Skip to main content
Log in

Fracture Analysis in an Imperfect FGM Orthotropic Strip Bonded Between Two Magneto-Electro-Elastic Layers

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this study, a functionally graded orthotropic layer sandwiched between two magneto-electro-elastic layers under anti-plane time-harmonic mechanic and in-plane electromagnetic loadings is studied. This paper examines the modeling of cracks by distribution of strain nuclei along crack lines. During this investigation, the Volterra-type screw dislocation is employed in the FGM orthotropic layer and the magneto-electro-elastic coating. The material properties of the strip are considered to obey exponential variations. To solve the dislocation problem, the complex Fourier transform is applied. One merit of this technique is the possibility of determination of the stress intensity factors for multiple smooth cracks. The system of equations is derived by considering the distribution of line dislocation on the crack. These equations are of Cauchy singular type in the location of dislocation, which can be solved numerically to obtain the dislocation density on the faces of the cracks. Various examples are solved, and the dynamic stress intensity factors are obtained. The effect of the cracks configuration, bonding constant, angular frequency and material properties on the mode III stress intensity factor is studied, and the validity of the analysis is checked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Asadi E, Fariborz SJ, Fotuhi AR (2012) Anti-plane analysis of orthotropic strips with defects and imperfect FGM coating. Eur J Mech A/Solids 34:12–20

    Article  MathSciNet  MATH  Google Scholar 

  • Bagheri R, Ayatollahi M, Asadi E (2013) Dynamic fracture analysis of multiple defects in an imperfect FGM coating-substrate layers. Int J Mech Sci 75:55–65

    Article  Google Scholar 

  • Bagheri R, Ayatollahi M, Mousavi SM (2015) Analysis of cracked piezoelectric layer with imperfect non-homogeneous orthotropic coating. Int J Mech Sci 93:93–101

    Article  Google Scholar 

  • Chi S, Chung YL (2003) Cracking in coating-substrate composites with multi-layered and FGM coating. Eng Fract Mech 70:1227–1243

    Article  Google Scholar 

  • Chirino F, Dominguez J (1989) Dynamic analysis of cracks using BEM. Eng Fract Mech 34:1051–1061

    Article  Google Scholar 

  • Dascalu C, Maugin G (1995) On the dynamic fracture of piezoelectric materials. Q J Mech Appl Mech 48:237–255

    Article  MathSciNet  MATH  Google Scholar 

  • Dineva P, Gross D, Muller R, Rangelov T (2010) Time-harmonic crack problems in functionally graded piezoelectric solids via BIEM. Eng Fract Mech 77:1101–1115

    Article  Google Scholar 

  • Ding SH, Li X (2008) Periodic cracks in a functionally graded piezoelectric layer bonded to a piezoelectric half-plane. Theor Appl Fract Mech 49:313–320

    Article  Google Scholar 

  • Ding SH, Li X (2014) The collinear crack problem for an orthotropic functionally graded coating-substrate structure. Arch Appl Mech 84:291–307

    Article  MATH  Google Scholar 

  • Erdogan F, Gupta GD, Cook TS (1973) Numerical solution of singular integral equations. In: Sih GC (ed) Method of analysis and solution of crack problems. Noordhoff, Leyden

    Google Scholar 

  • Fotuhi AR, Fariborz SJ (2006) Anti-plane analysis of a functionally graded strip with multiple cracks. Int J Solids Stuct 43:1239–1252

    Article  MATH  Google Scholar 

  • Gao CF, Hannes K, Herbert B (2003) Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack. Int J Eng Sci 41:969–981

    Article  MATH  Google Scholar 

  • Jin B, Fang QH (2008) Piezoelectric screw dislocations interacting with a circular inclusion with imperfect interface. Arch Appl Mech 78(2):105–116

    Article  MATH  Google Scholar 

  • Kwon JH, Meguid SA (2002) Analysis of a central crack normal to a piezoelectric-orthotropic interface. Int J Solids Stuct 39:841–860

    Article  MATH  Google Scholar 

  • Kwon SM, Son MS, Lee KY (2002) Transient behavior in a cracked piezoelectric layered composite: anti-plane problem. Mech Mater 34:593–603

    Article  Google Scholar 

  • Lee JS, Kwon SM, Lee KY, Kwon H (2002) Anti-plane interfacial Yoffe-crack between a piezoelectric and two orthotropic layers. Eur J Mech A/Solids 21:483–492

    Article  MATH  Google Scholar 

  • Li X, Ding SH (2009) Periodically distributed parallel cracks in a functionally graded piezoelectric (FGP) strip bonded to a FGP substrate under static electromechanical load. Comput Mater Sci 50:1477–1484

    Article  Google Scholar 

  • Li YD, Lee KY (2009) Crack tip shielding and anti-shielding effects of the imperfect interface in a layered piezoelectric sensor. Int J Solids Stuct 46:1736–1742

    Article  MATH  Google Scholar 

  • Mousavi SM, Paavola J (2013a) Analysis of cracked functionally graded piezoelectric strip. Int J Solids Stuct 50:2449–2456

    Article  Google Scholar 

  • Mousavi SM, Paavola J (2013b) Analysis of functionally graded magneto-electro-elastic layer with multiple cracks. Theor Appl Fract Mech 66:1–8

    Article  Google Scholar 

  • Nourazar M, Ayatollahi M, Miandari J, Varasteh S (2016) Fracture analysis of a cracked orthotropic strip bonded to a magneto-electro-elastic layer. Proc Struct Integr 2:3423–3431

    Article  Google Scholar 

  • Peng XL, Li XF (2009) Transient response of the crack tip field in a magnetoelectroelastic half-space with a functionally graded coating under impacts. Arch Appl Mech 79:1099–1113

    Article  MATH  Google Scholar 

  • Shin JW, Lee YS (2012) Anti-plane moving crack in a functionally graded piezoelectric layer between two dissimilar piezoelectric strips. J Mech Sci Technol 26:1017–1025

    Article  Google Scholar 

  • Shindo Y, Tanaka K, Narita F (1997) Singular stress and electric fields of a piezoelectric ceramic strip with a finite crack under longitudinal shear. Acta Mech 120:31–45

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bagheri.

Appendices

Appendix A

$$ \begin{aligned} N_{1} = & - ((\sinh [(\eta + h_{1} )\alpha_{2} ]G_{y} {\kern 1pt} \Delta_{1} (g^{2} s^{2} - M_{2}^{2} ) \\ & + {\text{e}}^{{2\lambda h_{1} }} \sinh [h_{3} \alpha_{1} ]\tilde{c}_{44} k_{13} \alpha_{1} \,\Delta_{2} )( - \cosh [h_{2} \alpha_{1} ]G_{y} k_{12} \,\Delta_{3} + \sinh [h_{2} \alpha_{1} ]{\kern 1pt} \,\tilde{c}_{44} \alpha_{1} \,\Delta_{4} )) \\ \end{aligned} $$
$$ \begin{aligned} N_{2} = & (\alpha_{2} ( - {\text{e}}^{{2\lambda h_{1} }} \sinh [h_{1} \alpha_{2} ]\sinh [h_{2} \alpha_{1} ]\sinh [h_{3} \alpha_{1} ]\tilde{c}_{44}^{2} k_{12} k_{13} \alpha_{1}^{2} + \sinh [h_{1} \alpha_{2} ]G_{y}^{2} \,\Delta_{5} ( - \Delta_{1} )(g^{2} s^{2} - M_{2}^{2} ) \\ & + \tilde{c}_{44} G_{y} \alpha_{1} ( - {\text{e}}^{{2\lambda h_{1} }} \cosh [h_{2} \alpha_{1} ]\sinh [h_{3} \alpha_{1} ]k_{12} k_{13} \,\Delta_{6} \\ + \sinh [h_{2} \alpha_{1} ]({\text{e}}^{{2\lambda h_{1} }} \sinh [h_{3} \alpha_{1} ]\tilde{c}_{44} k_{13} \alpha_{1} \,\Delta_{6} - k_{12} \,\Delta_{1} \,\Delta_{7} )))) \\ \end{aligned} $$
$$ \begin{aligned} N_{3} = & - ((\sinh [(\eta + h_{1} )\alpha_{2} ]G_{y} \,\Delta_{1} (g^{2} s^{2} - M_{2}^{2} ) \\ & + {\text{e}}^{{2\lambda h_{1} }} \sinh [h_{3} \alpha_{1} ]\tilde{c}_{44} k_{13} \alpha_{1} \Delta_{2} )( - \cosh [h_{2} \alpha_{1} ]G_{y} k_{12} \sinh [\alpha_{2} y](g^{2} s^{2} - M_{2}^{2} ) + \sinh [h_{2} \alpha_{1} ]\tilde{c}_{44} \alpha_{1} \Delta_{8} )) \\ \end{aligned} $$
$$ N_{4} = ((\sinh [\eta \alpha_{2} ]G_{y} \Delta_{5} (g^{2} s^{2} - M_{2}^{2} ) - \sinh [h_{2} \alpha_{1} ]\,\tilde{c}_{44} k_{12} \alpha_{1} \,\Delta_{9} )(\cosh [h_{3} \alpha_{1} ]G_{y} k_{13} \Delta_{10} - \sinh [h_{3} \alpha_{1} ]\;\tilde{c}_{44} \alpha_{1} \Delta_{11} )) $$
$$ \begin{aligned} N_{5} = & ((\sinh [\eta \alpha_{2} ]G_{y} \Delta_{5} (g^{2} s^{2} - M_{2}^{2} ) \\ & - \sinh [h_{2} \alpha_{1} ]\tilde{c}_{44} k_{12} \alpha_{1} \Delta_{9} )(\cosh [h_{3} \alpha_{1} ]G_{y} k_{13} \sinh [\alpha_{2} (y + h_{1} )](g^{2} s^{2} - M_{2}^{2} ) - \sinh [h_{3} \alpha_{1} ]\;\tilde{c}_{44} \alpha_{1} \Delta_{12} )) \\ \end{aligned} $$
$$ \Delta_{1} = (\cosh [h_{3} \alpha_{1} ]k_{13} - \sinh [h_{3} \alpha_{1} ]\tilde{c}_{44} \alpha_{1} )$$
$$\Delta_{2} = (\alpha_{2} \cosh [(\eta + h_{1} )\alpha_{2} ] - \lambda \sinh [(\eta + h_{1} )\alpha_{2} ]) $$
$$ \Delta_{3} = (\lambda \sinh [\alpha_{2} y] + \alpha_{2} \cosh [\alpha_{2} y])$$
$$\Delta_{4} = ((k_{12} + G_{y} \lambda )\sinh [\alpha_{2} y] + G_{y} \alpha_{2} \cosh [\alpha_{2} y])) $$
$$ \Delta_{5} = (\cosh [h_{2} \alpha_{1} ]k_{12} - \sinh [h_{2} \alpha_{1} ]\tilde{c}_{44} \alpha_{1} )$$
$$\Delta_{6} = (\alpha_{2} \cosh [\alpha_{2} h_{1} ] - \lambda \sinh [\alpha_{2} h_{1} ]) $$
$$ \Delta_{7} = (\alpha_{2} \cosh [\alpha_{2} h_{1} ] + \lambda \sinh [\alpha_{2} h_{1} ]) $$
$$ \Delta_{8} = (( - \lambda {\kern 1pt} k_{12} + G_{y} (g^{2} s^{2} - M_{2}^{2} ))\sinh [\alpha_{2} y] + k_{12} \alpha_{2} \cosh [\alpha_{2} y]) $$
$$ \Delta_{9} = (\alpha_{2} \cosh [\eta \alpha_{2} ] - \lambda \sinh [\eta \alpha_{2} ]) $$
$$ \Delta_{10} = (\lambda \sinh [\alpha_{2} (y + h_{1} )] + \alpha_{2} \cosh [\alpha_{2} (y + h_{1} )]) $$
$$ \Delta_{11} = (( - {\text{e}}^{{2\lambda h_{1} }} k_{13} + G_{y} \lambda )\sinh [\alpha_{2} (y + h_{1} )] + G_{y} \alpha_{2} \cosh [\alpha_{2} (y + h_{1} )]) $$
$$ \Delta_{12} = (({\text{e}}^{{2\lambda h_{1} }} \lambda {\kern 1pt} k_{13} + G_{y} (g^{2} s^{2} - M_{2}^{2} ))\sinh [\alpha_{2} (y + h_{1} )] - {\text{e}}^{{2\lambda h_{1} }} \alpha_{2} k_{13} \cosh [\alpha_{2} (y + h_{1} )]) $$
$$ \alpha_{1} = \sqrt {s^{2} - M_{1}^{2} } $$
$$ \alpha_{2} = \sqrt {\lambda^{2} + g^{2} s^{2} - M_{2}^{2} } $$

Appendix B

$$ \begin{aligned} C_{1} = & \tanh [\alpha_{1} (\eta - h_{2} )]\{ \,\varOmega_{8} \cosh (\alpha_{1} \eta ){\kern 1pt} {\kern 1pt} + G_{y}^{2} \,\varOmega_{5} \varOmega_{1} \sinh (\alpha_{2} h_{1} )(g^{2} s^{2} - M_{2}^{2} ) \\ + \tilde{c}_{44} G_{y} \alpha_{1} [{\text{e}}^{{2\lambda h_{1} }} k_{13} \,\varOmega_{5} \varOmega_{3} \sinh (\alpha_{1} h_{3} ) + k_{12} \,\varOmega_{1} \,\varOmega_{4} \cosh (\alpha_{1} \eta )]\} \\ \end{aligned} $$
$$ \begin{aligned} C_{2} = & \tilde{c}_{44} G_{y} \alpha_{1} [{\text{e}}^{{2\lambda h_{1} }} k_{13} \varOmega_{2} \,\varOmega_{3} \sinh (\alpha_{1} h_{3} ) + k_{12} \,\varOmega_{1} \,\varOmega_{4} \sinh (\alpha_{1} h_{2} )] + \varOmega_{8} \sinh (\alpha_{1} h_{2} )\, \\ & \quad + \sinh (\alpha_{2} h_{1} )G_{y}^{2} \,\varOmega_{2} \,\varOmega_{1} (g^{2} s^{2} - M_{2}^{2} ) \\ \end{aligned} $$
$$ \begin{aligned} C_{3} = & \sinh [\alpha_{1} (\eta - h_{2} )]\{ \varOmega_{8} \cosh (\alpha_{1} y) + G_{y}^{2} {\kern 1pt} \varOmega_{6} {\kern 1pt} \varOmega_{1} \sinh (\alpha_{2} h_{1} )(g^{2} s^{2} - M_{2}^{2} ) \\ \quad + \tilde{c}_{44} G_{y} \alpha_{1} [{\text{e}}^{{2\lambda h_{1} }} k_{13} \varOmega_{6} {\kern 1pt} \varOmega_{3} \sinh (\alpha_{1} h_{3} ) + k_{12} \varOmega_{1} {\kern 1pt} \varOmega_{4} \cosh (\alpha_{1} y)]\} \\ \end{aligned} $$
$$ \begin{aligned} C_{4} = & \alpha_{1} \sinh [\alpha_{1} (\eta - h_{2} )]\{ \varOmega_{8} \sinh (\alpha_{1} y)\, + G_{y}^{2} {\kern 1pt} \varOmega_{7} {\kern 1pt} \varOmega_{1} \sinh (\alpha_{2} h_{1} )(g^{2} s^{2} - M_{2}^{2} ) \\ + \tilde{c}_{44} G_{y} \alpha_{1} [{\text{e}}^{{2\lambda h_{1} }} k_{13} \varOmega_{7} \varOmega_{3} \sinh (\alpha_{1} h_{3} ) + k_{12} \varOmega_{1} \varOmega_{4} \sinh (\alpha_{1} y)]\} \\ \end{aligned} $$
$$ \varOmega_{1} = \tilde{c}_{44} \alpha_{1} \sinh (\alpha_{1} h_{3} ) - k_{13} \cosh (\alpha_{1} h_{3} ),$$
$$\varOmega_{2} = k_{12} \cosh (\alpha_{1} h_{2} ) - \tilde{c}_{44} \alpha_{1} \sinh (\alpha_{1} h_{2} ) $$
$$ \varOmega_{3} = \lambda \sinh (\alpha_{2} h_{1} ) - \alpha_{2} \cosh (\alpha_{2} h_{1} ),$$
$$\varOmega_{4} = \lambda \sinh (\alpha_{2} h_{1} ) + \alpha_{2} \cosh (\alpha_{2} h_{1} ) $$
$$ \varOmega_{5} = k_{12} \sinh (\alpha_{1} \eta ) - \tilde{c}_{44} \alpha_{1} \cosh (\alpha_{1} \eta ),$$
$$\varOmega_{6} = k_{12} \sinh (\alpha_{1} y) - \tilde{c}_{44} \alpha_{1} \cosh (\alpha_{1} y) $$
$$ \varOmega_{7} = k_{12} \cosh (\alpha_{1} y) - \tilde{c}_{44} \alpha_{1} \sinh (\alpha_{1} y),$$
$$\varOmega_{8} = - e^{{2\lambda h_{1} }} \tilde{c}_{44}^{2} k_{12} k_{13} \alpha_{1}^{2} \sinh (\alpha_{2} h_{1} )\sinh (\alpha_{1} h_{3} ) $$
$$ P_{1} = \text{csch} (sh_{2} )\sinh (s\eta ), $$
$$P_{2} = \text{csch} (sh_{2} )\sinh (s(\eta - h_{2} )) $$

Appendix C

$$ {E}_{1} = \text{csch} (h_{2} \alpha_{1} )\{ Q_{1} + \tilde{c}_{44} G_{y} \alpha_{1} [Q_{2} + k_{12} (Q_{3} + k_{13} (Q_{4} + Q_{5} \alpha_{2} ))]\} $$
$$ {E}_{2} = Q_{6} - Q_{7} + \tilde{c}_{44} \alpha_{1} G_{y} (Q_{8} + Q_{9} ) $$
$$ {E}_{3} = \text{csch} (h_{2} \alpha_{1} )[Q_{10} + Q_{11} + k_{13} (Q_{12} + Q_{13} \alpha_{2} )] $$
$$ {E}_{4} = Q_{14} + \tilde{c}_{44} G_{y} \alpha_{1} (Q_{15} + k_{12} (Q_{16} + Q_{17} )) $$
$$ \begin{aligned} {E}_{5} = & - 2{\text{e}}^{{h_{1} \alpha_{2} }} \sinh (h_{1} \alpha_{2} )G_{y}^{2} \left( {g^{2} s^{2} - M_{2}^{2} } \right)T_{5} T_{2} + 2{\text{e}}^{{h_{1} \alpha_{2} }} \tilde{c}_{44} G_{y} ( - {\text{e}}^{{2\lambda h_{1} }} \sinh (h_{3} \alpha_{1} )k_{13} T_{3} T_{2} + \sinh (h_{2} \alpha_{1} )k_{12} T_{5} T_{4} )\alpha_{1} \\ & - 2{\text{e}}^{{2\lambda h_{1} + h_{1} \alpha_{2} }} \sinh (h_{2} \alpha_{1} )\sinh (h_{1} \alpha_{2} )\sinh (h_{3} \alpha_{1} )\tilde{c}_{44}^{2} k_{12} k_{13} \alpha_{1}^{2} \\ \end{aligned} $$
$$ {E}_{6} = {\text{e}}^{{ - (3\lambda + \alpha_{2} )h_{1} }} [{\text{e}}^{{2\lambda h_{1} }} k_{13} + G_{y} ( - \lambda + \alpha_{2} )](Q_{18} + \tilde{c}_{44} G_{y} \alpha_{1} (Q_{19} + k_{12} \{ Q_{20} + k_{13} [Q_{21} + 2{\text{e}}^{{h_{1} \lambda }} Q_{22} \alpha_{2} ]\} ))(\beta_{11}^{2} - d_{11} \gamma_{11} )^{5} $$
$$ \begin{aligned} {E}_{7} = & \cosh (\alpha_{1} (h_{1} + h_{3} ))\{ Q_{23} + Q_{24} [Q_{25} + \sinh (h_{2} \alpha_{1} )\tilde{c}_{44} \alpha_{1} Q_{26} ]\} (\beta_{11}^{2} - d_{11} \gamma_{11} )^{5} \\ & + \sinh (\alpha_{1} (h_{1} + h_{3} ))\{ Q_{27} [Q_{28} + \sinh (h_{2} \alpha_{1} )\tilde{c}_{44} \alpha Q_{29} ](\beta_{11}^{2} - d_{11} \gamma_{11} )^{5} + Q_{30} \} \\ \end{aligned} $$
$$ {E}_{8} = \frac{{D_{0} \gamma_{11} - B_{0} \beta_{11} }}{{d_{11} \gamma_{11} - \beta_{11}^{2} }} $$
$$ {E}_{9} = \frac{{ - D_{0} \beta_{11} + B_{0} d_{11} }}{{d_{11} \gamma_{11} - \beta_{11}^{2} }} $$
$$ \begin{aligned} E_{10} = & s( - {\text{e}}^{{\frac{{\alpha_{2} h_{1} }}{2}}} G_{y} k_{12} T_{5} T_{16} + {\text{e}}^{{\lambda h_{1} }} k_{13} ((\sinh (h_{2} \alpha_{1} )\sinh (y\alpha_{2} ) \\ + {\text{e}}^{{\lambda h_{1} }} \sinh (h_{3} \alpha_{1} )\sinh (\alpha_{2} (y + h_{1} ))\tilde{c}_{44} k_{12} \alpha_{1} + G_{y} T_{2} T_{17} ))(\varGamma_{3} B_{0} + \varGamma_{2} D_{0} + \tau_{0} )) \\ \end{aligned} $$
$$ \begin{aligned} E_{11} = - (e^{{2\lambda h_{1} }} \sinh (h_{1} \alpha_{2} )\sinh (h_{2} \alpha_{1} )\sinh (h_{3} \alpha_{1} )\tilde{c}_{44}^{2} k_{12} k_{13} \alpha_{1}^{2} + \sinh (h_{1} \alpha_{2} )G_{y}^{2} T_{2} \hfill \\ T_{5} (g^{2} s^{2} - M_{2}^{2} ) + \tilde{c}_{44} G_{y} \alpha_{1} (e^{{2\lambda h_{1} }} \sinh (h_{3} \alpha_{1} )k_{13} T_{2} T_{14} - \sinh (h_{2} \alpha_{1} )k_{12} - T_{5} T_{15} )) \hfill \\ \end{aligned} $$
$$ \begin{aligned} E_{12} = & ( - G_{y} ({\text{e}}^{{\lambda h_{1} }} T_{2} \sinh (\alpha_{2} y)k_{13} - {\text{e}}^{{\frac{{\alpha_{2} h_{1} }}{2}}} \sinh \left( {\alpha_{2} (y + \frac{{h_{1} }}{2}))k_{12} T_{5} } \right)(g^{2} s^{2} - M_{2}^{2} ) \\ \quad + {\text{e}}^{{\lambda h_{1} }} \tilde{c}_{44}^{2} k_{12} k_{13} \alpha_{1} (\sinh (h_{2} \alpha_{1} )(T_{12} ) + {\text{e}}^{{\lambda h_{1} }} \sinh (h_{3} \alpha_{1} )(T_{13} )))(\varGamma_{3} B_{0} + \varGamma_{2} D_{0} + \tau_{0} ) \\ \end{aligned} $$
$$ Q_{1} = 2{\text{e}}^{{2\lambda h_{1} + h_{1} \alpha_{2} }} \cosh (\alpha_{1} y)\sinh (h_{3} \alpha_{1} )\sinh (h_{1} \alpha_{2} )\tilde{c}_{44}^{2} k_{12} k_{13} \alpha_{1}^{2} - 2{\text{e}}^{{h_{1} \alpha_{2} }} \sinh (h_{1} \alpha_{2} )G_{y}^{2} (g^{2} s^{2} - M_{2}^{2} )T_{5} T_{10} $$
$$ Q_{2} = 2{\text{e}}^{{(2\lambda + \alpha_{2} )h_{1} }} \cosh (\alpha_{1} y)\sinh (h_{3} \alpha_{1} )\tilde{c}_{44} k_{13} \alpha_{1} T_{3} $$
$$ Q_{3} = - \cosh (\alpha_{1} y)\sinh (h_{3} \alpha_{1} )\tilde{c}_{44} \alpha_{1} T_{7} $$
$$ Q_{4} = 2{\text{e}}^{{h_{1} \alpha_{2} }} \lambda \sinh (h_{1} \alpha_{2} )[\cosh (\alpha_{1} y)\cosh (h_{3} \alpha_{1} ) - {\text{e}}^{{2\lambda h_{1} }} \sinh (\alpha_{1} y)\sinh (h_{3} \alpha_{1} )] $$
$$ Q_{5} = \{ - 2{\text{e}}^{{(\lambda + \alpha_{2} )h_{1} }} \cosh (\alpha_{1} (y - h_{2} )) + 2{\text{e}}^{{h_{1} \alpha_{2} }} \cosh (\alpha_{2} h_{1} )[\cosh (\alpha_{1} y)\cosh (h_{3} \alpha_{1} ) + {\text{e}}^{{2h_{1} \lambda }} \sinh (\alpha_{1} y)\sinh (h_{3} \alpha_{1} )]\} $$
$$ Q_{6} = 2{\text{e}}^{{2\lambda h_{1} + h_{1} \alpha_{2} }} \sinh (h_{1} \alpha_{2} )\sinh (h_{3} \alpha_{1} )\tilde{c}_{44}^{2} k_{12} k_{13} \alpha_{1}^{2} $$
$$ Q_{7} = \sinh (h_{1} \alpha_{2} )G_{y}^{2} 2{\text{e}}^{{h_{1} \alpha_{2} }} (g^{2} s^{2} - M_{2}^{2} )T_{5} [\coth (h_{2} \alpha_{1} )k_{12} - \tilde{c}_{44} \alpha_{1} ] $$
$$ Q_{8} = {\text{e}}^{{2\lambda h_{1} }} \sinh (h_{3} \alpha_{1} )k_{13} \tilde{c}_{44} \alpha_{1} [2{\text{e}}^{{h_{1} \alpha_{2} }} \lambda \sinh (\alpha_{2} h_{1} ) - \alpha_{2} \cosh (\alpha_{2} h_{1} )] $$
$$ Q_{9} = k_{12} [ - {\text{e}}^{{2\lambda h_{1} }} \coth (h_{2} \alpha_{1} )\sinh (h_{3} \alpha_{1} )k_{13} T_{3} - T_{5} T_{7} ] $$
$$ Q_{10} = 2{\text{e}}^{{2\lambda h_{1} + h_{1} \alpha_{2} }} \sinh (\alpha_{1} y)\sinh (h_{3} \alpha_{1} )\sinh (h_{1} \alpha_{2} )\tilde{c}_{44}^{2} k_{12} k_{13} \alpha_{1}^{2} + 2{\text{e}}^{{h_{1} \alpha_{2} }} \sinh (h_{1} \alpha_{2} )G_{y}^{2} (g^{2} s^{2} - M_{2}^{2} )T_{5} T_{11} $$
$$ Q_{11} = \tilde{c}_{44} G_{y} \alpha_{1} (2{\text{e}}^{{(2\lambda + \alpha_{2} )h_{1} }} \sinh (\alpha_{1} y)\sinh (h_{3} \alpha_{1} )\tilde{c}_{44} k_{13} \alpha_{1} T_{3} + k_{12} ( - \sinh (\alpha_{1} y)\sinh (h_{3} \alpha_{1} )\tilde{c}_{44} \alpha_{1} T_{7} $$
$$ Q_{12} = 2{\text{e}}^{{h_{1} \alpha_{2} }} \lambda \sinh (h_{1} \alpha_{2} )[\sinh (\alpha_{1} y)\cosh (h_{3} \alpha_{1} ) - {\text{e}}^{{2\lambda h_{1} }} \cosh (\alpha_{1} y)\sinh (h_{3} \alpha_{1} )] $$
$$ Q_{13} = - 2{\text{e}}^{{(\lambda + \alpha_{2} )h_{1} }} \sinh (\alpha_{1} (y - h_{2} )) + 2{\text{e}}^{{h_{1} \alpha_{2} }} \cosh (\alpha_{2} h_{1} )[\sinh (\alpha_{1} y)\cosh (h_{3} \alpha_{1} ) + {\text{e}}^{{2h_{1} \lambda }} \cosh (\alpha_{1} y)\sinh (h_{3} \alpha_{1} )] $$
$$ Q_{14} = - 2{\text{e}}^{{h_{1} \alpha_{2} }} \sinh (h_{1} \alpha_{2} )G_{y}^{2} (g^{2} s^{2} - M_{2}^{2} )T_{1} T_{2} - 2{\text{e}}^{{2\lambda h_{1} + h_{1} \alpha_{2} }} \cosh (\alpha_{1} h_{1} )\sinh (h_{2} \alpha_{1} )\sinh (h_{1} \alpha_{2} )\tilde{c}_{44}^{2} k_{12} k_{13} \alpha_{1}^{2} $$
$$ Q_{15} = - 2{\text{e}}^{{(2\lambda + \alpha_{2} )h_{1} }} \cosh (\alpha_{1} h_{1} )\sinh (h_{2} \alpha_{1} )\tilde{c}_{44} k_{13} \alpha_{1} T_{3} $$
$$ Q_{16} = 2{\text{e}}^{{h_{1} \alpha_{2} }} \cosh (\alpha_{1} h_{1} )\sinh (h_{2} \alpha_{1} )\tilde{c}_{44} \alpha_{1} T_{4} $$
$$ Q_{17} = k_{13} (2{\text{e}}^{{h_{1} \alpha_{2} }} \lambda \sinh (h_{1} \alpha_{2} )T_{8} + [2{\text{e}}^{{(\lambda + \alpha_{2} )h_{1} }} \cosh (\alpha_{1} (h_{1} + h_{3} )) - 2{\text{e}}^{{h_{1} \alpha_{2} }} \sinh (\alpha_{2} h_{1} )T_{9} ]\alpha_{2} ) $$
$$ Q_{18} = - 2{\text{e}}^{{\lambda h_{1} }} \sinh (h_{1} \alpha_{2} )G_{y}^{2} ( - g^{2} s^{2} + M_{2}^{2} )T_{2} T_{6} - 2{\text{e}}^{{3\lambda h_{1} }} \sinh (h_{1} \alpha_{1} )\sinh (h_{2} \alpha_{1} )\sinh (h_{1} \alpha_{2} )\tilde{c}_{44}^{2} k_{12} k_{13} \alpha_{1}^{2} $$
$$ Q_{19} = - 2{\text{e}}^{{3\lambda h_{1} }} \sinh (\alpha_{1} h_{1} )\sinh (h_{2} \alpha_{1} )\tilde{c}_{44} k_{13} \alpha_{1} T_{3} $$
$$ Q_{20} = 2{\text{e}}^{{h_{1} \lambda }} \sinh (\alpha_{1} h_{1} )\sinh (h_{2} \alpha_{1} )\tilde{c}_{44} \alpha_{1} T_{4} $$
$$ Q_{21} = 2{\text{e}}^{{\lambda h_{1} }} \lambda \sinh (h_{1} \alpha_{2} )[{\text{e}}^{{2\lambda h_{1} }} \sinh (\alpha_{1} h_{1} )\cosh (h_{2} \alpha_{1} ) + \cosh (\alpha_{1} h_{1} )\sinh (h_{2} \alpha_{1} )] $$
$$ Q_{22} = {\text{e}}^{{2\lambda h_{1} }} \cosh (h_{2} \alpha_{1} )\cosh (\alpha_{2} h_{1} )\sinh (\alpha_{1} h_{1} ) + \cosh (\alpha_{1} h_{1} )\cosh (\alpha_{2} h_{1} )\sinh (\alpha_{1} h_{2} ) + {\text{e}}^{{h_{1} \lambda }} \sinh (\alpha_{1} (h_{1} + h_{3} )) $$
$$ Q_{23} = 2\cosh (\alpha_{1} h_{1} )k_{13}^{2} \alpha_{2} G_{y} \{ \sinh (h_{2} \alpha_{1} )\tilde{c}_{44} \alpha_{1} [k_{12} + G_{y} (\lambda - \alpha_{2} )] + \cosh (h_{2} \alpha_{1} )G_{y} k_{12} ( - \lambda + \alpha_{2} )\} $$
$$ Q_{24} = 2{\text{e}}^{{ - (2\lambda + \alpha_{2} )h_{1} }} \{ \sinh (\alpha_{1} h_{1} )\tilde{c}_{44} \alpha_{1} [ - {\text{e}}^{{2\lambda h_{1} }} k_{13} + G_{y} (\lambda - \alpha_{2} )] + \cosh (\alpha_{1} h_{1} )G_{y} k_{13} (\lambda - \alpha_{2} )\} $$
$$ Q_{25} = \cosh (h_{2} \alpha_{1} )G_{y} k_{12} [\sinh (h_{1} \alpha_{2} )G_{y} ( - g^{2} s^{2} + M_{2}^{2} ) - {\text{e}}^{{2\lambda h_{1} }} T_{3} k_{13} ] $$
$$ Q_{26} = \{ - \cosh (h_{1} \alpha_{2} )G_{y} (k_{12} + {\text{e}}^{{2\lambda h_{1} }} k_{13} )\alpha_{2} + \sinh (h_{1} \alpha_{2} )\{ {\text{e}}^{{2\lambda h_{1} }} (k_{12} + G_{y} \lambda )k_{13} + G_{y} [ - \lambda k_{12} + G_{y} (g^{2} s^{2} - M_{2}^{2} )]\} $$
$$ Q_{27} = - 2{\text{e}}^{{ - (2\lambda + \alpha_{2} )h_{1} }} \{ \cosh (\alpha_{1} h_{1} )\tilde{c}_{44} \alpha_{1} [ - {\text{e}}^{{2\lambda h_{1} }} k_{13} + G_{y} (\lambda - \alpha_{2} )] + \sinh (\alpha_{1} h_{1} )G_{y} k_{13} (\lambda - \alpha_{2} )\} $$
$$ Q_{28} = \cosh (h_{2} \alpha_{1} )G_{y} k_{12} [\sinh (h_{1} \alpha_{2} )G_{y} (g^{2} s^{2} - M_{2}^{2} ) + {\text{e}}^{{2\lambda h_{1} }} T_{3} k_{13} ] $$
$$ Q_{29} = \sinh (h_{1} \alpha_{2} )[ - {\text{e}}^{{2\lambda h_{1} }} (k_{12} + G_{y} \lambda )k_{13} + G_{y} (\lambda k_{12} - G_{y} (g^{2} s^{2} - M_{2}^{2} ))] + \cosh (h_{1} \alpha_{2} )G_{y} (k_{12} + {\text{e}}^{{2\lambda h_{1} }} k_{13} )\alpha_{2} $$
$$ Q_{30} = - 2\sinh (\alpha_{1} h_{1} )k_{13}^{2} \alpha_{2} G_{y} [\sinh (h_{2} \alpha_{1} )\tilde{c}_{44} \alpha_{1} (k_{12} + G_{y} (\lambda - \alpha_{2} )) + \cosh (h_{2} \alpha_{1} )G_{y} k_{12} ( - \lambda + \alpha_{2} )](\beta_{11}^{2} - d_{11} \gamma_{11} )^{5} $$
$$ T_{1} = \sinh (\alpha_{1} h_{1} )k_{13} + \cosh (\alpha_{1} h_{1} )\tilde{c}_{44} \alpha_{1} $$
$$ T_{2} = \sinh (\alpha_{1} h_{2} )\tilde{c}_{44} \alpha_{1} - \cosh (\alpha_{1} h_{2} )k_{12} $$
$$ T_{3} = \sinh (\alpha_{1} h_{2} )\lambda - \cosh (\alpha_{1} h_{2} )\alpha_{2} $$
$$ T_{4} = \sinh (\alpha_{1} h_{2} )\lambda + \cosh (\alpha_{1} h_{2} )\alpha_{2} $$
$$ T_{5} = \sinh (\alpha_{1} h_{3} )\tilde{c}_{44} \alpha_{1} - \cosh (\alpha_{1} h_{3} )k_{13} $$
$$ T_{6} = - \sinh (\alpha_{1} h_{1} )\tilde{c}_{44} \alpha_{1} - \cosh (\alpha_{1} h_{1} )k_{13} $$
$$ T_{7} = 2{\text{e}}^{{\alpha_{2} h_{1} }} \sinh (\alpha_{2} h_{1} )\lambda + \cosh (\alpha_{2} h_{1} )\alpha_{2} $$
$$ T_{8} = \sinh (\alpha_{1} h_{1} )\sinh (\alpha_{1} h_{2} ) + {\text{e}}^{{2\lambda h_{1} }} \cosh (\alpha_{1} h_{1} )\cosh (\alpha_{1} h_{2} ) $$
$$ T_{9} = - \sinh (\alpha_{1} h_{1} )\sinh (\alpha_{1} h_{2} ) + {\text{e}}^{{2\lambda h_{1} }} \cosh (\alpha_{1} h_{1} )\cosh (\alpha_{1} h_{2} ) $$
$$ T_{10} = \sinh (\alpha_{1} y)k_{12} - \cosh (\alpha_{1} y)\tilde{c}_{44} \alpha_{1} $$
$$ T_{11} = \sinh (\alpha_{1} y)\tilde{c}_{44} \alpha_{1} - \cosh (\alpha_{1} y)k_{12} $$
$$ T_{12} = \lambda \sinh (\alpha_{2} y) - \alpha_{2} \cosh (\alpha_{2} y) $$
$$ T_{13} = \lambda \sinh (\alpha_{2} (y + h_{1} )) - \alpha_{2} \cosh (\alpha_{2} (y + h_{1} )) $$
$$ T_{14} = \lambda \sinh (\alpha_{2} h_{1} ) - \alpha_{2} \cosh (\alpha_{2} h_{1} ) $$
$$ T_{15} = \alpha_{2} \cosh (\alpha_{2} h_{1} ) + \lambda \sinh (\alpha_{2} h_{1} ) $$
$$ T_{16} = \alpha_{2} \cosh \left( {\alpha_{2} \left( {y + \frac{{h_{1} }}{2}} \right)) + \lambda \sinh (\alpha_{2} \left( {y + \frac{{h_{1} }}{2}} \right)} \right) $$
$$ T_{17} = \lambda \sinh (\alpha_{2} y) + \alpha_{2} \cosh (\alpha_{2} y) $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, R., Mirzaei, A.M. Fracture Analysis in an Imperfect FGM Orthotropic Strip Bonded Between Two Magneto-Electro-Elastic Layers. Iran J Sci Technol Trans Mech Eng 43, 253–271 (2019). https://doi.org/10.1007/s40997-017-0129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-017-0129-6

Keywords

Navigation