, Otalora F, Ferrer M (2007) Floater mortality within settlement areas can explain the Allee effect in breeding populations. Ecol Model 213:98–104

    Article  Google Scholar 

  17. Correigh MG (2003) Habitat selection reduces extinction of populations subject to Allee effects. Theor Popul Biol 64:1–10

    Article  MATH  Google Scholar 

  18. Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behavior, ecology and conservation. Trends Ecol Evol 14(10):401–405

    Article  Google Scholar 

  19. Lin Z-S, Li B-L (2002) The maximum sustainable yield of Allee dynamic system. Ecol Model 154:1–7

    Article  Google Scholar 

  20. Hopper KR, Roush RT (1993) Mate finding, dispersal, number released, and the success of biological-control introductions. Ecol Entomol 18:321–331

    Article  Google Scholar 

  21. Caz MT, Hastings A (2005) Allee effects in biological invasions. Ecol Lett 8:895–908

    Article  Google Scholar 

  22. Chen L-L, Lin Z-S (2008) The effect of habitat destruction on metapopulations with the Allee-like effect: a study case of Yancheng in Jiangsu Province. China Ecol Model 213(3–4):356–364

    Article  Google Scholar 

  23. Patric CT, Stefanie LW, Derek MJ, Bjørnstad ON, Andrew ML (2007) Invasion speed is affected by geographical variation in the strength of Allee effects. Ecol Lett 10:36–43

    Article  Google Scholar 

  24. Regina CA, Simone AD, da S Costa MI (2006) A numerical model to solve single-species invasion problems with Allee effects. Ecol Model 192:601–617

    Article  Google Scholar 

  25. Wang M-H, Kot M (2001) Speeds of invasion in a model with strong or weak Allee effects. Math Biosci 171:83–97

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou S-R, Liu C-Z, Wang G (2004) The competitive dynamics of metapopulations subject to the Allee-like effect. Theor Popul Biol 65:29–37

    Article  MATH  Google Scholar 

  27. Zhou S-R, Wang G (2004) Allee-like effects in metapopulation dynamics. Math Biosci 189:103–113

    Article  MathSciNet  MATH  Google Scholar 

  28. David SB, Maurice WS, Berec L (2007) How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses. Theor Popul Biol 72:136–147

    Article  MATH  Google Scholar 

  29. Ferdy J-B, Molofsky J (2002) Allee effect, spatial structure and species coexistance. J Theor Biol 217:413–427

    Article  Google Scholar 

  30. Kent A, Doncaster CP, Sluckin T (2003) Consequences for predators of rescue and Allee effects on prey. Ecol Model 162:233–245

    Article  Google Scholar 

  31. van Kooten T, de Roos AM, Persson L (2005) Bistability and an Allee effect as emergent consequeences of stage-specific predation. J Theor Biol 237:67–74

    Article  Google Scholar 

  32. Zhou S-R, Liu Y-F, Wang G (2005) The Stability of predator-prey systems subject to the Allee effects. Theor Popul Biol 67:23–31

    Article  MATH  Google Scholar 

  33. David SB, Berec L (2002) Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters. J Theor Biol 218:375–394

    Article  MathSciNet  Google Scholar 

  34. Aguirre P, Gonzalez-Olivares E, Soledad Torres E (2013) Stochastic predatorprey model with Allee effect on prey. Nonlinear Anal RWA 14:768–779

    Article  MATH  Google Scholar 

  35. Cai Y, Wang W, Wang J (2012) Dynamics of a diffusive predator-prey model with additive Allee effect. Int J Biomath 5(2):1250023

    Article  MathSciNet  MATH  Google Scholar 

  36. Hadjiavgousti D, Ichtiaroglou S (2008) Allee effect in a preypredator system. Chaos Solitons Fractals 36:334–342

    Article  MathSciNet  MATH  Google Scholar 

  37. Gonzalez-Olivares E, Gonzalez-Yanez B, Lorca JM, Rojas-Palma Alejandro, Flores Jose D (2011) Consequences of double Allee effect on the number of limit cycles in a predatorprey model. Comput Math Appl 62:3449–3463

    Article  MathSciNet  MATH  Google Scholar 

  38. Gonzlez-Olivares E, Mena-Lorca Jaime, Rojas-Palma Alejandro, Flores Jos D (2011) Dynamical complexities in the LeslieGower predatorprey model as consequences of the Allee effect on prey. Appl Math Model 35:366–381

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun Gui-Quan, Jin Zhen, Li Li, Liu Quan-Xing (2009) The role of noise in a 495 predatorprey model with Allee effect. J Biol Phys 35:185–196

    Article  Google Scholar 

  40. Sen M, Banerjee M, Morozov A (2012) Bifurcation analysis of a ratio-dependent preypredator model with the Allee effect. Ecol Complex 11:12–27

    Article  Google Scholar 

  41. Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, Oxford

    Book  Google Scholar 

  42. Srinivasu PDN, Prasad BSRV, Venkatesulu M (2007) Biological control through provision of additional food to predators: a theoretical study. Theor Popul Biol 72:111–120

    Article  MATH  Google Scholar 

  43. Srinivasu PDN, Prasad BSRV (2010) Time optimal control of an additional food provided predator-prey system with applications to pest management and biological conservation. J Math Biol 60:591–613

    Article  MathSciNet  MATH  Google Scholar 

  44. Srinivasu PDN, Prasad BSRV (2010) Erratum to: time optimal control of an additional food provided predator-prey system with applications to pest management and biological conservation. J Math Biol 61:591–613

    Article  MATH  Google Scholar 

  45. Srinivasu PDN, Prasad BSRV (2011) Role of quantity of additional food to predators as a control in predator-prey systems with relevance to pest management and biological conservation. Bull Math Biol 73:2249–2276

    Article  MathSciNet  MATH  Google Scholar 

  46. Perko L (2001) Differential equations and dynamical systems. Springer, New York

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay Banerjee.

Appendix

Appendix

Let \({{\mathbf {f}}}(x,y;\delta )\) represent the vector

$$\begin{aligned} {{\mathbf {f}}}(x,y; \delta ) = \left( \begin{array}{c} x(x - \theta )(1 - \frac{x}{\gamma }) - \frac{xy}{1 + \alpha \xi + x}\\ \frac{\beta (x+\xi )y}{1 + \alpha \xi + \gamma } - \delta y \\ \end{array} \right) . \end{aligned}$$
(25)

Differentiate the above function with respect to \(\delta \), we obtain

$$\begin{aligned} {{\mathbf {f}}}_{\delta }(x,y; \delta ) = \left( \begin{array}{c} 0\\ -y\\ \end{array} \right) . \end{aligned}$$
(26)

The jacobian matrix of the prey-predator system (8)–(9) at the equilibrium point \(E_{\theta }\) is given by

$$\begin{aligned} P = J_1(\theta , 0) = \left( \begin{array}{cc} \frac{\theta }{\gamma }(\gamma - \theta ) &{} -\frac{\theta }{1 + \alpha \xi + \theta } \\ 0 &{} \frac{\beta (\theta +\xi )}{1 + \alpha \xi +\theta } - \delta \\ \end{array} \right) . \end{aligned}$$

Observe that the Jacobian matrix P has a simple zero eigen values as its determinant is zero and the trace is different from zero whenever \(x_* = \theta \). Let \(\mathbf{v } = \left( \begin{array}{c} v_1 \\ v_2 \\ \end{array} \right) \) be an eigen vector of the Jacobian matrix P corresponding to the eigen value \(\lambda = 0\). We have

$$\begin{aligned} P\mathbf{v }= & {} \left( \begin{array}{cc} \frac{\theta }{\gamma }(\gamma - \theta ) &{}\quad -\frac{\theta }{1 + \alpha \xi + \theta } \\ 0 &{} 0 \\ \end{array} \right) \left( \begin{array}{c} v_1 \\ v_2 \\ \end{array} \right) \\= & {} \left( \begin{array}{c} \frac{\theta }{\gamma }(\gamma - \theta )\quad v_1 - \frac{\theta v_2}{1 + \alpha \xi + \theta } \\ 0 \\ \end{array} \right) \end{aligned}$$

and

$$\begin{aligned} \lambda \mathbf{v } = \left( \begin{array}{c} \lambda v_1 \\ \lambda v_2 \\ \end{array} \right) = \left( \begin{array}{c} 0 \\ 0 \\ \end{array} \right) . \end{aligned}$$

We know that the vector \(\mathbf{v }\) will be an eigen vector of P corresponding to the eigen value \(\lambda = 0\) if \(P\mathbf{v } = \lambda \mathbf{v }\). Clearly the components of this eigen vector satisfy the equation

$$\begin{aligned} \frac{\theta }{\gamma }(\gamma - \theta )v_1 - \frac{\theta v_2}{1 + \alpha \xi + \theta } = 0 \end{aligned}$$

By choosing \(v_1 = 1\) we obtain an eigen vector for P given by

$$\begin{aligned} \mathbf{v } = \left( \begin{array}{c} 1 \\ \frac{(\gamma - \theta )(1 + \alpha \xi + \theta )}{\gamma } \\ \end{array} \right) . \end{aligned}$$
(27)

Now, let \(\mathbf{w } = \left( \begin{array}{c} w_1 \\ w_2 \\ \end{array} \right) \) be the eigen vector of the matrix \(P^{\top }\) then

$$\begin{aligned} P^{\top } = \left( \begin{array}{cc} \frac{\theta }{\gamma }(\gamma - \theta ) &{} 0 \\ \frac{\theta }{1 + \alpha \xi + \theta } &{} 0 \\ \end{array} \right) \left( \begin{array}{c} w_1 \\ w_2 \\ \end{array} \right) = \left( \begin{array}{c} \frac{\theta }{\gamma }(\gamma - \theta )w_1 \\ \frac{\theta w_1}{1 + \alpha \xi + \theta } \\ \end{array} \right) \end{aligned}$$

and

$$\begin{aligned} \lambda \mathbf{w } = \left( \begin{array}{c} \lambda w_1 \\ \lambda w_2 \\ \end{array} \right) . \end{aligned}$$

Considering \(\lambda \mathbf{w } = P^{\top }w\) we obtain the equations

$$\begin{aligned} \lambda w_1= & {} \frac{\theta }{\gamma }(\gamma - \theta )w_1,\\ \lambda w_2= & {} \frac{\theta w_1}{1 + \alpha \xi + \theta }. \end{aligned}$$

Now \(\lambda = 0\) implies that \(w_1 = 0\) wince \(\gamma - \theta \ne 0\) and \(w_2\) is arbitrary. Hence eigen vector of \(P^{\top }\) corresponding the eigen value \(\lambda = 0\) is given by

$$\begin{aligned} \mathbf{w } = \left( \begin{array}{c} 0 \\ 1 \\ \end{array} \right) = \left( \begin{array}{c} w_1 \\ w_2 \\ \end{array} \right) . \end{aligned}$$

From Eq. (26) we have

$$\begin{aligned} {{\mathbf {f}}}_{\delta }(\theta , 0; \delta ) = \left( \begin{array}{c} 0 \\ 0 \\ \end{array} \right) \end{aligned}$$

and hence

$$\begin{aligned} \mathbf{w }^{\top }{{\mathbf {f}}}_{\delta }(\theta , 0; \delta ) = \left( \begin{array}{cc} 0 &{} 1 \\ \end{array} \right) \left( \begin{array}{c} 0 \\ 0 \\ \end{array} \right) = 0. \end{aligned}$$
(28)

Now, let us consider

(29)

The expansion of the term \(D^2{{\mathbf {f}}}(x,y;\delta )( \mathbf{v } , \mathbf{v })\) is given by

(30)

Evaluating \(D\, {{\mathbf {f}}}_\delta (x,y; \delta ) \mathbf{v }\) at \((x,y) = (\theta , 0)\) using (27) and (29) we obtain

$$\begin{aligned} D\, {{{\mathbf {f}}}_\delta } (x,y; \delta ) \mathbf{v }&= \left( \begin{array}{c} 0 \\ 0 \\ \end{array} \right) .1 + \left( \begin{array}{c} 0\\ -1 \\ \end{array} \right) \frac{(1 + \alpha \xi + \theta )(\gamma - \theta )}{\gamma }\\&= \left( \begin{array}{c} 0 \\ -\frac{(1 + \alpha \xi + \theta )(\gamma - \theta )}{\gamma } \\ \end{array} \right) \end{aligned}$$

and hence we have

$$\begin{aligned} \mathbf{w }^{\top } [D\, {{\mathbf {f}}}_\delta (\theta , 0; \delta ) \mathbf{v }]&= \left( \begin{array}{cc} 0 &{} 1 \\ \end{array} \right) \left( \begin{array}{c} 0 \\ -\frac{(1 + \alpha \xi + \theta )(\gamma - \theta )}{\gamma } \\ \end{array} \right) \nonumber \\&= -\frac{(1 + \alpha \xi + \theta )(\gamma - \theta )}{\gamma } \ne 0. \end{aligned}$$
(31)

Evaluating \(\mathbf{w }^{\top }D^2 {{\mathbf {f}}}(\theta ,0;\delta )(\mathbf{v }, \mathbf{v })\) using (27) and (30) we obtain

$$\begin{aligned}&\mathbf{w }^{\top } [D^2 {{\mathbf {f}}}(\theta , 0; \delta )( \mathbf{v } , \mathbf{v })]\nonumber \\&\quad = \left( \begin{array}{cc} 0 &{} 1 \\ \end{array} \right) \left( \begin{array}{c} -6\frac{\theta }{\gamma } + 2\left( 1 + \frac{\theta }{\gamma }\right) + \frac{2(1 + \alpha \xi )}{(1 + \alpha \xi + \theta )^3} \\ 2\frac{\beta [(1+\alpha \xi ) - \xi ](\gamma - \theta )}{(1 + \alpha \xi + \theta )}\\ \end{array} \right) \nonumber \\&\quad = 2\frac{\beta [(1+\alpha \xi ) - \xi ](\gamma - \theta )}{(1 + \alpha \xi + \theta )} \ne 0. \end{aligned}$$
(32)

From Sotomayer theorem [46] together with the Eqs. (28), (31) and (32), the prey-predator system (8)–(9) experiences transcritical Bifurcation at \(E_{\theta }\). In a similar manner, we can also prove that the prey-predator system (8)–(9) experiences transcritical Bifurcation at \(E_{\gamma }\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurubilli, K.K., Srinivasu, P.D.N. & Banerjee, M. Global dynamics of a prey-predator model with Allee effect and additional food for the predators. Int. J. Dynam. Control 5, 903–916 (2017). https://doi.org/10.1007/s40435-016-0234-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0234-1

Keywords

Navigation