Skip to main content
Log in

An experimental investigation for parametric appraisal of electrohydrodynamic-driven microfabrication approach using teaching and learning-based optimization

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Electrohydrodynamic (EHD)-based microfabrication process is a novel high-resolution pattern generation technology for micro/nanoscale system fabrication. Achieving tiny droplets during deposition has been a critical issue for the further development of this new emerging technology. It is imperative to identify the proper fabrication parameters to get the desired resolution operation. In the current study, first, an experimental EHD microfabrication setup is developed, and then experiments are carried out to search for an operating condition, which can promote high-resolution droplet generation. The experiments are planned by design of experiment scheme. The influence of the operating control parameters such as nozzle to substrate gap, voltage and the supply rate of the material on deposited droplets diameter is investigated in the current work. Characterization study reveals that nozzle to substrate gap and supply rate have a positive effect on deposition behavior, whereas voltage has a negative association with the droplet resolution. For better control of the EHD process, a causal relationship is developed between process control and performance parameter. A metaheuristic search algorithm named teaching and learning-based optimization (TLBO) is employed to find out the optimal operating environment of the EHD process. The results are compared with the traditional robust parameter design approach, and the authors found that TLBO performs more effectively for resolution improvement in the EHD-driven microfabrication process. Moreover, the sequence in which the control parameters govern the fabrication process is identified and reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pang C, Lee G-Y, Kim T et al (2012) A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 11:795

    Article  Google Scholar 

  2. Melzer M, Mönch JI, Makarov D et al (2015) Wearable magnetic field sensors for flexible electronics. Adv Mater 27:1274–1280. https://doi.org/10.1002/adma.201405027

    Article  Google Scholar 

  3. Cheah YL, Aravindan V, Madhavi S (2013) Synthesis and enhanced lithium storage properties of electrospun V2O5 nanofibers in full-cell assembly with a spinel Li4Ti5O12 anode. ACS Appl Mater Interfaces 5:3475–3480. https://doi.org/10.1021/am400666n

    Article  Google Scholar 

  4. Wang D, Zhao X, Lin Y et al (2017) Fabrication of micro/nano-structures by electrohydrodynamic jet technique. Front Mech Eng 12:477–489. https://doi.org/10.1007/s11465-017-0461-y

    Article  Google Scholar 

  5. Min S-Y, Kim T-S, Kim BJ et al (2013) Large-scale organic nanowire lithography and electronics. Nat Commun 4:1773

    Article  Google Scholar 

  6. Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13:3299–3305. https://doi.org/10.1021/cm0101632

    Article  Google Scholar 

  7. Onses MS, Sutanto E, Ferreira PM et al (2015) Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small 11:4237–4266. https://doi.org/10.1002/smll.201500593

    Article  Google Scholar 

  8. Taylor G (1964) Disintegration of water drops in an electric field. Proc R Soc A Math Phys Eng Sci 280:383–397. https://doi.org/10.1098/rspa.1964.0151

    Article  MATH  Google Scholar 

  9. Han Y, Dong J (2018) Electrohydrodynamic (EHD) printing of molten metal ink for flexible and stretchable conductor with self-healing capability. Adv Mater Technol 3:1700268. https://doi.org/10.1002/admt.201700268

    Article  Google Scholar 

  10. Qin H, Dong J, Lee Y-S (2017) AC-pulse modulated electrohydrodynamic jet printing and electroless copper deposition for conductive microscale patterning on flexible insulating substrates. Robot Comput Integr Manuf 43:179–187. https://doi.org/10.1016/j.rcim.2015.09.010

    Article  Google Scholar 

  11. Chen C-H, Saville DA, Aksay IA (2006) Electrohydrodynamic “drop-and-place” particle deployment. Appl Phys Lett 88:154104. https://doi.org/10.1063/1.2191733

    Article  Google Scholar 

  12. Park J-U, Hardy M, Kang SJ et al (2007) High-resolution electrohydrodynamic jet printing. Nat Mater 6:782–789. https://doi.org/10.1038/nmat1974

    Article  Google Scholar 

  13. Chen C-H, Saville DA, Aksay IA (2006) Scaling laws for pulsed electrohydrodynamic drop formation. Appl Phys Lett 89:124103. https://doi.org/10.1063/1.2356891

    Article  Google Scholar 

  14. Jayasinghe SN, Edirisinghe MJ (2005) Electrostatic atomization of a ceramic suspension at pico-flow rates. Appl Phys A 80:399–404. https://doi.org/10.1007/s00339-003-2324-0

    Article  Google Scholar 

  15. Choi HK, Park J-U, Park OO et al (2008) Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing. Appl Phys Lett 92:123109. https://doi.org/10.1063/1.2903700

    Article  Google Scholar 

  16. Li JL (2006) On the meniscus deformation when the pulsed voltage is applied. J Electrostat 64:44–52. https://doi.org/10.1016/j.elstat.2005.04.005

    Article  Google Scholar 

  17. Mishra S, Barton KL, Alleyne AG et al (2010) High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet. J Micromech Microeng 20:095026. https://doi.org/10.1088/0960-1317/20/9/095026

    Article  Google Scholar 

  18. Xu L, Wang X, Lei T et al (2011) Electrohydrodynamic deposition of polymeric droplets under low-frequency pulsation. Langmuir 27:6541–6548. https://doi.org/10.1021/la201107j

    Article  Google Scholar 

  19. Yang J, Cho B, Chung J (2018) Optimization of pulsed voltage waveform for electrohydrodynamic jetting on-demand. J Mech Sci Technol 32:3775–3786. https://doi.org/10.1007/s12206-018-0730-7

    Article  Google Scholar 

  20. Awais MN, Kim HC, Doh YH, Choi KH (2013) ZrO2 flexible printed resistive (memristive) switch through electrohydrodynamic printing process. Thin Solid Films 536:308–312. https://doi.org/10.1016/j.tsf.2013.04.003

    Article  Google Scholar 

  21. Wu H, Yu J, Cao R et al (2018) Electrohydrodynamic inkjet printing of Pd loaded SnO2 nanofibers on a CMOS micro hotplate for low power H2 detection. AIP Adv 8:055307. https://doi.org/10.1063/1.5029283

    Article  Google Scholar 

  22. Yang YJ, Kim HC, Sajid M et al (2018) Drop-on-demand electrohydrodynamic printing of high resolution conductive micro patterns for MEMS repairing. Int J Precis Eng Manuf 19:811–819. https://doi.org/10.1007/s12541-018-0097-9

    Article  Google Scholar 

  23. Li X, Park H, Lee MH et al (2018) High resolution patterning of Ag nanowire flexible transparent electrode via electrohydrodynamic jet printing of acrylic polymer-silicate nanoparticle composite overcoating layer. Org Electron 62:400–406. https://doi.org/10.1016/j.orgel.2018.08.032

    Article  Google Scholar 

  24. Chang J, He J, Lei Q, Li D (2018) Electrohydrodynamic printing of microscale PEDOT:PSS-PEO features with tunable conductive/thermal properties. ACS Appl Mater Interfaces 10:19116–19122. https://doi.org/10.1021/acsami.8b04051

    Article  Google Scholar 

  25. Li X, Lee GS, Park SH et al (2018) Direct writing of silver nanowire electrodes via dragging mode electrohydrodynamic jet printing for organic thin film transistors. Org Electron 62:357–365. https://doi.org/10.1016/j.orgel.2018.07.027

    Article  Google Scholar 

  26. Jumare AI, Abou-El-Hossein K, Goosen WE et al (2018) Prediction model for single-point diamond tool-tip wear during machining of optical grade silicon. Int J Adv Manuf Technol 98:2519–2529. https://doi.org/10.1007/s00170-018-2402-2

    Article  Google Scholar 

  27. Liu D, Shi Y, Lin X, Xian C (2018) Study on improving surface residual stress of polished blade after polishing based on two-stage parameter method. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-2758-3

    Article  Google Scholar 

  28. Meseguer-Valdenebro JL, Portoles A, Matínez-Conesa E (2018) Electrical parameters optimisation on welding geometry in the 6063-T alloy using the Taguchi methods. Int J Adv Manuf Technol 98:2449–2460. https://doi.org/10.1007/s00170-018-2395-x

    Article  Google Scholar 

  29. Pawar PJ, Rao RV (2013) Parameter optimization of machining processes using teaching–learning-based optimization algorithm. Int J Adv Manuf Technol 67:995–1006. https://doi.org/10.1007/s00170-012-4524-2

    Article  Google Scholar 

  30. Warsi SS, Agha MH, Ahmad R et al (2018) Sustainable turning using multi-objective optimization: a study of Al 6061 T6 at high cutting speeds. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-2759-2

    Article  Google Scholar 

  31. Das R, Ball AK, Roy SS (2018) Application of PCA-based hybrid methodologies for parameter optimization of E-jet based micro-fabrication process: a comparative study. J Braz Soc Mech Sci Eng 40:454. https://doi.org/10.1007/s40430-018-1373-4

    Article  Google Scholar 

  32. Das R, Roy SS (2018) Parameter design of high-resolution E-jet micro-fabrication process by Taguchi utility approach. Int J Manuf Mater Mech Eng 8:44–58. https://doi.org/10.4018/IJMMME.2018070104

    Article  Google Scholar 

  33. Das R, Kumar Ball A, Shekhar Roy S (2018) Optimization of E-jet based micro manufacturing process using grey relation analysis. Mater Today Proc 5:200–206. https://doi.org/10.1016/j.matpr.2017.11.072

    Article  Google Scholar 

  34. Das R, Ball AK, Roy SS (2018) Parametric optimization of E-jet based micro manufacturing system through hybrid taguchi methodology. In: Materials today: proceedings

  35. Das R, Ball AK, Roy SS (2018) Optimization of E-jet based micro-manufacturing process using desirability function analysis. In: Bhattacharyya S, Sen S, Meghamala D et al (eds) Industry interactive innovations in science, engineering and technology. Springer, Singapore, pp 477–484

    Chapter  Google Scholar 

  36. Sigma Aldrich PEDOT:PSS. https://www.sigmaaldrich.com/catalog/product/aldrich/739316?lang=en&region=IN. Accessed 10 Oct 2019

  37. Montgomery D (2017) Design and analysis of experiments: international student version, 8th edn. Wiley, New Delhi

    Google Scholar 

  38. Lee MW, Kang DK, Kim NY et al (2012) A study of ejection modes for pulsed-DC electrohydrodynamic inkjet printing. J Aerosol Sci 46:1–6. https://doi.org/10.1016/j.jaerosci.2011.11.002

    Article  Google Scholar 

  39. Ma G, Zhao G, Li Z et al (2018) Optimization strategies for robotic additive and subtractive manufacturing of large and high thin-walled aluminum structures. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-3009-3

    Article  Google Scholar 

  40. Serra R, Chibane H, Duchosal A (2018) Multi-objective optimization of cutting parameters for turning AISI 52100 hardened steel. Int J Adv Manuf Technol 99:2025–2034. https://doi.org/10.1007/s00170-018-2373-3

    Article  Google Scholar 

  41. Ming W, Zhang Y, Li X et al (2018) Multi-objective optimization based IBCS for surface roughness and textural feature in MCVE piston machining. Int J Adv Manuf Technol 97:1285–1304. https://doi.org/10.1007/s00170-018-1989-7

    Article  Google Scholar 

  42. Perec A (2018) Experimental research into alternative abrasive material for the abrasive water-jet cutting of titanium. Int J Adv Manuf Technol 97:1529–1540. https://doi.org/10.1007/s00170-018-1957-2

    Article  Google Scholar 

  43. Baturynska I (2018) Statistical analysis of dimensional accuracy in additive manufacturing considering STL model properties. Int J Adv Manuf Technol 97:2835–2849. https://doi.org/10.1007/s00170-018-2117-4

    Article  Google Scholar 

  44. Nee CY, Saad MS, Mohd Nor A et al (2018) Optimal process parameters for minimizing the surface roughness in CNC lathe machining of Co28Cr6Mo medical alloy using differential evolution. Int J Adv Manuf Technol 97:1541–1555. https://doi.org/10.1007/s00170-018-1817-0

    Article  Google Scholar 

  45. Shucai Y, Chunsheng H, Minli Z (2018) A prediction model for titanium alloy surface roughness when milling with micro-textured ball-end cutters at different workpiece inclination angles. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-2852-6

    Article  Google Scholar 

  46. Rao RV, Savsani VJ, Vakharia DP (2012) Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci Ny 183:1–15. https://doi.org/10.1016/j.ins.2011.08.006

    Article  MathSciNet  Google Scholar 

  47. Rao RV (2016) Teaching learning based optimization algorithm, 1st edn. Springer, Cham

    Book  Google Scholar 

  48. Yildiz AR (2013) Optimization of multi-pass turning operations using hybrid teaching learning-based approach. Int J Adv Manuf Technol 66:1319–1326. https://doi.org/10.1007/s00170-012-4410-y

    Article  Google Scholar 

  49. Abhishek K, Rakesh Kumar V, Datta S, Mahapatra SS (2017) Parametric appraisal and optimization in machining of CFRP composites by using TLBO (teaching–learning based optimization algorithm). J Intell Manuf 28:1769–1785. https://doi.org/10.1007/s10845-015-1050-8

    Article  Google Scholar 

  50. Shadab M, Singh R, Rai RN (2019) Multi-objective optimization of wire electrical discharge machining process parameters for Al5083/7% B4C composite using metaheuristic techniques. Arab J Sci Eng 44:591–601. https://doi.org/10.1007/s13369-018-3491-9

    Article  Google Scholar 

  51. Rao KV (2019) Power consumption optimization strategy in micro ball-end milling of D2 steel via TLBO coupled with 3D FEM simulation. Measurement 132:68–78. https://doi.org/10.1016/j.measurement.2018.09.044

    Article  Google Scholar 

  52. Eyring CF, Mackeown SS, Millikan RA (1928) Fields currents from points. Phys Rev 31:900–909. https://doi.org/10.1103/PhysRev.31.900

    Article  Google Scholar 

  53. Marginean I, Nemes P, Vertes A (2006) Order-chaos-order transitions in electrosprays: the electrified dripping faucet. Phys Rev Lett 97:64502. https://doi.org/10.1103/PhysRevLett.97.064502

    Article  Google Scholar 

  54. Barton K, Mishra S, Alleyne A et al (2011) Control of high-resolution electrohydrodynamic jet printing. Control Eng Pract 19:1266–1273. https://doi.org/10.1016/j.conengprac.2011.05.009

    Article  Google Scholar 

  55. Qian L, Lan H, Zhang G (2018) A theoretical model for predicting the feature size printed by electrohydrodynamic jet printing. Appl Phys Lett 112:203505. https://doi.org/10.1063/1.5031950

    Article  Google Scholar 

  56. Venkata Rao R (2016) Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems. Decis Sci Lett 5:1–30. https://doi.org/10.5267/j.dsl.2015.9.003

    Article  Google Scholar 

  57. Ramkumar R, Ragupathy A (2015) Optimization of cooling tower performance with different types of packings using Taguchi approach. J Braz Soc Mech Sci Eng 37:929–936. https://doi.org/10.1007/s40430-014-0216-1

    Article  Google Scholar 

  58. Ramkumar T, Selvakumar M, Mohanraj M, Chandrasekar P (2018) Experimental investigation and analysis of drilling parameters of metal matrix (Ti/TiB) composites. J Braz Soc Mech Sci Eng 41:8. https://doi.org/10.1007/s40430-018-1507-8

    Article  Google Scholar 

  59. Kumar R, Agrawal PK, Singh I (2018) Fabrication of micro holes in CFRP laminates using EDM. J Manuf Process 31:859–866. https://doi.org/10.1016/j.jmapro.2018.01.011

    Article  Google Scholar 

  60. Yılmaz B, Karabulut Ş, Güllü A (2018) Performance analysis of new external chip breaker for efficient machining of Inconel 718 and optimization of the cutting parameters. J Manuf Process 32:553–563. https://doi.org/10.1016/j.jmapro.2018.03.025

    Article  Google Scholar 

  61. Mia M, Dey PR, Hossain MS et al (2018) Taguchi S/N based optimization of machining parameters for surface roughness, tool wear and material removal rate in hard turning under MQL cutting condition. Measurement 122:380–391. https://doi.org/10.1016/j.measurement.2018.02.016

    Article  Google Scholar 

  62. Jagadish RA (2016) Optimization of process parameters of green electrical discharge machining using principal component analysis (PCA). Int J Adv Manuf Technol 87:1299–1311. https://doi.org/10.1007/s00170-014-6372-8

    Article  Google Scholar 

  63. uz Zaman UK, Boesch E, Siadat A et al (2018) Impact of fused deposition modeling (FDM) process parameters on strength of built parts using Taguchi’s design of experiments. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-3014-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors are sincerely grateful to the Department of Science and Technology (DST; Government of India, Order No DST/TSG/AMT/2015/342, dated 28.07.2016) India for sponsoring this research work. The authors would also like to express their gratitude to the Department of Mechanical Engineering NIT Durgapur and CSIR-CMERI Durgapur for their continuous support and encouragement. Special thanks to Dr. Himadri Roy from NDT and Metallurgy group CSIR-CMERI Durgapur, India, for his persistent guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raju Das.

Additional information

Technical Editor: Zilda de Castro Silveira, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R., Roy, S.S. & Murmu, N.C. An experimental investigation for parametric appraisal of electrohydrodynamic-driven microfabrication approach using teaching and learning-based optimization. J Braz. Soc. Mech. Sci. Eng. 42, 257 (2020). https://doi.org/10.1007/s40430-020-02349-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02349-8

Keywords

Navigation