Skip to main content
Log in

Additive manufacturing of metals and ceramics using hybrid fused filament fabrication

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present review elaborates about the intricacy being associated with the intensification of hybrid fused filament fabrication (FFF)-based process for additive manufacturing (AM) of metal and ceramic components. Hybridization of FFF and metal injection moulding enables sustainable and cost-efficient additive manufacturing of complex parts. Being a hybrid process, it involves optimization of various interlinked parameters; for this reason, the present review deliberately provides analysis of consolidated and comparative information of research work previously carried out for this process. As conclusively perceived, the present perspective of this review provides an approach of incorporating FFF-based hybrid AM technique, with benefits such as reduced capital expenditure, ease in processing and ability to manufacture parts from distinct variety of materials like metals, ceramics, polymers, etc., using the same setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. ASTM F2797 2A (2012) Standard terminology for additive manufacturing technologies

  2. Attaran M (2017) The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Bus Horiz 60:677–688. https://doi.org/10.1016/j.bushor.2017.05.011

    Article  Google Scholar 

  3. Mani M, Lane BM, Donmez MA et al (2017) A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes. Int J Prod Res 55:1400–1418. https://doi.org/10.1080/00207543.2016.1223378

    Article  Google Scholar 

  4. Mein S (2020) Understanding the seven types of additive manufacturing. In: Firetrace international. www.firetrace.com/fire-protection-blog/additive-manufacturing

  5. Pagac M, Hajnys J, Ma Q-P et al (2021) A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing. Polymers (Basel) 13:598. https://doi.org/10.3390/polym13040598

    Article  Google Scholar 

  6. Yang H, Lim JC, Liu Y et al (2017) Performance evaluation of ProJet multi-material jetting 3D printer. Virtual Phys Prototyp 12:95–103. https://doi.org/10.1080/17452759.2016.1242915

    Article  Google Scholar 

  7. Tolochko NK, Sokol OV (2021) Assessing the economic effectiveness of additive sheet lamination. Russ Eng Res 41:5–9. https://doi.org/10.3103/S1068798X2101024X

    Article  Google Scholar 

  8. Tang Z, Liu W, Wang Y et al (2020) A review on in situ monitoring technology for directed energy deposition of metals. Int J Adv Manuf Technol 108:3437–3463. https://doi.org/10.1007/s00170-020-05569-3

    Article  Google Scholar 

  9. Baturynska I, Semeniuta O, Martinsen K (2018) Optimization of process parameters for powder bed fusion additive manufacturing by combination of machine learning and finite element method: a conceptual framework. Procedia CIRP 67:227–232. https://doi.org/10.1016/j.procir.2017.12.204

    Article  Google Scholar 

  10. Zhang Y, Wu L, Guo X et al (2018) Additive manufacturing of metallic materials: a review. J Mater Eng Perform 27:1–13. https://doi.org/10.1007/s11665-017-2747-y

    Article  Google Scholar 

  11. Annoni M, Giberti H, Strano M (2016) Feasibility study of an extrusion-based direct metal additive manufacturing technique. Procedia Manuf 5:916–927. https://doi.org/10.1016/j.promfg.2016.08.079

    Article  Google Scholar 

  12. Butt J, Bhaskar R (2020) Manufacturing and materials processing investigating the effects of annealing on the mechanical properties of FFF-printed thermoplastics. J Manuf Mater Process. https://doi.org/10.3390/jmmp4020038

    Article  Google Scholar 

  13. Greul M, Pintat T, Greulich M (1995) Rapid prototyping of functional metallic parts. Comput Ind 28:23–28. https://doi.org/10.1016/0166-3615(95)00028-5

    Article  Google Scholar 

  14. Galati M, Minetola P (2019) Analysis of density, roughness, and accuracy of the atomic diffusion additive manufacturing (ADAM) process for metal parts. Materials 12:4122. https://doi.org/10.3390/ma12244122

    Article  Google Scholar 

  15. Bose A, Schuh CA, Tobia JC et al (2018) Traditional and additive manufacturing of a new Tungsten heavy alloy alternative. Int J Refract Metal Hard Mater 73:22–28. https://doi.org/10.1016/j.ijrmhm.2018.01.019

    Article  Google Scholar 

  16. Bose A (2019) Non-melting-based metal additive manufacturing technologies. Powder Metall 2:29

    Google Scholar 

  17. Campbell I, Wohlers T (2017) Markforged: taking a different approach to metal additive manufacturing. Loughborough University, Figshare, Inovar Communication Ltd. https://hdl.handle.net/2134/25833

  18. Masood SH, Song WQ (2004) Development of new metal/polymer materials for rapid tooling using Fused deposition modelling. Mater Des 25:587–594. https://doi.org/10.1016/j.matdes.2004.02.009

    Article  Google Scholar 

  19. Kukla C, Gonzalez-Gutierrez J, Cano-Cano S et al (2017) Fabricación por filamentos fundidos (fff) de pim feedstocks. VI National Congress of Powder Metallurgy and I Iberoamerican Congress of Powder Metallurgy. https://www.researchgate.net/profile/Joamin-Gonzalez-Gutierrez/publication/317845478_FUSED_FILAMENT_FABRICATION_FFF_OF_PIM_FEEDSTOCKS/links/595f2627a6fdccc9b17fece4/FUSED-FILAMENT-FABRICATION-FFF-OF-PIM-FEEDSTOCKS.pdf

  20. Crump S (1992) Apparatus and method for creating three-dimensional objects

  21. Varotsis AB Introduction to FDM 3D printing. In: 3D Hubs. www.3dhubs.com/knowledge-base/introduction-fdm-3d-printing/

  22. Wasserfall F, Hendrich N, Zhang J (2017) Adaptive slicing for the FDM process revisited. In: 2017 13th IEEE conference on automation science and engineering (CASE). IEEE, pp 49–54

  23. Sidambe A (2014) Biocompatibility of advanced manufactured titanium implants—a review. Materials 7:8168–8188. https://doi.org/10.3390/ma7128168

    Article  Google Scholar 

  24. Veltl G, Hartwig Th, Petzoldt F, Kunze H-D (1995) Investigations on metal injection molding of 316L stainless steel. Mater Manuf Process 10:425–438. https://doi.org/10.1080/10426919508935036

    Article  Google Scholar 

  25. Machaka R, Chikwanda HK (2015) Kinetics of titanium metal injection moulding feedstock thermal debinding. Mater Sci Forum 828–829:158–164. https://doi.org/10.4028/www.scientific.net/MSF.828-829.158

    Article  Google Scholar 

  26. Todd I, Sidambe AT (2013) Developments in metal injection moulding (MIM). In: Advances in powder metallurgy. Elsevier, pp 109–146

  27. Heaney DF, Spina R (2007) Shrinkage prediction of MIM parts by finite element simulation. Int J Comput Mater Sci Surf Eng 1:57–72. https://doi.org/10.1504/IJCMSSE.2007.013835

    Article  Google Scholar 

  28. An overview of the Metal Injection Moulding process. In: Powder Injection Moulding International. www.pim-international.com/metal-injection-molding/an-overview-of-the-metal-injection-moulding-process/

  29. Nancharaiah T (2011) Optimization of process parameters in FDM process using design of experiments. Int J Emerg Technol 2:100–102. https://doi.org/10.1.1.669.7496

    Google Scholar 

  30. Yarlagadda PKDV (2002) Development of an integrated neural network system for prediction of process parameters in metal injection moulding. J Mater Process Technol 130:315–320. https://doi.org/10.1016/S0924-0136(02)00738-0

    Article  Google Scholar 

  31. Patti A, Cicala G, Tosto C et al (2021) Characterization of 3D printed highly filled composite: structure, thermal diffusivity and dynamic-mechanical analysis. Chem Eng Trans 86:1537–1542. https://doi.org/10.3303/CET2186257

    Article  Google Scholar 

  32. Pellegrini A, Palmieri ME, Guerra MG (2022) Evaluation of anisotropic mechanical behaviour of 316L parts realized by metal fused filament fabrication using digital image correlation. Int J Adv Manuf Technol 120:7951–7965. https://doi.org/10.1007/s00170-022-09303-z

    Article  Google Scholar 

  33. Agarwala MK, van Weeren R, Bandyopadhyay A, et al (1996) Filament feed materials for fused deposition processing of Ceramics and Metals. 1996 International Solid Freeform Fabrication Symposium. http://hdl.handle.net/2152/70277

  34. Valerga AP, Batista M, Salguero J, Girot F (2018) Influence of PLA filament conditions on characteristics of FDM parts. Materials 11:1322. https://doi.org/10.3390/ma11081322

    Article  Google Scholar 

  35. Pan AQ, Huang ZF, Guo RJ, Liu J (2016) Effect of FDM process on adhesive strength of polylactic acid (PLA) filament. In: Key engineering materials. Trans Tech Publ, pp 181–186

  36. Singh R, Singh S, Mankotia K (2016) Development of ABS based wire as feedstock filament of FDM for industrial applications. Rapid Prototyp J 22:300–310. https://doi.org/10.1108/RPJ-07-2014-0086

    Article  Google Scholar 

  37. Dudek P (2013) FDM 3D printing technology in manufacturing composite elements. Arch Metall Mater 58:1415–1418. https://doi.org/10.2478/amm-2013-0186

    Article  Google Scholar 

  38. Singh R, Singh S (2014) Development of nylon based FDM filament for rapid tooling application. J Inst Eng (India) Ser C 95:103–108. https://doi.org/10.1007/s40032-014-0108-2

    Article  Google Scholar 

  39. Wu G, Langrana AN, Sadanji R, Danforth S (2002) Solid freeform fabrication of metal components using fused deposition of metals. Mater Des 23:97–105. https://doi.org/10.1016/S0261-3069(01)00079-6

    Article  Google Scholar 

  40. Quinard C, Barriere T, Gelin JC (2009) Development and property identification of 316L stainless steel feedstock for PIM and µPIM. Powder Technol 190:123–128. https://doi.org/10.1016/j.powtec.2008.04.044

    Article  Google Scholar 

  41. Kurose T, Abe Y, Santos MVA et al (2020) Influence of the layer directions on the properties of 316L stainless steel parts fabricated through fused deposition of metals. Materials 13:2493. https://doi.org/10.3390/ma13112493

    Article  Google Scholar 

  42. Gonzalez-Gutierez J, Godec D, Guráň R et al (2018) 3D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17–4PH stainless steel parts. Metalurgija 57:117–120

    Google Scholar 

  43. Kim MK, Lee IH, Kim H-C (2018) Effect of fabrication parameters on surface roughness of FDM parts. Int J Precis Eng Manuf 19:137–142. https://doi.org/10.1007/s12541-018-0016-0

    Article  Google Scholar 

  44. Rupal BS, Mostafa KG, Wang Y, Qureshi AJ (2019) A reverse cad approach for estimating geometric and mechanical behavior of fdm printed parts. Procedia Manuf 34:535–544. https://doi.org/10.1016/j.promfg.2019.06.217

    Article  Google Scholar 

  45. Thompson Y, Gonzalez-Gutierrez J, Kukla C, Felfer P (2019) Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel. Addit Manuf 30:100861. https://doi.org/10.1016/j.addma.2019.100861

    Article  Google Scholar 

  46. Engström S (2017) Metal injection molding: a review of the MIM process and its optimization. Arcada University of Applied Science. Plastic Technology. https://urn.fi/URN:NBN:fi:amk-2017052810681

  47. Quarto M, Carminati M, D’Urso G (2021) Density and shrinkage evaluation of AISI 316L parts printed via FDM process. Mater Manuf Process 36:1–9. https://doi.org/10.1080/10426914.2021.1905830

    Article  Google Scholar 

  48. Singh R (2013) Some investigations for small-sized product fabrication with FDM for plastic components. Rapid Prototyp J 19:58–63. https://doi.org/10.1108/13552541311292745

    Article  Google Scholar 

  49. Abilgaziyev A, Kulzhan T, Raissov N, et al. (2015) Design and development of multi-nozzle extrusion system for 3D printer. In: 2015 International conference on informatics, electronics & vision (ICIEV). IEEE, pp 1–5

  50. Mensley M (2019) 3D printer extruder—the ultimate guide. In: all3dp.com. www.all3dp.com/1/3d-printer-extruder-nozzle-guide/

  51. Agarwala MK, Jamalabad VR, Langrana NA et al (1996) Structural quality of parts processed by fused deposition. Rapid Prototyp J 2:4–19. https://doi.org/10.1108/13552549610732034

    Article  Google Scholar 

  52. Mohan Pandey P, Venkata Reddy N, Dhande SG (2003) Slicing procedures in layered manufacturing: a review. Rapid Prototyp J 9:274–288. https://doi.org/10.1108/13552540310502185

    Article  Google Scholar 

  53. Grames E (2020) 3D printing layer height: how much does it matter? In: all3dp.com. www.all3dp.com/2/3d-printer-layer-height-how-much-does-it-matter/

  54. Zuza M (2018) Everything about nozzles with a different diameter. In: blog.prusaorinters.org. www.blog.prusaprinters.org/everything-about-nozzles-with-a-different-diameter_8344. Accessed 1 Apr 2022

  55. Comb J, Priedeman W, Turley PW (1994) FDM® Technology process improvements. In: 1994 international solid freeform fabrication symposium

  56. Wang T-M, Xi J-T, Jin Y (2007) A model research for prototype warp deformation in the FDM process. Int J Adv Manuf Technol 33:1087–1096. https://doi.org/10.1007/s00170-006-0556-9

    Article  Google Scholar 

  57. Park JH, Lyu M-Y, Kwon SY et al (2016) Temperature analysis of nozzle in a FDM type 3D printer through computer simulation and experiment. Elastom Compos 51:301–307. https://doi.org/10.7473/EC.2016.51.4.301

    Article  Google Scholar 

  58. 3D Maker Engineering Understanding Temperature Tower Results. www.3dmakerengineering.com/blogs/3d-printing/temperature-tower

  59. Melčová V, Svoradová K, Menčík P et al (2020) FDM 3D printed composites for bone tissue engineering based on plasticized poly (3-hydroxybutyrate)/poly (d, l-lactide) blends. Polymers (Basel) 12:2806. https://doi.org/10.3390/polym12122806

    Article  Google Scholar 

  60. Spoerk M, Gonzalez-Gutierrez J, Sapkota J et al (2018) Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication. Plast Rubber Compos 47:17–24. https://doi.org/10.1080/14658011.2017.1399531

    Article  Google Scholar 

  61. Lee C-Y, Liu C-Y (2019) The influence of forced-air cooling on a 3D printed PLA part manufactured by fused filament fabrication. Addit Manuf 25:196–203. https://doi.org/10.1016/j.addma.2018.11.012

    Article  Google Scholar 

  62. Garaigordobil A, Ansola R, Santamaría J, Fernández de Bustos I (2018) A new overhang constraint for topology optimization of self-supporting structures in additive manufacturing. Struct Multidiscip Optim 58:2003–2017. https://doi.org/10.1007/s00158-018-2010-7

    Article  MathSciNet  Google Scholar 

  63. Duran C, Subbian V, Giovanetti MT et al (2015) Experimental desktop 3D printing using dual extrusion and water-soluble polyvinyl alcohol. Rapid Prototyp J 21:528–534. https://doi.org/10.1108/RPJ-09-2014-0117

    Article  Google Scholar 

  64. Objective3d.com Deep Dive: bound metal deposition. www.objective3d.com.au/bound-metal-depostion/

  65. 3dprinterly.com 3D Printer Nozzle—Brass Vs Stainless Steel Vs Hardened Steel. https://3dprinterly.com/3d-printer-nozzle-brass-vs-stainless-steel-vs-hardened-steel/

  66. Enneti RK, Park SJ, German RM, Atre SV (2012) Review: thermal debinding process in particulate materials processing. Mater Manuf Processes 27:103–118. https://doi.org/10.1080/10426914.2011.560233

    Article  Google Scholar 

  67. Zaky MT (2004) Effect of solvent debinding variables on the shape maintenance of green molded bodies. J Mater Sci 39:3397–3402. https://doi.org/10.1023/B:JMSC.0000026942.64551.97

    Article  Google Scholar 

  68. Kankawa Y (1997) Effects of polymer decomposition behavior on thermal debinding process in metal injection molding. Mater Manuf Process 12:681–690. https://doi.org/10.1080/10426919708935175

    Article  Google Scholar 

  69. German RM, Bose A (1997) Injection molding of metals and ceramics. Metal Powder Industries Federation, Princeton, NJ. ISBN: 9781878954619

  70. Gonzalez-Gutierrez J, Godec D, Kukla C, et al (2017) Shaping, debinding and sintering of steel components via fused filament fabrication. In: CIM

  71. Miller-Chou BA, Koenig JL (2003) A review of polymer dissolution. Prog Polym Sci 28:1223–1270. https://doi.org/10.1016/S0079-6700(03)00045-5

    Article  Google Scholar 

  72. Hossain A, Choudhury IA, Nahar N et al (2015) Experimental and theoretical investigation of powder-binder mixing mechanism for metal injection molding. Mater Manuf Process 30:41–46. https://doi.org/10.1080/10426914.2014.930955

    Article  Google Scholar 

  73. Enneti RK, Shivashankar TS, Park S-J et al (2012) Master debinding curves for solvent extraction of binders in powder injection molding. Powder Technol 228:14–17. https://doi.org/10.1016/j.powtec.2012.04.027

    Article  Google Scholar 

  74. Lewis JA, Galler MA, Bentz DP (1996) Computer simulations of binder removal from 2-D and 3-D model particulate bodies. J Am Ceram Soc 79:1377–1388. https://doi.org/10.1111/j.1151-2916.1996.tb08599.x

    Article  Google Scholar 

  75. Dong C, Bowen HK (1989) Hot-stage study of bubble formation during binder burnout. J Am Ceram Soc 72:1082–1087. https://doi.org/10.1111/j.1151-2916.1989.tb06279.x

    Article  Google Scholar 

  76. Md Ani S, Muchtar A, Muhamad N, Ghani JA (2014) Binder removal via a two-stage debinding process for ceramic injection molding parts. Ceram Int 40:2819–2824. https://doi.org/10.1016/j.ceramint.2013.10.032

    Article  Google Scholar 

  77. Kohsari I, Pourmortazavi SM, Hajimirsadeghi SS (2007) Non-isothermal kinetic study of the thermal decomposition of diaminoglyoxime and diaminofurazan. J Therm Anal Calorim 89:543–546. https://doi.org/10.1007/s10973-006-7551-0

    Article  Google Scholar 

  78. Belgacem M, Thierry B, Jean-Claude G (2013) Investigations on thermal debinding process for fine 316L stainless steel feedstocks and identification of kinetic parameters from coupling experiments and finite element simulations. Powder Technol 235:192–202. https://doi.org/10.1016/j.powtec.2012.10.006

    Article  Google Scholar 

  79. Hwang KS, Hsieh YM (1996) Comparative study of pore structure evolution during solvent and thermal debinding of powder injection molded parts. Metall and Mater Trans A 27:245–253. https://doi.org/10.1007/BF02648403

    Article  Google Scholar 

  80. Gonzalez-Gutierrez J, Cano S, Schuschnigg S et al (2018) Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives. Materials 11:840. https://doi.org/10.3390/ma11050840

    Article  Google Scholar 

  81. Rane K, Strano M (2019) A comprehensive review of extrusion-based additive manufacturing processes for rapid production of metallic and ceramic parts. Adv Manuf 7:155–173. https://doi.org/10.1007/s40436-019-00253-6

    Article  Google Scholar 

  82. Veteška P, Hajdúchová Z, Feranc J et al (2021) Novel composite filament usable in low-cost 3D printers for fabrication of complex ceramic shapes. Appl Mater Today 22:100949. https://doi.org/10.1016/j.apmt.2021.100949

    Article  Google Scholar 

  83. Ren L, Zhou X, Song Z et al (2017) Process parameter optimization of extrusion-based 3D metal printing utilizing PW–LDPE–SA binder system. Materials 10:305. https://doi.org/10.3390/ma10030305

    Article  Google Scholar 

  84. Calignano F, Galati M, Iuliano L (2019) A metal powder bed fusion process in industry: qualification considerations. Machines 7:72. https://doi.org/10.3390/machines7040072

    Article  Google Scholar 

  85. Gregurić L (2020) Let’s talk money! How much does a metal 3D printer cost? https://all3dp.com/2/how-much-does-a-metal-3d-printer-cost/

  86. Laureijs RE, Roca JB, Narra SP et al (2017) Metal additive manufacturing: cost competitive beyond low volumes. J Manuf Sci Eng. https://doi.org/10.1115/1.4035420

    Article  Google Scholar 

  87. Why Does My 3D-Printed Part Cost So Much? | Additive Manufacturing. https://www.additivemanufacturing.media/articles/why-does-my-3d-printed-part-cost-so-much. Accessed 25 Mar 2022

  88. Desktop Metal reveals how its 3D printers rapidly churn out metal objects | TechCrunch. https://techcrunch.com/2017/04/25/desktop-metal-reveals-how-its-3d-printers-rapidly-churn-out-metal-objects/. Accessed 25 Mar 2022

  89. Markforged Metal X: Review the specs & use cases | All3DP Pro. https://all3dp.com/1/markforged-metal-x-review-3d-printer-specs/. Accessed 25 Mar 2022

  90. Ludivine Cherdo (2021) Metal 3D printers in 2021: a comprehensive guide. In: Aniwaa. https://www.aniwaa.com/buyers-guide/3d-printers/best-metal-3d-printer/

  91. Liu B, Wang Y, Lin Z, Zhang T (2020) Creating metal parts by fused deposition modeling and sintering. Mater Lett 263:127252. https://doi.org/10.1016/j.matlet.2019.127252

    Article  Google Scholar 

  92. Lu Z, Ayeni OI, Yang X et al (2020) Microstructure and phase analysis of 3D-printed components using bronze metal filament. J Mater Eng Perform 29:1650–1656. https://doi.org/10.1007/s11665-020-04697-x

    Article  Google Scholar 

  93. Korotchenko AYu, Khilkov DE, Tverskoy MV, Khilkova AA (2020) Use of additive technologies for metal injection molding. Eng Solid Mech. https://doi.org/10.5267/j.esm.2019.10.001

    Article  Google Scholar 

  94. BASF Ultrafuse SS316L. https://www.ultrafusefff.com/product-category/metal/ultrafuse-316l/

  95. The Virtual Foundry. https://www.thevirtualfoundry.com/

  96. Renishaw Investigating the effects of multiple powder re-use in AM

  97. Slotwinski JA, Garboczi EJ, Stutzman PE et al (2014) Characterization of metal powders used for additive manufacturing. J Res Natl Inst Stand Technol 119:460. https://doi.org/10.6028/jres.119.018

    Article  Google Scholar 

  98. Slotwinski JA, Garboczi EJ (2015) Metrology needs for metal additive manufacturing powders. Jom 67:538–543. https://doi.org/10.1007/s11837-014-1290-7

    Article  Google Scholar 

  99. Nair B (2019) Safety management in metal additive manufacturing: observations from industry. Inovar Communications Ltd, pp 137–143. https://issuu.com/inovar-communications/docs/mam_spring_2019_sp/137?fr=sMmZkNTExNTgwNDU

  100. Gong H, Snelling D, Kardel K, Carrano A (2019) Comparison of stainless steel 316L parts made by FDM- and SLM-based additive manufacturing processes. JOM 71:880–885. https://doi.org/10.1007/s11837-018-3207-3

    Article  Google Scholar 

  101. Niemelä M (2020) Experimental Strength tests with Metal X. Vaasan Ammattikorkeakoulu University of Applied Sciences, School of Technology. https://urn.fi/URN:NBN:fi:amk-202004245806

  102. Ait-Mansour I, Kretzschmar N, Chekurov S et al (2020) Design-dependent shrinkage compensation modeling and mechanical property targeting of metal FFF. Progress Addit Manuf 5:51–57. https://doi.org/10.1007/s40964-020-00124-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PL. Ramkumar.

Additional information

Technical Editor: Lincoln Cardoso Brandao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramkumar, P., Rijwani, T. Additive manufacturing of metals and ceramics using hybrid fused filament fabrication. J Braz. Soc. Mech. Sci. Eng. 44, 455 (2022). https://doi.org/10.1007/s40430-022-03762-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03762-x

Keywords

Navigation