Skip to main content
Log in

On the static analysis of laminated composite frames having variable cross section

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The complementary functions method (CFM) is used to investigate the static behavior of laminated composite frames consisting of straight and/or curved members of variable cross section. The Timoshenko beam theory (TBT) is used to obtain the set of the governing equations. The fifth-order Runge–Kutta (RK5) algorithm is employed in the solution process of initial value problems via the CFM. A computer program is substantially coded in Fortran on rigidity matrix based on the CFM to acquire the rigidity matrices and load vectors of these structural elements. With the help of the suggested method, the influences of the symmetric layer stacking sequence, the ratio of E1/E2, and various boundary conditions on the nodal displacements and element end forces of the considered frames are investigated. Carrying out the static behavior of laminated composite frame systems which contain straight and circular axis elements for the first time by using the CFM is the novelty of this study. Verification and accuracy of the suggested scheme are intently performed through the comparison of the present results with those of the finite element method. The effectiveness of the method and good agreement of the results are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

Some or all data, models or code generated or used during the study are available from the corresponding author by request.

References

  1. Vo TP, Thai HT (2012) Static behavior of composite beams using various refined shear deformation theories. Compos Struct 94(8):2513–2522

    Article  Google Scholar 

  2. Ditaranto RA (1973) Static analysis of a laminated beam. J Eng Ind Trans ASME 95:755–761

    Article  Google Scholar 

  3. Reddy JN, Wang CM, Lee KH (1997) Relationships between bending solutions of classical and shear deformation beam theories. Int J Solids Struct 34(26):3373–3384

    Article  MATH  Google Scholar 

  4. Karamanlı A (2017) Bending analysis of composite and sandwich beams using Ritz method. Anadolu Univ J Sci Technol A Appl Sci Eng 19(1):10–23

    Google Scholar 

  5. Catapano A, Giunta G, Belouettar S, Carrera E (2011) Static analysis of laminated beams via a unified formulation. Compos struct 94(1):75–83

    Article  Google Scholar 

  6. Özütok A, Madenci E (2017) Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method. Int J Mech Sci 130:234–243

    Article  Google Scholar 

  7. Pagani A, Yan Y, Carrera E (2017) Exact solutions for static analysis of laminated, box and sandwich beams by refined layer-wise theory. Compos Part B Eng 131:62–75

    Article  Google Scholar 

  8. Ecsedi I, Baksa A (2011) Static analysis of composite beams with weak shear connection. Appl Math Model 35(4):1739–1750

    Article  MathSciNet  MATH  Google Scholar 

  9. Aguiar RM, Moleiro F, Soares CM (2012) Assessment of mixed and displacement-based models for static analysis of composite beams of different cross-sections. Compos Struct 94(2):601–616

    Article  Google Scholar 

  10. Eisenberger M (2003) An exact high order beam element. Comput Struct 81(3):147–152

    Article  Google Scholar 

  11. Khdeir AA, Reddy JN (1997) An exact solution for the bending of thin and thick cross-ply laminated beams. Compos Struct 37(2):195–203

    Article  Google Scholar 

  12. Yuan FG, Miller RE (1990) A higher order finite element for laminated beams. Compos Struct 14(2):125–150

    Article  Google Scholar 

  13. Yu H (1994) A higher-order finite element for analysis of composite laminated structures. Compos Struct 28(4):375–383

    Article  Google Scholar 

  14. Vo TP, Thai HT, Nguyen TK, Lanc D, Karamanli A (2017) Flexural analysis of laminated composite and sandwich beams using a four-unknown shear and normal deformation theory. Compos Struct 176:388–397

    Article  Google Scholar 

  15. Cunedioğlu Y (2017) Statics and buckling analysis of aluminum beams with composite coats. Omer Halisdemir Univ J Eng Sci 6(2):729–736

    Google Scholar 

  16. Masjedi PK, Weaver PM (2020) Analytical solution for the fully coupled static response of variable stiffness composite beams. Appl Math Model 81:16–36

    Article  MathSciNet  Google Scholar 

  17. Daví G, Milazzo A, Orlando C (2014) An analytical solution for multilayered beams subjected to ends loads. Compos Struct 116:772–781

    Article  Google Scholar 

  18. Vukasović M, Pavazza R, Vlak F (2017) An analytic solution for bending of thin-walled laminated composite beams of symmetrical open sections with influence of shear. J Strain Anal Eng Des 52(3):190–203

    Article  Google Scholar 

  19. Saraçoğlu M, Güçlü G, Fethullah USLU (2019) Static analysis of orthotropic Euler–Bernoulli and Timoshenko beams with respect to various parameters. Bitlis Eren Univ J Sci 8(2):628–641

    Google Scholar 

  20. Elshafei MA (2013) FE Modeling and analysis of isotropic and orthotropic beams using first order shear deformation theory. Mater Sci Appl 4:77–102

    Google Scholar 

  21. Zghal S, Ataoui D, Dammak F (2020) Static bending analysis of beams made of functionally graded porous materials. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1748053

    Article  Google Scholar 

  22. Doeva O, Khaneh Masjedi P, Weaver PM (2020) Exact solution for the deflection of composite beams under non-uniformly distributed loads. In: AIAA Scitech 2020 Forum, p 0245

  23. Noori AR, Aslan TA, Temel B (2020) Static analysis of FG beams via complementary functions method. Eur Mech Sci 4(1):1–6

    Article  Google Scholar 

  24. Mathiyazhagan G, Vasiraja N (2013) Finite element analysis on curved beams of various sections. In: 2013 International conference on energy efficient technologies for sustainability. IEEE, pp 168–173

  25. Barhate BR, Waghe UP (2016) Static analysis of composite laminated beam by first order shear deformation theory. Int J Eng Appl Sci 3(11):257559

    Google Scholar 

  26. Alaimo A, Davì G, Milazzo A, Orlando C (2017) Analytical solution for composite layered beam subjected to uniformly distributed load. Mech Adv Mater Struct 24(16):1315–1324

    Article  Google Scholar 

  27. Sayyad AS, Ghugal YM, Naik NS (2015) Bending analysis of laminated composite and sandwich beams according to refined trigonometric beam theory. Curved Layered Struct. https://doi.org/10.1515/cls-2015-001

    Article  Google Scholar 

  28. Pandey N, Gadade AM (2019) Static response of laminated composite beam subjected to transverse loading. Mater Today Proc 16:956–963

    Article  Google Scholar 

  29. Ghugal ASY (2011) Effect of transverse shear and transverse normal strain on bending analysis of cross-ply laminated beams. Int J Appl Math Mech 7(12):85–118

    MATH  Google Scholar 

  30. Rasooli H, Temel B (2019) Static analysis of frames consisting straight and circular axis beams with a variable cross-section made of laminated composite materials by the complementary functions method. Omer Halisdemir Univ J Eng Sci 8(3):046–056 ((in Turkish))

    Google Scholar 

  31. Ghugal YM, Shinde SB (2013) Flexural analysis of cross-ply laminated beams using layerwise trigonometric shear deformation theory. Latin Am J Solids Struct 10(4):675–705

    Article  Google Scholar 

  32. Aslan TA, Noori AR, Temel B (2017) Static analysis of the circular structural elements with the complementary functions method. Çukurova Univ J Fac Eng Archit 32(1):23–29 ((in Turkish))

    Google Scholar 

  33. Karacam F, Timarci T (2005) Bending of cross-ply beams with different boundary conditions. In: International scientific conference, 24–25 November 2005, GABROVO

  34. Madenci E, Özkılıç YO, Gemi L (2020) Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses. Compos Struct 242:112162

    Article  Google Scholar 

  35. Madenci E, Özütok A (2017) Variational approximate and mixed-finite element solution for static analysis of laminated composite plates. Solid State Phenom 267:35–39

    Article  Google Scholar 

  36. Madenci E, Özütok A (2020) Variational approximate for high order bending analysis of laminated composite plates. Struct Eng Mech 73(1):97–108

    Google Scholar 

  37. Temel B, Noori AR (2019) Out-of-plane vibrations of shear-deformable AFG cycloidal beams with variable cross section. Appl Acoust 155:84–96

    Article  Google Scholar 

  38. Çalım FF (2003) Dynamic analysis of viscoelastic, anisotropic curved spatial rod systems. PhD. Thesis, University of Cukurova, Adana, (In Turkish)

  39. Noori AR, Aslan TA, Temel B (2021) dynamic analysis of functionally graded porous beams using complementary functions method in the Laplace domain. Compos Struct 256:113094

    Article  Google Scholar 

  40. Yildirim S (2020) Hydrogen elasticity solution of functionally-graded spheres, cylinders and disks. Int J Hydrog Energy 45(41):22094–22101

    Article  Google Scholar 

  41. Yildirim S (2020) Free vibration analysis of sandwich beams with functionally-graded cores by complementary functions method. AIAA J 12:1–9

    Google Scholar 

  42. Temel B, Aslan TA, Noori AR (2017) An efficient dynamic analysis of planar arches. Eur Mech Sci 1(3):82–88

    Article  Google Scholar 

  43. Noori AR, Temel B (2020) On the vibration analysis of laminated composite parabolic arches with variable cross-section of various ply stacking sequences. Mech Adv Mater Struct 27(19):1658–1672

    Article  Google Scholar 

  44. Jamil H, Tutuncu N (2019) Numerical methods in calculating eigenvalues: case studies in stability of Euler columns. ALKU J Sci 1(3):156–164

    Google Scholar 

  45. ANSYS, Inc Release 15.0, Canonsburg, PA 2013

  46. Rasooli H (2020) Static analysis of composite circular and straight axis beam systems by the complementary functions method (published). MSC Thesis, Cukurova University, Adana, Turkey

  47. Mechanical APDL element reference. Inc., 275 Technology Drive, Canonsburg, PA15317, 2013

  48. Mechanical APDL theory reference. Inc., 275 Technology Drive, Canonsburg, PA15317, 2013

  49. Hull D, Clyne TW (1996) An introduction to composite materials. Cambridge solid state science series

  50. Jones RM (1999) Mechanics of COMPOSITE MATERIALS. Taylor & Francis. Inc., USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasibullah Rasooli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Aurelio Araujo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Formulations for composite materials

Appendix A: Formulations for composite materials

The stress–strain and strain–stress relations for composite materials in 1, 2, 3 coordinate systems are written, respectively, as:

$$\sigma_{i} = C^{\prime}_{ij} \varepsilon_{j } \;\varepsilon_{i } = S^{\prime}_{ij} \sigma_{j} \quad \left( {i, \, j = \, 1,2, \ldots ,6} \right)$$
(47)

In the above relations the notation \(C^{\prime}_{ij}\) and \(S^{\prime}_{ij}\) shows the transformed stiffness and compliance matrices and can be calculated as follows [38, 43].

$$\left[ {C^{\prime}} \right] = \left[ {T^{^\circ } } \right]^{ - 1} \left[ C \right] \left[ \forall \right] \left[ {T^{^\circ } } \right]{ }\left[ \forall \right]^{ - 1} ,\;\left[ {S^{\prime}} \right] = \left[ \forall \right]\left[ {T^{^\circ } } \right]^{ - 1} \left[ \forall \right]^{ - 1} \left[ S \right] \left[ {T^{^\circ } } \right]{ }$$
(48)

The transformation matrices components are defined as

$$\left[ {T^{^\circ } } \right] = \left[ {\begin{array}{*{20}c} {m^{2} } & {n^{2} } & 0 & 0 & 0 & {2mn} \\ {n^{2} } & {m^{2} } & 0 & 0 & 0 & { - 2mn} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & m & { - n} & 0 \\ 0 & 0 & 0 & n & m & 0 \\ { - mn} & {mn} & 0 & 0 & 0 & {m^{2} - n^{2} } \\ \end{array} } \right]$$
(49)

in which \(m = \cos \left( \theta \right)\) and \(n = \sin \left( \theta \right)\).

(50)

A, B,  F and matrices are \(\left( {3 \times 3} \right)\) in dimensions and are dependent to the material properties and geometry of the cross section and can be written as follows (see [43] and [50]):

$$A_{ij } = \mathop \smallint \limits_{A} \tilde{Q}_{ij} {\text{d}}A\quad B_{ij } = \varepsilon_{mjk} \mathop \smallint \limits_{A} \tilde{Q}_{im} x_{k} {\text{d}}A$$
(51)
$$F_{ij } = \varepsilon_{ikm} \mathop \smallint \limits_{A} x_{k} \tilde{Q}_{mj} {\text{d}}A\quad D_{ij } = \varepsilon_{ihk } \varepsilon_{mjp} \mathop \smallint \limits_{A} x_{h} x_{p} \tilde{Q}_{km} {\text{d}}A$$
(52)

In the above equations \(\varepsilon_{ijk}\) is the permutation tensor and \(\tilde{Q}_{ij}\) is reduced stiffness matrix [43].

The transformed stress–strain relations can be written as

$$\tilde{\sigma }_{i} = \tilde{Q}^{^{\prime}}_{ij} \tilde{\varepsilon }_{j} \quad \left( {i \, , \, j = \, 1,2, \ldots ,6} \right)$$
(53)

in which the \(\tilde{Q}^{^{\prime}}_{ij}\) show the reduced and transformed stiffness matrix. The nonzero elements of \(\tilde{Q}^{^{\prime}}_{ij}\) are obtained in terms of the general three-dimensional transformed stiffness and compliance matrices.

$$\tilde{Q}^{^{\prime}}_{11} = C^{\prime}_{11} + \left( {C^{\prime}_{12} S^{\prime}_{12} + C^{\prime}_{13} S^{\prime}_{31} } \right)\alpha^{\prime}_{11} + \left( {C^{\prime}_{12} S^{\prime}_{26} + C^{\prime}_{13} S^{\prime}_{36} } \right)\alpha^{\prime}_{61}$$
(54)
$$\tilde{Q}^{^{\prime}}_{12} = C^{\prime}_{16} + \left( {C^{\prime}_{12} S^{\prime}_{21} + C^{\prime}_{13} S^{\prime}_{31} } \right)\alpha^{\prime}_{16} + \left( {C^{\prime}_{12} S^{\prime}_{26} + C^{\prime}_{13} S^{\prime}_{36} } \right)\alpha^{\prime}_{66}$$
(55)
$$\tilde{Q}^{^{\prime}}_{22} = C^{\prime}_{66} + \left( {C^{\prime}_{62} S^{\prime}_{21} + C^{\prime}_{63} S^{\prime}_{31} } \right)\alpha^{\prime}_{16} + \left( {C^{\prime}_{62} S^{\prime}_{26} + C^{\prime}_{63} S^{\prime}_{36} } \right)\alpha^{\prime}_{66}$$
(56)
$$\tilde{Q}^{^{\prime}}_{22} = C^{\prime}_{55}$$
(57)
$$\alpha^{\prime}_{11} = \frac{{S^{\prime}_{66} }}{{S^{\prime}_{11} S^{\prime}_{66} - S_{16}^{\prime 2} }}\;\alpha^{\prime}_{16} = \alpha^{\prime}_{61} = \frac{{ - S^{\prime}_{66} }}{{S^{\prime}_{11} S^{\prime}_{66} - S_{16}^{\prime 2} }} \;\alpha^{\prime}_{66} = \frac{{S^{\prime}_{11} }}{{S^{\prime}_{11} S^{\prime}_{66} - S_{16}^{\prime 2} }}$$
(58)

The transformed stiffness and compliance matrices for an orthotropic material are obtained in the following form.

$$\left[ {C^{\prime}} \right] = \left[ {\begin{array}{*{20}c} {C^{\prime}_{11} } & {C^{\prime}_{12} } & {C^{\prime}_{13} } & 0 & 0 & {C^{\prime}_{16} } \\ {C^{\prime}_{21} } & {C^{\prime}_{22} } & {C^{\prime}_{23} } & 0 & 0 & {C^{\prime}_{26} } \\ {C^{\prime}_{31} } & {C^{\prime}_{32} } & {C^{\prime}_{33} } & 0 & 0 & {C^{\prime}_{36} } \\ 0 & 0 & 0 & {C^{\prime}_{44} } & {C^{\prime}_{45} } & 0 \\ 0 & 0 & 0 & {C^{\prime}_{54} } & {C^{\prime}_{55} } & 0 \\ {C^{\prime}_{61} } & {C^{\prime}_{62} } & {C^{\prime}_{63} } & 0 & 0 & {C^{\prime}_{66} } \\ \end{array} } \right]$$
(59)
$$\left[ {S^{\prime}} \right] = \left[ {\begin{array}{*{20}c} {S^{\prime}_{11} } & {S^{\prime}_{12} } & {S^{\prime}_{13} } & 0 & 0 & {S^{\prime}_{16} } \\ {S^{\prime}_{21} } & {S^{\prime}_{22} } & {S^{\prime}_{23} } & 0 & 0 & {S^{\prime}_{26} } \\ {S^{\prime}_{31} } & {S^{\prime}_{32} } & {S^{\prime}_{33} } & 0 & 0 & {S^{\prime}_{36} } \\ 0 & 0 & 0 & {S^{\prime}_{44} } & {S^{\prime}_{45} } & 0 \\ 0 & 0 & 0 & {S^{\prime}_{54} } & {S^{\prime}_{55} } & 0 \\ {S^{\prime}_{61} } & {S^{\prime}_{62} } & {S^{\prime}_{63} } & 0 & 0 & {S^{\prime}_{66} } \\ \end{array} } \right]$$
(60)

The nonzero components of the transformed stiffness matrix are obtained as follows

$$C^{\prime}_{11} = m^{4} C_{11} + 2n^{2} m^{2} C_{12} + n^{4} C_{22} + 4n^{2} m^{2} C_{66}$$
(61)
$$C^{\prime}_{12} = n^{2} m^{2} C_{11} + \left( {n^{4} + m^{4} } \right)C_{12} + n^{2} m^{2} C_{22} - 4n^{2} m^{2} C_{66}$$
(62)
$$C^{\prime}_{13} = m^{2} C_{13} + n^{2} C_{23}$$
(63)
$$C^{\prime}_{16} = nm^{3} C_{11} + nm\left( {n^{2} - m^{2} } \right)C_{12} - n^{3} mC_{22} + 2nm\left( {n^{2} - m^{2} } \right)C_{66}$$
(64)
$$C^{\prime}_{22} = n^{4} C_{11} + 2n^{2} m^{2} C_{12} + m^{4} C_{22} + 4n^{2} m^{2} C_{66}$$
(65)
$$C^{\prime}_{23} = n^{2} C_{13} + m^{2} C_{23}$$
(66)
$$C^{\prime}_{26} = nm^{3} C_{11} + nm\left( {m^{2} - n^{2} } \right)C_{12} - nm^{3} C_{22} - 2nm\left( {m^{2} - n^{2} } \right)C_{66}$$
(67)
$$C^{\prime}_{33} = C_{33}$$
(68)
$$C^{\prime}_{36} = nmC_{13} - nmC_{23}$$
(69)
$$C^{\prime}_{44} = m^{2} C_{44} + n^{2} C_{55}$$
(70)
$$C^{\prime}_{45} = - nmC_{44} + nmC_{55}$$
(71)
$$C^{\prime}_{55} = n^{2} C_{44} + m^{2} C_{55}$$
(72)
$$C^{\prime}_{66} = n^{2} m^{2} C_{11} - 2 n^{2} m^{2} C_{12} + n^{2} m^{2} C_{22} + \left( {m^{2} - n^{2} } \right)^{2} C_{66}$$
(73)

The nonzero components of the compliance matrix are obtained in the following form.

$$S^{\prime}_{11} = m^{4} S_{11} + 2n^{2} m^{2} S_{12} + n^{4} S_{22} + n^{2} m^{2} S_{66}$$
(74)
$$S^{\prime}_{12} = n^{2} m^{2} S_{11} + \left( {n^{4} + m^{4} } \right)S_{12} + n^{2} m^{2} S_{22} - n^{2} m^{2} S_{66}$$
(75)
$$S^{\prime}_{13} = m^{2} S_{13} + n^{2} S_{23}$$
(76)
$$S^{\prime}_{16} = 2 nm^{3} S_{11} + 2nm\left( {n^{2} - m^{2} } \right)S_{12} - 2n^{3} mS_{22} + nm\left( {n^{2} - m^{2} } \right)S_{66}$$
(77)
$$S^{\prime}_{22} = n^{4} S_{11} + 2n^{2} m^{2} S_{12} + m^{4} S_{22} + n^{2} m^{2} S_{66}$$
(78)
$$S^{\prime}_{23} = n^{2} S_{13} + m^{2} S_{23}$$
(79)
$$S^{\prime}_{26} = 2 n^{3} mS_{11} + 2nm\left( {m^{2} - n^{2} } \right)S_{12} - 2nm^{3} S_{22} + nm\left( {m^{2} - n^{2} } \right)S_{66}$$
(80)
$$S^{\prime}_{33} = S_{33}$$
(81)
$$S^{\prime}_{36} = 2nmS_{13} - 2nmS_{23}$$
(82)
$$S^{\prime}_{44} = m^{2} S_{44} + n^{2} S_{55}$$
(83)
$$S^{\prime}_{45} = - nmS_{44} + nmS_{55}$$
(84)
$$S^{\prime}_{55} = n^{2} S_{44} + m^{2} S_{55}$$
(85)
$$S^{\prime}_{66} = 4n^{2} m^{2} S_{11} - 8 n^{2} m^{2} S_{12} + 4n^{2} m^{2} S_{22} + \left( {m^{2} - n^{2} } \right)^{2} S_{66}$$
(86)

\({\varvec{B}} = {\varvec{F}} = 0\) relation is valid for symmetric laminates.

The nonzero elements of A and D matrices are given in the following equations.

$$A_{11} = \sum\limits_{k = 1}^{N} {\tilde{Q}_{11}^{\prime \left( k \right)} } A^{\left( k \right)} \quad A_{12} = \sum\limits_{k = 1}^{N} {\tilde{Q}_{12}^{\prime \left( k \right)} } A^{\left( k \right)}$$
(87)
$$A_{22 } = \mathop \sum \limits_{k = 1}^{N} \tilde{Q}_{22}^{\prime \left( k \right)} A^{\left( k \right)} \quad A_{33 } = \mathop \sum \limits_{k = 1}^{N} \tilde{Q}_{33}^{\prime \left( k \right)} A^{\left( k \right)}$$
(88)
$$D_{11} = \sum\limits_{k = 1}^{N} {\tilde{Q}_{33}^{\prime \left( k \right)} } I_{3}^{\left( k \right)} + \sum\limits_{k = 1}^{N} {\tilde{Q}_{22}^{\prime \left( k \right)} } I_{2}^{\left( k \right)}$$
(89)
$$D_{12} = - \sum\limits_{k = 1}^{N} {\tilde{Q}_{21}^{\prime \left( k \right)} } I_{2}^{\left( k \right)}$$
(90)
$$D_{22} = \sum\limits_{k = 1}^{N} {\tilde{Q}_{11}^{\prime \left( k \right)} } I_{2}^{\left( k \right)} \quad D_{33} = \sum\limits_{k = 1}^{N} {\tilde{Q}_{11}^{\prime \left( k \right)} } I_{3}^{\left( k \right)}$$
(91)

The nonzero elements of the transformed \({\varvec{A}}^{\prime}\) and \({\varvec{D}}^{\prime}\) matrices are calculated by using the following equations.

$$A_{11}^{^{\prime}} = \frac{{A_{22 } }}{{A_{11 } A_{22 } - A_{12}^{2} }} \quad A_{12}^{^{\prime}} = - \frac{{A_{12 } }}{{A_{11 } A_{22 } - A_{12}^{2} }}$$
(92)
$$A_{22}^{^{\prime}} = \frac{{A_{11 } }}{{A_{11 } A_{22 } - A_{12}^{2} }} \quad A_{33}^{^{\prime}} = \frac{1}{{A_{33 } }}$$
(93)
$$D_{11}^{^{\prime}} = \frac{{D_{22 } }}{{D_{11 } D_{22 } - D_{12}^{2} }} \quad D_{12}^{^{\prime}} = - \frac{{D_{12 } }}{{D_{11 } D_{22 } - D_{12}^{2} }}$$
(94)
$$D_{22}^{^{\prime}} = \frac{{D_{11 } }}{{D_{11 } D_{22 } - D_{12}^{2} }} \quad D_{33}^{^{\prime}} = \frac{1}{{D_{33 } }}$$
(95)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasooli, H., Noori, A.R. & Temel, B. On the static analysis of laminated composite frames having variable cross section. J Braz. Soc. Mech. Sci. Eng. 43, 258 (2021). https://doi.org/10.1007/s40430-021-02973-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02973-y

Keywords

Navigation