Skip to main content
Log in

Convective heat transfer analysis for peristaltic flow of power-law fluid in a channel

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The peristaltic flow of power law fluid in an asymmetric channel is discussed. The flow is generated because of peristaltic waves propagating along the channel walls. Heat transfer is examined through convective conditions of channel walls. Mathematical model is presented using the long wavelength and low Reynolds number approximations. The differential equations governing the flow are nonlinear and can admit non-unique solutions. There exist two different physically meaningful solutions one of which satisfies the boundary conditions at the upper wall and the other at the lower wall. The effects of the Biot numbers and the power-law nature of the fluid on the longitudinal velocity, temperature and pumping characteristics are studied in detail. Important conclusions have been pointed out. The streamlines pattern and trapping are given due attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kothandapani M, Srinivas S (2008) Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel. Int J Non-Linear Mech 43:915–924

    Article  Google Scholar 

  2. Nadeem S, Akbar NS (2010) Peristaltic flow of Sisko fluid in a uniform inclined tube. Acta Mech Sin 26:675–683

    Article  MATH  MathSciNet  Google Scholar 

  3. Tripathi D, Pandey SK, Das S (2010) Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel. Appl Math Comput 215:3645–3654

    Article  MATH  MathSciNet  Google Scholar 

  4. Mekheimer KHS (2008) Effect of the induced magnetic field on peristaltic flow of a couple stress fluid. Phys Lett A 372:4271–4278

    Article  MATH  Google Scholar 

  5. Mekheimer KhS (2011) Non-linear peristaltic transport of a second-order fluid through a porous medium. Appl Math Model 35:2695–2710

    Article  MATH  MathSciNet  Google Scholar 

  6. Hayat T, Noreen S, Ali N, Abbasbanday S (2012) Peristaltic motion of Phan–Thein–Tanner fluid in a planner channel. Numer Meth Partial Diff Equ. 28:737–748

    Article  MathSciNet  Google Scholar 

  7. Afsar Khan A, Ellahi R, Vafai K (2012) Peristaltic transport of a Jeffrey fluid with variable viscosity through a porous medium in an asymmetric channel. Advan Math Phys. doi:10.1155/2012/169642

    MATH  MathSciNet  Google Scholar 

  8. Raju KK, Devanathan R (1972) Peristaltic motion of a non-Newtonian fluid. Rheol Acta 11:170–178

    Article  MATH  Google Scholar 

  9. Radhakrishnamacharya G (1982) Long wavelength approximation to peristaltic motion of power law fluid. Rheol Acta 21:30–35

    Article  MATH  Google Scholar 

  10. Srivastava LM, Srivastava VP (1988) Peristaltic transport of a power-law fluid: application to the ductus efferentes of the reproductive tract. Rheol Acta 27:428–433

    Article  Google Scholar 

  11. Hayat T, Javed M (2010) Exact solution to peristaltic transport of power-law fluid in asymmetric channel with compliant walls. Appl Math Mech 31:1231–1240

    Article  MATH  MathSciNet  Google Scholar 

  12. Cristo CD, Iervolino M, Vacca A (2013) Gravity-driven flow of a shear-thinning power-law fluid over a permeable plane. Appl Math Sci 7:1623–1641

    Article  MathSciNet  Google Scholar 

  13. Subba Reddy MV, Ramachandra Rao A, Sreenadh S (2007) Peristaltic motion of a power-law fluid in an asymmetric channel. Int J Nonlinear Mech 42:1153–1161

    Article  Google Scholar 

  14. Latham TW (1966) Fluid motions in a peristaltic pump. M.S. Thesis, MIT, Cambridge

  15. Shapiro AH, Jafferin MY, Weinberg SL (1969) Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech 37:799–825

    Article  Google Scholar 

  16. Eytan O, Elad D (1999) Analysis of intra-uterine fluid motion induced by uterine contractions. Bull Math Biol 61:221–238

    Article  Google Scholar 

  17. Mishra M, Rao AR (2003) Peristaltic transport of a Newtonian fluid in an asymmetric channel. Z Angew Math Phys 54:532–550

    Article  MATH  MathSciNet  Google Scholar 

  18. Srinivas S, Muthuraj R, Sakina J (2012) A note on the influence of heat and mass transfer on a peristaltic flow of a viscous fluid in a vertical asymmetric channel with wall slip. Chem Ind Chem Eng Q 18:483–493

    Article  Google Scholar 

  19. Abd elmaboud Y, Mekheimer KHS, Abdellateef AI (2013) Thermal properties of couple-stress fluid flow in an asymmetric channel with peristalsis. J Heat Transfer 135:Article ID 044502

  20. El-Sayed MF, Eldabe NTM, Ghaly AY (2011) Effect of chemical reaction, heat and mass transfer on non-Newtonian fluid flow through porous medium in a vertical peristaltic tube. Transp Porous Med 89:185–212

    Article  MathSciNet  Google Scholar 

  21. Hayat T, Javed M, Asghar S, Hendi AA (2013) Wall properties and heat transfer analysis of the peristaltic motion in a power-law fluid. Numer Meth Fluids 71:65–79

    Article  MathSciNet  Google Scholar 

  22. Eldabe NTM, Zaghrout AS, Shawky HM, Awad AS (2013) Effects of chemical reaction with heat and mass transfer on peristaltic motion of power-law fluid in an asymmetric channel with wall’s properties. IJRRAS 15:280–292

    Google Scholar 

  23. Hayat T, Saleem N, Asghar S, Alhothuali MS, Alhomaidan A (2011) Influence of induced magnetic field and heat transfer on peristaltic transport of a Carreau fluid. Commun Nonlinear Sci Numer Simulat 16:3559–3577

    Article  MATH  Google Scholar 

  24. Shaaban AA, Abou-Zeid MY (2013) Effects of heat and mass transfer on MHD peristaltic flow of a non-Newtonian fluid through a porous medium between two coaxial cylinders. Math Probl Eng 2013:Article ID 819683

  25. Hina S, Hayat T, Alsaedi A (2012) Heat and mass transfer effects on the peristaltic flow of Johnson Segalman fluid in a curved channel with compliant walls. IJHMT 55:3511–3521

    Article  Google Scholar 

  26. Saravana R, Hemadri Reddy R, Sreenadh S, Vekataramana S, Kavitha A (2013) Influence of slip, heat and mass transfer on the peristaltic transport of a third order fluid in an inclined asymmetric channel. Int J Appl Math Mech 9:51–86

    Google Scholar 

  27. Bég O, Tripathi D (2012) Mathematica simulation of peristaltic pumping with double diffusive convection in nanofluids: a bio-nano-engineering model. J Nanoeng Nanosys 225:99–114

    Google Scholar 

  28. Hayat T, Yasmin H, Alhuthali MS, Kutbi MA (2013) Peristaltic flow of a non-Newtonian fluid in an asymmetric channel with convective boundary conditions. JOM 29:599–607

    Google Scholar 

  29. Chinyoka T, Makinde OD (2011) Analysis of transient generalized Couette flow of a reactive variable viscosity third-grade liquid with asymmetric convective cooling. Math Comp Model 54:160–174

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humaira Yasmin.

Additional information

Technical Editor: Francisco Ricardo Cunha, Ph.D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Yasmin, H. & Alsaedi, A. Convective heat transfer analysis for peristaltic flow of power-law fluid in a channel. J Braz. Soc. Mech. Sci. Eng. 37, 463–477 (2015). https://doi.org/10.1007/s40430-014-0177-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-014-0177-4

Keywords

Navigation