Skip to main content
Log in

Multiple cracks analysis in a FG orthotropic layer with FGPM coating under anti-plane loading

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

An analytical solution to the fracture analysis of a functionally graded (FG) orthotropic substrate with FG piezoelectric coating weakened by a screw dislocation is carried out. The material properties are assumed to vary exponentially through the thickness of the layers. The problem is solved under various types of anti-plane shear and in-plane electric loadings. At first, by considering a single-screw dislocation at crack location, an analytical solution is developed. Next, by using the Fourier transform, the problem is reduced to a system of singular integral equations with Cauchy-type singularities. Then, by computing the dislocation densities, both the stress intensity factors and the stress fields at the crack tips under different electromechanical loadings are determined. In this investigation, various examples are solved to show the applicability of the proposed solution by studying the effects of the cracks configurations, material properties, and non-homogeneity parameter on the stress intensity factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Carrera E, Brischetto S, Nali P (2011) Plates and shells for smart structures: classical and advanced theories for modeling and analysis, vol 36. Wiley

  2. Mousavi SM, Paavola J (2013) Analysis of cracked functionally graded piezoelectric strip. Int J Solids Struct 50(14–15):2449–2456. https://doi.org/10.1016/j.ijsolstr.2013.03.038

    Article  Google Scholar 

  3. Wang X, Xu Y (2015) Interaction between a piezoelectric screw dislocation and a finite crack with surface piezoelectricity. Z Angew Math Phys 66(6):3679–3697

    Article  MathSciNet  Google Scholar 

  4. Huang Z, Kuang Z-B (2001) A first order perturbation analysis of a non-ideal crack in a piezoelectric material. Int J Solids Struct 38(40):7261–7281

    Article  Google Scholar 

  5. Lee JS, Kwon SM, Lee KY, Kwon JH (2002) Anti-plane interfacial Yoffe-crack between a piezoelectric and two orthotropic layers. Eur J Mech A Solids 21(3):483–492. https://doi.org/10.1016/S0997-7538(02)01212-3

    Article  MATH  Google Scholar 

  6. Narita F, Shindo Y (1999) The interface crack problem for bonded piezoelectric and orthotropic layers under antiplane shear loading. Int J Fract 98(1):87–102. https://doi.org/10.1023/a:1018755614151

    Article  Google Scholar 

  7. Kah Soh A, Fang D-N, Lee KL (2000) Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to anti-plane shear and in-plane electric loading. Eur J Mech A Solids 19(6):961–977. https://doi.org/10.1016/S0997-7538(00)01107-4

    Article  MATH  Google Scholar 

  8. Li X-F (2002) Closed-form solution for a piezoelectric strip with two collinear cracks normal to the strip boundaries. Eur J Mech A Solids 21(6):981–989. https://doi.org/10.1016/S0997-7538(02)01241-X

    Article  MathSciNet  MATH  Google Scholar 

  9. Li XF, Tang GJ (2003) Antiplane interface crack between two bonded dissimilar piezoelectric layers. Eur J Mech A Solids 22(2):231–242. https://doi.org/10.1016/S0997-7538(03)00028-7

    Article  MATH  Google Scholar 

  10. Bayat J, Ayatollahi M, Bagheri R (2015) Fracture analysis of an orthotropic strip with imperfect piezoelectric coating containing multiple defects. Theor Appl Fract Mech 77:41–49. https://doi.org/10.1016/j.tafmec.2015.01.009

    Article  Google Scholar 

  11. Bagheri R, Ayatollahi M, Mousavi SM (2015) Analysis of cracked piezoelectric layer with imperfect non-homogeneous orthotropic coating. Int J Mech Sci 93:93–101. https://doi.org/10.1016/j.ijmecsci.2014.11.025

    Article  Google Scholar 

  12. Feng F-X, Lee KY, Li Y-D (2011) Multiple cracks on the interface between a piezoelectric layer and an orthotropic substrate. Acta Mech 221(3):297–308. https://doi.org/10.1007/s00707-011-0506-y

    Article  MATH  Google Scholar 

  13. Kwon JH, Meguid SA (2002) Analysis of a central crack normal to a piezoelectric–orthotropic interface. Int J Solids Struct 39(4):841–860

    Article  Google Scholar 

  14. Ding S, Li X (2008) Periodic cracks in a functionally graded piezoelectric layer bonded to a piezoelectric half-plane. Theor Appl Fract Mech 49(3):313–320

    Article  Google Scholar 

  15. Ueda S (2003) Crack in functionally graded piezoelectric strip bonded to elastic surface layers under electromechanical loading. Theor Appl Fract Mech 40(3):225–236

    Article  Google Scholar 

  16. Baghestani AM, Fotuhi AR, Fariborz SJ (2013) Multiple interacting cracks in an orthotropic layer. Arch Appl Mech 83(11):1549–1567. https://doi.org/10.1007/s00419-013-0761-6

    Article  MATH  Google Scholar 

  17. Monfared M, Ayatollahi M, Bagheri R (2011) Anti-plane elastodynamic analysis of a cracked orthotropic strip. Int J Mech Sci 53(11):1008–1014

    Article  Google Scholar 

  18. Monfared MM, Ayatollahi M (2011) Dynamic stress intensity factors of multiple cracks in a functionally graded orthotropic half-plane. Theor Appl Fract Mech 56(1):49–57. https://doi.org/10.1016/j.tafmec.2011.09.008

    Article  Google Scholar 

  19. Bleustein JL (1968) A new surface wave in piezoelectric materials. Appl Phys Lett 13(12):412–413

    Article  Google Scholar 

  20. Hills DA, Kelly P, Dai D, Korsunsky A (2013) Solution of crack problems: the distributed dislocation technique, vol 44. Springer

  21. Erdogan F, Gupta GD, Cook T (1973) Numerical solution of singular integral equations. In: Sih GC (ed) Methods of analysis and solutions of crack problems. Springer, New York, pp 368–425

    Chapter  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Monfared.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Technical Editor: Paulo de Tarso Rocha de Mendonça.

Appendices

Appendix A

The functions \(T_{ij}\) given in Eq. (17a) and (17b)

$$\begin{aligned} T_{11} & = {\text{e}}^{(y + \eta )\lambda } \sinh [(h_{2} + \eta )\chi_{1} ] \\ T_{12} & = G_{y} \chi_{2} \cosh (h_{1} \chi_{2} )[\chi_{1} \cosh (y\chi_{1} ) + \lambda \sinh (y\chi_{1} )] \\ T_{13} & = \left[ {G_{y} \kappa \chi_{1} \cosh (y\chi_{1} ) + \left( {G_{y} \kappa \lambda + s^{2} \alpha_{1} } \right)\sinh (y\chi_{1} )} \right]\sinh (h_{1} \chi_{2} ) \\ \end{aligned}$$
(32)
$$\begin{aligned} T_{21} & = {\text{e}}^{(y + \eta )\lambda } s\sinh [(h_{2} + \eta )\chi_{1} ] \\ T_{22} & = G_{y} \chi_{2} g^{2} \cosh (h_{1} \chi_{2} )\sinh (y\chi_{1} ) \\ T_{23} & = \left[ {\alpha_{1} \chi_{1} \cosh (y\chi_{1} ) + \left( {G_{y} \kappa g^{2} - \alpha_{1} \lambda } \right)\sinh (y\chi_{1} )} \right]\sinh (h_{1} \chi_{2} ) \\ \end{aligned}$$
(33)
$$\begin{aligned} T_{31} & = {\text{e}}^{(y + \eta )\lambda } (\chi_{1} \cosh [(h_{2} + y)\chi_{1} ] + \lambda \sinh \,[(h_{2} + y)\chi_{1} ]) \\ T_{32} & = \chi_{2} G_{y} g^{2} \cosh (h_{1} \chi_{2} )\sinh (\eta \chi_{1} ) \\ T_{33} & = \left[ {\alpha_{1} \chi_{1} \cosh (\eta \chi_{1} ) + \left( {G_{y} \kappa g^{2} - \alpha_{1} \lambda } \right)\sinh (\eta \chi_{1} )} \right]\sinh (h_{1} \chi_{2} ) \\ \end{aligned}$$
(34)
$$\begin{aligned} T_{41} & = {\text{e}}^{(y + \eta )\lambda } s\sinh [(h_{2} + \eta )\chi_{1} ] \\ T_{42} & = g^{2} G_{y} \,\chi_{2} \cosh (h_{1} \chi_{2} )\sinh (\eta \chi_{1} ) \\ T_{43} & = \left[ {\alpha_{1} \chi_{1} \cosh (\eta \chi_{1} ) + \left( {G_{y} \kappa g^{2} - \alpha_{1} \lambda } \right)\sinh (\eta \chi_{1} )} \right]\sinh (h_{1} \chi_{2} ) \\ \end{aligned}$$
(35)

Appendix B

The functions \(A_{i} ,C_{i}\) and \(F\) given in Eqs. (20) and (21)

$$\begin{aligned} A_{1} & = 2\chi_{2} y(\chi_{1} - \lambda )({\text{e}}^{{ - (h_{2} + y)\chi_{1} + y\lambda - h_{1} \kappa }} + {\text{e}}^{{(\lambda + \chi_{1} )y + h_{2} \chi_{1} - h_{1} \kappa }} ) \\ A_{2} & = {\text{e}}^{{(h_{2} - y)\lambda - y\chi_{1} - h_{1} \chi_{2} }} (\chi_{2} + \kappa )\left[ {(\chi_{2} - \kappa )\alpha_{1} + y(\lambda - \chi_{1} )} \right] \\ A_{3} & = {\text{e}}^{{(h_{2} + y)\lambda - y\chi_{1} - h_{1} \chi_{2} }} (\chi_{2} - \kappa )\left[ {(\chi_{2} + \kappa )\alpha_{1} - y(\lambda - \chi_{1} )} \right] \\ A_{4} & = {\text{e}}^{{(h_{2} + 3y)\lambda - y\chi_{1} + h_{1} \chi_{2} }} (\chi_{2} - \kappa )\left[ {(\chi_{2} + \kappa )\alpha_{1} - y(\lambda + \chi_{1} )} \right] \\ A_{5} & = {\text{e}}^{{(h_{2} + y)\lambda + y\chi_{1} - h_{1} \chi_{2} }} (\chi_{2} + \kappa )\left[ {(\chi_{2} - \kappa )\alpha_{1} + y(\lambda + \chi_{1} )} \right] \\ A_{6} & = {\text{e}}^{{ - (h_{2} + y)\chi_{1} + y\lambda - h_{1} \kappa }} 2D_{0} e_{15} y\left[ {\left( { - 1 + {\text{e}}^{{2\left( {h2 + y} \right)\chi_{1} }} } \right)\lambda + \left( {1 + {\text{e}}^{{2\left( {h_{2} + y} \right)\chi_{1} }} } \right)\chi_{1} } \right] \\ A_{7} & = ( - \,\chi_{2} + {\text{e}}^{{h_{1} \kappa }} [\chi_{2} \cosh (h_{1} \chi_{2} ) - \kappa \sinh (h_{1} \chi_{2} )]) \\ \end{aligned}$$
(36)
$$\begin{aligned} C_{1} & = 2g^{2} s^{2} \chi_{2} y({\text{e}}^{{(\lambda + \chi_{1} )y + h_{2} \chi_{1} - h_{1} \kappa }} - {\text{e}}^{{(\lambda - \chi_{1} )y - h_{2} \chi_{1} - h_{1} \kappa }} ) \\ C_{2} & = {\text{e}}^{{(h_{2} + y)\lambda + y\chi_{1} + h_{1} \chi_{2} }} [\alpha_{1} (\chi_{2} + \kappa ) - y(\lambda + \chi_{1} )](\chi_{2} - \kappa )(\chi_{1} - \lambda ) \\ C_{3} & = {\text{e}}^{{(h_{2} + y)\lambda + y\chi_{1} - h_{1} \chi_{2} }} s^{2} [g^{2} (\chi_{2} + \kappa )y + \alpha_{1} (\chi_{1} - \lambda )] \\ C_{4} & = {\text{e}}^{{(h_{2} + y)\lambda - y\chi_{1} + h_{1} \chi_{2} }} s^{2} [g^{2} (\chi_{2} - \kappa )y + \alpha_{1} (\chi_{1} + \lambda )] \\ C_{5} & = {\text{e}}^{{(h_{2} + y)\lambda - y\chi_{1} - h_{1} \chi_{2} }} s^{2} [g^{2} (\chi_{2} + \kappa )y - \alpha_{1} (\chi_{1} + \lambda )] \\ C_{6} & = {\text{e}}^{{ - (h_{2} + y)\chi_{1} + y\lambda - h_{1} \kappa }} 2D_{0} \left( { - \,1 + {\text{e}}^{{2(h_{2} + y)\chi_{1} }} } \right){\text{e}}_{15} g^{2} s^{2} y \\ C_{7} & = ( - \,\chi_{2} + {\text{e}}^{{h_{1} \kappa }} [\chi_{2} \cosh (h_{1} \chi_{2} ) - \kappa \sinh (h_{1} \chi_{2} )]) \\ \end{aligned}$$
(37)
$$F = 4d_{11} \pi sG_{y} \left( {g^{2} G_{y} \chi_{2} \cosh (h_{1} \chi_{2} )\sinh (h_{2} \chi_{1} ) + \left[ {\alpha_{1} \chi_{1} \cosh (h_{2} \chi_{1} ) + \left( {\alpha_{1} \lambda - g^{2} \kappa G_{y} } \right)\sinh (h_{2} \chi_{1} )} \right]\sinh (h_{1} \chi_{2} )} \right)$$
(38)

Appendix C

The kernels mentioned in Eq. (24) are given as

$$\begin{aligned} k_{ij} & = - \frac{1}{\pi }\left( {g^{2} G_{y} \left[ {\int\limits_{0}^{ + \infty } {\left\{ {\frac{{T_{21} }}{E}[T_{22} - T_{23} ] - \frac{{{\text{e}}^{{ - sg(y_{i} - y_{j} )}} }}{2}} \right\}} } \right.\sin [s(x_{i} - x_{j} )]{\text{d}}s + \left. {\frac{{(x_{i} - x_{j} )}}{{2[(x_{i} - x_{j} )^{2} + g^{2} (y_{i} - y_{j} )^{2} ]}}} \right]\cos \theta } \right. \\ \quad - \left. {G_{x} \left[ {\int\limits_{0}^{ + \infty } {\left\{ {\frac{{T_{11} }}{E}[T_{12} - T_{13} ] + \frac{{{\text{e}}^{{ - sg(y_{i} - y_{j} )}} }}{2}} \right\}} } \right.\cos [s(x_{i} - x_{j} )]{\text{d}}s - \left. {\frac{{g(y_{i} - y_{j} )}}{{2[(x_{i} - x_{j} )^{2} + g^{2} (y_{i} - y_{j} )^{2} ]}}} \right]\sin \theta } \right) \\ \end{aligned}$$
$$\begin{aligned} k_{ij} & = \frac{1}{\pi }\left( {g^{2} G_{y} \left[ {\int\limits_{0}^{ + \infty } {\left\{ {\frac{{T_{41} }}{E}[T_{42} - T_{43} ] - \frac{{{\text{e}}^{{sg(y_{i} - y_{j} )}} }}{2}} \right\}} } \right.\sin [s(x_{i} - x_{j} )]{\text{d}}s + \left. {\frac{{(x_{i} - x_{j} )}}{{2[(x_{i} - x_{j} )^{2} + g^{2} (y_{i} - y_{j} )^{2} ]}}} \right]\cos \theta } \right. \\ \quad - \left. {G_{x} \left[ {\int\limits_{0}^{ + \infty } {\left\{ {\frac{{T_{31} }}{E}[T_{32} - T_{33} ] - \frac{{{\text{e}}^{{sg(y_{i} - y_{j} )}} }}{2}} \right\}} } \right.\cos [s(x_{i} - x_{j} )]{\text{d}}s + \left. {\frac{{g( - y_{i} + y_{j} )}}{{2[(x_{i} - x_{j} )^{2} + g^{2} (y_{i} - y_{j} )^{2} ]}}} \right]\sin \theta } \right) \\ \end{aligned}$$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sourki, R., Ilyaei, S., Bastanfar, M. et al. Multiple cracks analysis in a FG orthotropic layer with FGPM coating under anti-plane loading. J Braz. Soc. Mech. Sci. Eng. 40, 309 (2018). https://doi.org/10.1007/s40430-018-1234-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1234-1

Keywords

Navigation