Skip to main content
Log in

Molecular and physiological aspects of plant responses to aluminum: what do we know about Cerrado plants?

  • Biochemistry & Physiology - Review article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Aluminum (Al) is a metal that in acid soils becomes toxic to plants, and its most phytotoxic form is Al3+. Usually, Al hinders plant growth and development by impairing processes such as respiration, photosynthesis, and gene expression. Moreover, plants under Al stress upregulate oxidative stress metabolism to handle Al-toxicity. Nevertheless, some plants possess tolerance/resistance to Al. The mechanisms of Al tolerance/resistance involve its complexation, either internally or externally, with organic acids (citrate, malate, and oxalate). Also, some plants can accumulate more than 1 g of Al Kg of dry matter. In the Cerrado, several species not only accumulate Al, but need it throughout their development. The Vochysiaceae stand out as one of the most important families of Cerrado flora and all its species are Al-accumulators. At the molecular level, the gene families ALMT and MATE have been associated with Al tolerance/resistance in various plant species. Moreover, there have been several reports addressing the relationships between Cerrado plants and Al at the molecular, metabolic, and subcellular levels. Additionally, in Cerrado native species, molecular and physiological data revealed that Al upregulated several crucial processes, e.g., photosynthesis, respiration, genetic information processing, and cell wall synthesis. These studies have, therefore, supported the idea that Al is not a stress factor in these native plants. Nonetheless, there is much to unravel about the role of Al in Cerrado plants and the reasons they require it to grow and develop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahn SJ, Sivaguru M, Osawa H, Chung GC, Matsumoto H (2001) Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiol 126:1381–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akaya M, Takenaka C (2001) Effects of Al stress on photosynthesis of Quercus glauca Thumb. Plant Soil 237:137–146

    Article  CAS  Google Scholar 

  • Alvim MN, França MGC, Ramos FT, Zonta E, Nascentes CC (2017) Slight soil deacidification compromise the growth and the aluminum accumulation in Qualea cordata plants. Appl Ecol Environ Res 15:2023–2034

    Article  Google Scholar 

  • Andrade LRM, Barros LMG, Echevarria GF, Velho doAmaral LI, Cotta MG, Rossatto DR, Haridasan M, Franco AC (2011) Al-hyperaccumulator Vochysiaceae from the Brazilian Cerrado store aluminum in their chloroplasts without apparent damage. Environ Exp Bot 70:37–42

    Article  CAS  Google Scholar 

  • Arens AN (1963) As plantas lenhosas do Cerrado como flora adaptada às deficiências minerais do solo. In: Simpósio sobre Cerrado. Edusp, São Paulo, pp. 249-265

  • Barceló J, Poschenriede C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Article  Google Scholar 

  • Bittencourt BOC, Silva CMS, Filho SZ, Habermann G (2020) Aluminum (Al)-induced organic acid exudation in an Al-accumulating species from the Brazilian savanna. Trees-Struc Funct 34:155–162

    Article  CAS  Google Scholar 

  • Blamey FPC (2001) The role of the root cell wall in aluminum toxicity. In: Ae N, Arihara J, Okada K, Srinivasan A (eds) Plant nutrient acquisition. Springer, Tokyo, pp 201–226

    Chapter  Google Scholar 

  • Bojórquez-Quintal E, Escalante-MagañaEchevarría-Machado CI, Martínez-Estévez M (2017) Aluminum, a friend or foe of higher plants in acid soils. Front Plant Sci 8:1767. https://doi.org/10.3389/fpls.2017.01767

    Article  PubMed  PubMed Central  Google Scholar 

  • Bray CM, West CE (2005) DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol 168:511–528

    Article  CAS  PubMed  Google Scholar 

  • Bressan ACG, Coan AI, Habermann G (2016) X-ray spectra in SEM and staining with chrome Azurol S show Al deposits in leaf tissues of Al-accumulating and non-accumulating plants from the Cerrado. Plant Soil 404:293–306

    Article  CAS  Google Scholar 

  • Bressan ACG, Silva GS, Banhos OFAA, Tanaka FAO, Habermann G (2020) Physiological, anatomical, and ultrastructural effects of aluminum on Styrax camporum, a native Cerrado woody species. J Plant Res 133:625–637

    Article  CAS  PubMed  Google Scholar 

  • Brunner I, Sperisen C (2013) Aluminum exclusion and aluminum tolerance in woody plants. Front Plant Sci 4:1–12

    Article  Google Scholar 

  • Caetano-Pereira MA, Pagliarini MS, Brasil EM, Martins EN (1995) Influence of aluminum in causing chromosome stickiness in maize microsporocytes. Maydica 40:325–330

    Google Scholar 

  • Castillo J, Rui H, Basilio D, Das A, Roux B, Latorre R, Bezanilla F, Holmgren M (2015) Mechanism of potassium ion uptake by the Na+/K+-ATPase. Nat Commun 6:7622. https://doi.org/10.1038/ncomms8622

    Article  CAS  PubMed  Google Scholar 

  • Castro LMR (2013) Anatomy and histolocation of aluminum in herbaceous and sub-shrub species in the Cerrado. Dissertation, Federal University of Viçosa

  • Chaffai R, Marzouk B, El Ferjani E (2005) Aluminum mediates compositional alterations of polar lipid classes in maize seedlings. Phytochem 66:1903–1912

    Article  CAS  Google Scholar 

  • Chandran D, Sharopova N, Vandenbosch KA, Ivashuta S, Garvin DF, Samac DA (2008) Physiological and molecular characterization of aluminum resistance in Medicago truncatula. BMC Plant Biol 8:89. https://doi.org/10.1186/1471-2229-8-89

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauhan DK, Yadav V, Vaculík M, Gassmann W, Pike S, Arif N, Singh VP, Deshmukh R, Sahi S, Tripathi DK (2021) Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Crit Rev Biotech 41:715–730

    Article  CAS  Google Scholar 

  • Chen LS, Qi YP, Smith BR, Liu XH (2005) Aluminum induced decrease in CO2 assimilation in citrus seedlings is unaccompanied by decreased activities of key enzymes involved in CO2 assimilation. Tree Physiol 25:317–324

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Lu C, Jiang H, Peng J (2015) Global transcriptome analysis reveals distinct aluminum-tolerance pathways in the al-accumulating species hydrangea macrophylla and marker identification. PLoS ONE 10:e0144927. https://doi.org/10.1371/journal.pone.0144927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chenery EM (1948) Aluminum in the plant world: I. General survey in dicotyledons. Kew Bull 4(4):173–183

    Article  Google Scholar 

  • Cesarino I, Araújo P, Domingues Júnior DP, Mazzafera P (2012) An overview of lignin metabolism and its effect on biomass recalcitrance. Braz J Bot 35:303–311

    Article  Google Scholar 

  • Culligan K, Tissier A, Britt A (2004) ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana. Plant Cell 16:1091–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cury NF, Silva RCC, Andre MSF, Fontes W, Ricart CAO, Castro MS, Silveira CES, Williams TCR, de Sousa MV, Pereira LAR (2020) Root proteome and metabolome reveal a high nutritional dependency of aluminum in Qualea grandiflora Mart. (Vochysiaceae). Plant Soil 446:125–143

    Article  CAS  Google Scholar 

  • Cury NF, Silva RCC, Fayad M, Fontes W, Ricart CAO, Castro MS, Silveira CES, Valle de Sousa M, Pereira LAR (2019) Proteome dataset of Qualea grandiflora Mart. (Vochysiaceae) by LC–MS/MS label‐free identification in response to aluminum. Proteomics 19. https://doi.org/10.1002/pmic.201900148

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level Al tolerance in barley with the ALMT1 gene. Proc Natl Ac Sci USA 101:15249–15254

    Article  CAS  Google Scholar 

  • Delisle G, Champoux M, Houde M (2001) Characterization of oxalate oxidase and cell death in Al-sensitive and tolerant wheat roots. Plant Cell Physiol 42:324–333

    Article  CAS  PubMed  Google Scholar 

  • de Souza MC, Williams TCR, Poschenrieder C, Jansen S, Pinheiro MHO, Soares IP, Franco AC (2019) Calcicole behavior of Callisthene fasciculata Mart., an Al-accumulating species from the Brazilian Cerrado. Plant Biol 22:30–37

    Article  PubMed  CAS  Google Scholar 

  • Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V (2021) The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Front Plant Sci 11:552969. https://doi.org/10.3389/fpls.2020.552969

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández V, Guzmán- Delgado PJG, Santos S, Gil L (2016) Cuticle structure in relation to chemical composition: Re-assessing the Prevailing Model. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00427

    Article  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a reevaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Françoso RD, Brandão R, Nogueira CC, Salmona YB, Machado RB, Colli GR (2015) Habitat loss and the effectiveness of protected areas in the Cerrado biodiversity hotspot. Nat 13. https://doi.org/10.1016/j.ncon.2015.04.001

    Article  Google Scholar 

  • Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An Al-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Giannakoula A, Moustakas M, Syros T, Yupsanis T (2010) Aluminum stress induces up-regulation of an efficient antioxidant system in the Al-tolerant maize line but not in the Al-sensitive line. Environ Exp Bot 67:487–494

    Article  CAS  Google Scholar 

  • Grevenstuk T, Romano A (2013) Aluminum speciation and internal detoxification mechanisms in plants: where do we stand? Metals 5:1584. https://doi.org/10.1039/c3mt00232b

    Article  CAS  Google Scholar 

  • Goodland R (1971) Oligotrofismo e alumínio no cerrado. In: III Simpósio sobre o Cerrado. São Paulo: Edusp, pp 44–60

  • Guo P, Qi YP, Cai YT, Yang TY, Yang LT, Huang ZR, Chen LS (2018) Aluminum effects on photosynthesis, reactive oxygen species and methylglyoxal detoxification in two Citrus species differing in aluminum tolerance. Tree Phys 38:1548–1565

    Article  CAS  Google Scholar 

  • Hajiboland R, Bastani S, Bahrami-Rad S, Poschenrieder C (2015) Interactions between aluminum and boron in tea (Camellia sinensis) plants. Acta Physiol Plant 37:54. https://doi.org/10.1007/s11738-015-1803-1

    Article  CAS  Google Scholar 

  • Hamilton CA, Good AG, Taylor GJ (2001) Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiol 125:2068–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haridasan M (1982) Aluminum accumulation by some Cerrado native species of central Brazil. Plant Soil 65:265–273

    Article  CAS  Google Scholar 

  • Haridasan M (1987) Distribution and mineral nutrition of aluminum-accumulating species in different plant communities of the Cerrado region of central Brazil. In: San Jose JJ, Montes R (eds) The bioproductive capacity of savannas. Caracas, Venezuela, IVIC./CIET, pp 309–348

  • Haridasan M (2008) Nutritional adaptations of native plants of the Cerrado biome in acid soils. Braz J Plant Physiol 20:183–195

    Article  Google Scholar 

  • Haridasan M, Araújo GM (1988) Aluminum-accumulating species in two forest communities in the Cerrado region of central Brazil. Forest Ecol Manag 24:15–22. https://doi.org/10.1590/S1677-04202008000300003

    Article  CAS  Google Scholar 

  • Haridasan M, Hill PG, Russell D (1987) Semiquantitative estimates of A1 and other cations in the leaf tissues of some Al-accumulating species using electron probe microanalysis. Plant Soil 104:99–102

    Article  CAS  Google Scholar 

  • Haridasan M, Paviani TI, Schiavini I (1986) Localization of aluminum in the leaves of some aluminum-accumulating species. Plant Soil 94:435–437

    Article  Google Scholar 

  • Hvorup RN, Winnen B, Chang AB, Jiang Y, Zhou X-F, Saier MH Jr (2003) The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. Eur J Biochem 270:799–813

    Article  CAS  PubMed  Google Scholar 

  • Iguchi A, Sanmiya K, Watanabe K (2019) Identification of genes encoding ALMT and MATE transporters as candidate aluminum tolerance genes from a typical acid soil plant, Psychotria rubra (Rubiaceae). Peer J 7:e7739. https://doi.org/10.7717/peerj.7739

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansen S, Broadley MR, Robbrecht E, Smets E (2002) Aluminum hyperaccumulation in angiosperms: a review of its phylogenetic significance. Bot Rev 68:235–269

    Article  Google Scholar 

  • Jiang H-X, Chen L-S, Zheng J-G, Han S, Tang N, Smith BR (2008) Aluminum-induced effects on photosystem II photochemistry in citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol 28:1863–1871

    Article  CAS  PubMed  Google Scholar 

  • Jiang H-X, Tang N, Zheng JG, Chen LS (2009a) Antagonistic actions of boron against inhibitory effects of Al toxicity on growth, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings. BMC Plant Biol 9:102. https://doi.org/10.1186/1471-2229-9-102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H-X, Tang N, Zheng JG, Lie Y, Chen LS (2009b) Phosphorus alleviates Al-induced inhibition of growth and photosynthesis in Citrus grandis seedlings. Physiol Plant 137:298–311

    Article  CAS  PubMed  Google Scholar 

  • Karak T, Sonar I, Paul RK, Frankowski M, Boruah RK, Dutta AK, Das Dilip K (2015) Aluminium dynamics from soil to tea plant (Camellia sinensis L.): Is it enhanced by municipal solid waste compost application? Chemosphere 119:917–926

    Article  CAS  PubMed  Google Scholar 

  • Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    Article  CAS  Google Scholar 

  • Kochian LV, Piñeros MA, Liu J, Magalhães JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Ann Rev Plant Biol 66:571–598

    Article  CAS  Google Scholar 

  • Kohli P, Kalia M, Gupta R (2015) Pectin methylesterases: a review. J Bioprocess Biotech 5:5. https://doi.org/10.4172/2155-9821.1000227

    Article  CAS  Google Scholar 

  • Kopittke PM, Wang P (2017) Kinetics of metal toxicity in plant roots and its effects on root morphology. Plant Soil 419:269–279

    Article  CAS  Google Scholar 

  • Larsen PB, Cancel J, Rounds M, Ochoa V (2007) Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225:1447–1458

    Article  CAS  PubMed  Google Scholar 

  • Larsen PB, Geisler MJB, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yang L-T, Qi Y-P, Guo P, Lu Y-B, Chen L-S (2016) Aluminum toxicity-induced alterations of leaf proteome in two citrus species differing in aluminum tolerance. Intl J Mol Sci 17:1180. https://doi.org/10.3390/ijms17071180

    Article  CAS  Google Scholar 

  • Li L, He Z, Pandey GK, Tsuchiya T, Luan S (2002) Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem 277:5360–5368

    Article  CAS  PubMed  Google Scholar 

  • Lidon FC, Ramalho JC, Barreiro MG (1997) Al modulation of the photosynthetic carbon reduction cycle in Zea mays. Photosynthetica 34:393–400

    Article  CAS  Google Scholar 

  • Lima MR, Gomes HT, Cury NF, Pereira LAR, Silveira CES (2022) Developing propagation protocols for Justicia lanstyakii Rizz. (Acanthaceae), an ornamental Ni-accumulating subshrub of Brazilian Cerrado. Biologia. In Press

  • Liu J, Li Z, Wang Y, Xing D (2014) Overexpression of ALTERNATIVE OXIDASE1a alleviates mitochondria-dependent programmed cell death induced by aluminium phytotoxicity in Arabidopsis. J Exp Bot 65:4465–4478

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate, and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399

    Article  CAS  PubMed  Google Scholar 

  • Lytvyn DI, Yemets AI, Blume YB (2010) UV-B overexposure induces programmed cell death in a BY-2 tobacco cell line. Environ Exp Bot 68:51–57

    Article  CAS  Google Scholar 

  • Ma JF, Hiradate S, Matsumoto H (1998) High Al resistance in buckwheat. I. Oxalic acid detoxifies Al internally. Plant Physiol 117:753–759

    Article  CAS  PubMed Central  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Al tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Zheng SJ, Hiradate S, Matsumoto H (1997) Detoxifying Al with buckwheat. Nature 390:569–570

    Article  Google Scholar 

  • Ma X, An F, Wang L, Guo D, Xie G, Liu Z (2020) Genome-wide identification of aluminum-activated malate transporter (ALMT) gene family in rubber trees (Hevea brasiliensis) Highlights their involvement in aluminum detoxification. Forests 11:142. https://doi.org/10.3390/f11020142

    Article  Google Scholar 

  • Machado JWB (1985) Accumulation of aluminum in Vochysia thyrsoidea Pohl. MSc Dissertation. Department of Botany, University of Brasilia, Brasilia

  • Magalhaes JV (2010) How a microbial drug transporter became essential for crop cultivation on acid soils: Al tolerance conferred by the multidrug and toxic compound extrusion (MATE) family. Ann Bot 106:199–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magalhaes JV, Liu J, Guimarães CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers Al tolerance in sorghum. Nat Genet 39:1156–1161

    Article  CAS  PubMed  Google Scholar 

  • Malta PG, Arcanjo-silva S, Ribeiro C, Campos NV, Azevedo AA (2016) Rudgea viburnoides (Rubiaceae) overcomes the low soil fertility of the Brazilian Cerrado and hyperaccumulates aluminum in cell walls and chloroplasts. Plant Soil 408:369–384

    Article  CAS  Google Scholar 

  • Mashayekhi V, Eskandari MR, Kobarfard F, Khajeamiri A, Hosseini M-J (2014) Induction of mitochondrial permeability transition (MPT) pore opening and ROS formation as a mechanism for methamphetamine-induced mitochondrial toxicity. Naunyn-Schmiedeberg’s Arch Pharmacol 387:47–58

    Article  CAS  Google Scholar 

  • Matsumoto H (2000) Cell biology of Al toxicity and tolerance in higher plants. Intl Rev Cytol 200:1–46

    Article  CAS  Google Scholar 

  • Matsumoto M (1991) Biochemical mechanism of the toxicity of Al and the sequestration of Al in plant cells. In: Wright RJ, Baligar VC, Murrmann RP (eds) Plant-soil interactions at low pH. Kluwer, Dordrecht, pp 825–838

    Chapter  Google Scholar 

  • Mattiello L, Begcy K, Silva FR, Jorge RA, Menossi M (2014) Transcriptome analysis highlights changes in the leaves of maize plants cultivated in acidic soil containing toxic levels of Al3+. Mol Biol Rep 41:8107–8116

    Article  CAS  PubMed  Google Scholar 

  • Meadows KL, Song B, Doetsch PW (2003) Characterization of AP lyase activities of Saccharomyces cerevisiae Ntg1p and Ntg2p: implications for biological function. Nucleic Ac Res 31:5560–5567

    Article  CAS  Google Scholar 

  • Metali F, Abu Salim K, Tennakoon K, Burslem DF (2015) Controls on foliar nutrient and aluminium concentrations in a tropical tree flora: phylogeny, soil chemistry and interactions among elements. New Phytol 205:280–292

    Article  CAS  PubMed  Google Scholar 

  • Metali F, Salim KA, Burslem DFRP (2012) Evidence of foliar aluminum accumulation in local, regional, and global datasets of wild plants. New Phytol 193:637–649

    Article  CAS  PubMed  Google Scholar 

  • Milla MAR, Butler E, Huete AR, Wilson CF, Anderson O, Gustafson JP (2002) Expressed sequence tag-based gene expression analysis under aluminum stress in rye. Plant Physiol 130:1706–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Moffatt BA, Weretilnyk EA (2001) Sustaining S-adenosyl-L-methionine-dependent methyltransferase activity in plant cells. Physiol Plant 113:435–452

    Article  CAS  Google Scholar 

  • Morita A, Horie H, Fujii Y, Watanabe N, Yagi A, Yokota H (2004) Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.). Phytochem 65:2775–2780

    Article  CAS  Google Scholar 

  • Moustakas M, Ouzounidou G, Lannoye R (1995) Aluminum effects on photosynthesis and elemental uptake in an aluminum-tolerant and non-tolerant wheat cultivar. J Plant Nut 18:669–683

    Article  CAS  Google Scholar 

  • Munne-Bosch S, Jubany-Mari T, Alegre L (2001) Drought-induced senescence is characterized by a loss of antioxidant defenses in chloroplasts. Plant Cell Environ 24:1319–1327

    Article  CAS  Google Scholar 

  • Nakano Y, Kusunoki K, Maruyama H, Enomoto T, Tokizawa M, Iuchi S, Kobayashi M, Kochian LV, Koyama H, Kobayashi Y (2020) A single-population GWAS identified AtMATE expression level polymorphism caused by promoter variants is associated with variation in aluminum tolerance in a local Arabidopsis population. Plant Direct 4:e00250. https://doi.org/10.1002/pld3.250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navascués J, Pérez-Rontomé C, Sánchez DH, Staudinger C, Wienkoop S, Rellán-Álvarez R, Becana M (2012) Oxidative stress is a consequence, not a cause, of aluminum toxicity in the forage legume Lotus corniculatus. New Phytol 193:625–636

    Article  PubMed  CAS  Google Scholar 

  • Negishi T, Oshima K, Hattori M, Kanai M, Mano S, Nishimura M, Yoshida K (2012) Tonoplast-and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant. PLoS ONE 7:e43189. https://doi.org/10.1371/journal.pone.0043189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrelle RRB, Morokawa R, Riba CP (2007) Vochysiaceae St. Hil. do estado do Paraná. Brasil Acta Biol Sci 29:29–38

    Google Scholar 

  • Nezames CD, Sjogren CA, Barajas JF, Larsen PB (2012) The Arabidopsis cell cycle checkpoint regulators TANMEI/ALT2 and ATR mediate the active process of aluminum-dependent root growth inhibition. Plant Cell 24:608–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogueira MA, Bressan ACG, Pinheiro MHO, Habermann G (2019) Aluminum-accumulating Vochysiaceae species growing on a calcareous soil in Brazil. Plant Soil 437:313–326

    Article  CAS  Google Scholar 

  • Panda SK, Baluska F, Matsumoto H (2009) Aluminum stress signaling in plants. Plant Signal Behav 4:592–597. https://doi.org/10.1007/s11104-019-03978-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda SK, Yamamoto Y, Kondo H, Matsumoto H (2008) Mitochondrial alterations related to programmed cell death in tobacco cells under aluminium stress. C R Biol 331:597–610

    Article  CAS  PubMed  Google Scholar 

  • Peixoto PHP, Cambraia J, Sant’Anna R, Mosquim PR, Moreira MA (2001) Aluminum effects on fatty acid composition and lipid peroxidation of a purified plasma membrane fraction of root apices of two sorghum cultivars. J Plant Nut 24:1061–1070

    Article  CAS  Google Scholar 

  • Pereira LAR, Schoor S, Goubet F, Dupree P, Moffatt BA (2006) Deficiency of adenosine kinase activity affects the degree of pectin methyl-esterification in cell walls of Arabidopsis thaliana. Planta 224:1401–1414

    Article  CAS  PubMed  Google Scholar 

  • Pereira LAR, Todorova M, Cai X, Makaroff CA, Emery RJN, Moffatt BA (2007) Methyl recycling activities are co-ordinately regulated during plant development. J Exp Bot 58:1083–1098

    Article  CAS  PubMed  Google Scholar 

  • Poljsak B, Šuput D, Milisav I (2013) Achieving the Balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Long 2013:956792. https://doi.org/10.1155/2013/956792

    Article  CAS  Google Scholar 

  • Poschenrieder C, Busoms S, Barceló J (2019) How plants handle trivalent (+3) elements. Intl J Mol Sci 20:3984.

    Article  CAS  Google Scholar 

  • Prömper C, Schneider R, Weiss H (1993) The role of the proton-pumping and alternative respiratory chain NADH: ubiquinone oxidoreductases in overflow catabolism of Aspergillus niger. Eur J Biochem 216:223–230

    Article  PubMed  Google Scholar 

  • Qin R, Jiao Y, Zhang S, Jiang W, Liu D (2010) Effects of aluminum on nucleoli in root tip cells and selected physiological and biochemical characters in Allium cepa var. agrogarum L. BMC Plant Biol 10:225–235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahman MA, Lee SH, Ji HC, Kabir AH, Jones CS, Lee KW (2018) Review importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: current status and opportunities. Intl J Mol Sci 19:3073. https://doi.org/10.3390/ijms19103073

    Article  CAS  Google Scholar 

  • Ranjan A, Sinha R, Sharma TR, Pattanayak A, Singh AK (2021) Alleviating aluminum toxicity in plants: Implications of reactive oxygen species signaling and crosstalk with other signaling pathways. Physiol Plant 173:1765–1784

    Article  CAS  PubMed  Google Scholar 

  • Rayburn AL, Wetzel JB, Baligar VC (2002) Mitotic analysis of sticky chromosomes in aluminum tolerant and susceptible wheat lines grown in soils of differing aluminum saturation. Euphytica 127:193–199

    Article  Google Scholar 

  • Reid R, Hayes J (2003) Mechanisms and control of nutrient uptake in plants. Intl Rev Cytol 229:73–114

    Article  CAS  Google Scholar 

  • Ribeiro C, Cambraia J, Peixoto PHP, Fonseca Júnior EM (2012) Antioxidant system response induced by aluminum in two rice cultivars. Braz J Plant Physiol 24:107–116

    Article  CAS  Google Scholar 

  • Rieger R, Michaelis A, Green MM (1976) Glossary of genetics and cytogenetics: classical and molecular, vol 4. Spinger-Verlag, New York

    Book  Google Scholar 

  • Rodrigues AA, Vasconcelos Filho SC, Müller C, Rodrigues DA, Sales JF, Nascimento KJT, Teles EMG, Rehn LS (2017) Aluminum influence on Hancornia speciosa seedling emergence, nutrient accumulation, growth and root anatomy. Flora 236–237:9–14

    Article  Google Scholar 

  • Rodrigues AA, Vasconcelos Filho SC, Müller C, Rodrigues DA, Sales JF, Zuchi J, Costa AC, Rodrigues CL, Silva AA, Barbosa DP (2019) Tolerance of Eugenia dysenterica to aluminum: germination and plant growth. Plants 8:317. https://doi.org/10.3390/plants8090317

    Article  CAS  Google Scholar 

  • Rounds MA, Larsen PB (2008) Aluminum-dependent root-growth inhibition in Arabidopsis results from AtATR-regulated cell-cycle arrest. Cur Biol 18:1495–1500

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E (2001) Function and mechanism of organic anion exudation from plant roots. Ann Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E (2010) The convergent evolution of Al resistance in plants exploits a convenient currency. Functl Plant Biol 37:275–284

    Article  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an Al-activated malate transporter. Plant J 37:645–653

    Article  CAS  PubMed  Google Scholar 

  • Scalon MC, Haridasan M, Franco AC (2013) A comparative study of aluminum and nutrient concentrations in mistletoes on aluminum-accumulating and non-accumulating hosts. Plant Biol 15:851–857

    Article  CAS  PubMed  Google Scholar 

  • Schmitt M, Boras S, Tjoa A, Watanabe T, Jansen S (2016) Aluminum accumulation and intra tree distribution patterns in three Arbor aluminosa (symplocos) species from Central Sulawesi. PLoS ONE. https://doi.org/10.1371/journal.pone.0149078

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Shen R, Ma JF (2001) Distribution and mobility of Al in an Al-accumulating plant, Fagopyrum esculentum Moench. J Exp Bot 52:1683–1687

    CAS  PubMed  Google Scholar 

  • Silva NV, Mazzafera P, Cesarino I (2019) Should I stay or should I go: are chlorogenic acids mobilized towards lignin biosynthesis? Phytochemistry 166:112063. https://doi.org/10.1016/j.phytochem.2019.112063

    Article  CAS  Google Scholar 

  • Silva S (2012) Aluminium toxicity targets in plants. J Bot ID. https://doi.org/10.1155/2012/219462

    Article  Google Scholar 

  • Simon MF, Pennington T (2012) Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado. Intl J Plant Sci 173:711–723

    Article  Google Scholar 

  • Simonovicova M, Huttova J, Mistrik I, Siroka B, Tamas L (2004) Root growth inhibition by Al is probably caused by cell death due to peroxidase-mediated hydrogen peroxide production. Protoplasma 224:91–98

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Tripathi DK, Singh S, Sharma S, Dubey NK, Chauhan DK, Vaculík M (2017) Toxicity of aluminum on various levels of plant cells and organism: a review. Environ Exp Bot 137:177–193

    Article  CAS  Google Scholar 

  • Skibniewska E, Skibniewski M (2019) Aluminum, Al. In: Kalisińska E (ed) Mammals and birds as bioindicators of trace element contaminations in terrestrial environments. Springer Nature, Switzerland, pp 413–462

    Chapter  Google Scholar 

  • Souza MC, Bueno PC, Morellato PPC, Habermann G (2015) Ecological strategies of Al-accumulating and non-accumulating functional groups from the Cerrado sensu stricto. An Ac Bras Cienc. https://doi.org/10.1590/0001-3765201520140222

    Article  Google Scholar 

  • Souza MC, Habermann G (2012) Towards a new ecophysiological approach to understand citrus crop yield under abiotic stresses mirroring in the Brazilian savanna genetic resources. In: Hasegawa H (ed) Rahman IMdM. Water Stress, InTech, Croatia, pp 151–164

    Google Scholar 

  • Souza MC, Habermann G, Amaral CL, Rosa AL, Pinheiro MHO, Costa FB (2017) Vochysia tucanorum Mart.: an aluminum-accumulating species evidencing calcifuge behavior. Plant Soil 419:377–389

    Article  CAS  Google Scholar 

  • Souza MC, Rosa AL, Poschenrieder C, Tolrà R, Da Costa FB (2018a) Fingerprinting metabolomics in tropical mistletoes: a case study with facultative aluminum-accumulating species. Phytochem Lett 25:90–94

    Article  CAS  Google Scholar 

  • Souza MC, Scalon MC, Poschenrieder C, Tolrá R, Venancio T, Teixeira SP, Da Costa FB (2018b) Aluminum detoxification in facultative (Passovia ovata (Pohl ex DC.) Kuijt and Struthanthus polyanthus Mart.—Loranthaceae) and dependent (Psittacanthus robustus (Mart.) Marloth—Loranthaceae) Al-accumulating mistletoe species from the Brazilian savanna. Phytochemistry 153:58–63

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Zhang M, Liu X, Mao Q, Shi C, Kochian LV, Liao H (2020) Aluminium is essential for root growth and development of tea plants (Camellia sinensis). JIPB 62:984–997

    Article  CAS  PubMed  Google Scholar 

  • Turner NC (2018) Turgor maintenance by osmotic adjustment: 40 years of progress. J Exp Bot 69:3223–3233

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Wang CY, Zhao XQ, Chen RF, Lan P, Shen RF (2013a) Proteomic analysis of a high Al tolerant yeast Rhodotorula taiwanensis RS1 in response to Al stress. Biochim Et Biophys Acta 1834:1969–1975

    Article  CAS  Google Scholar 

  • Wang CY, Shen RF, Wang C, Wang W (2013b) Root protein profile changes induced by Al exposure in two rice cultivars differing in Al tolerance. J Proteom 78:281–293

    Article  CAS  Google Scholar 

  • Wang J, Raman H, Zhou M, Ryan PR, Delhaize E, Hebb DM, Coombes N, Mendham N (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling Al tolerance in barley (Hordeum vulgare L.). Theo Appl Genet 115:265–276

    Article  CAS  Google Scholar 

  • Wang Y, Branicky R, Noë A, Hekimi S (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217:1915–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Li X, Zhen S, Li X, Wang C, Wang Y (2013c) The important role of quinic acid in the formation of phenolic compounds from pyrolysis of chlorogenic acid. JTAC 114:1231–1238

    CAS  Google Scholar 

  • Wang ZQ, Xu XY, Gong QQ, Xie C, Fan W, Yang JL, Lin QS, Zheng SJ (2014) Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress. J Proteom 98:189–205

    Article  CAS  Google Scholar 

  • Watanabe T, Osaki M (2002) Influence of aluminum and phosphorus on growth and xylem sap composition in Melastoma malabathricum L. Plant Soil 237:63–70

    Article  Google Scholar 

  • White P, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood M (1995) A mechanism of Al toxicity to soil bacteria and possible ecological implications. Plant Soil 171:63–69

    Article  CAS  Google Scholar 

  • Xu Q, Wang Y, Ding Z, Fan K, Ma D, Zhang Y, Yin Q (2017) Aluminum induced physiological and proteomic responses in tea (Camellia sinensis) roots and leaves. Plant Physiol Biochem 115:141–151

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi M, Sasaki T, Sivaguru M, Yamamoto Y, Osawa H, Ahn SJ, Matsumoto H (2005) Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1). Plant Cell Physiol 46:812–816

    Article  CAS  PubMed  Google Scholar 

  • Yang LT, Jiang HX, Tang N, Chen LS (2011) Mechanisms of aluminum-tolerance in two species of citrus: secretion of organic acid anions and immobilization of aluminum by phosphorus in roots. Plant Sci 189:521–530

    Article  CAS  Google Scholar 

  • Zhang X, Long Y, Huang J, Xia J (2019) Review molecular mechanisms for coping with Al toxicity in plants. Intl J Mol Sci 20:1551. https://doi.org/10.3390/ijms20071551

    Article  CAS  Google Scholar 

  • Zhao H, Huang W, Zhang Y, Li Y, Tang C, Huang J, Ni J (2018) Natural variation of CsSTOP1 in tea plant (Camellia sinensis) related to aluminum tolerance. Plant Soil 431:71–87

    Article  CAS  Google Scholar 

  • Zheng K, Pan JW, Ye L, Fu Y, Peng HZ, Wan BY, Gu Q, Bian HW, Han N, Wang JH, Kang B, Pan JH, Shao HH, Wang WZ, Zhu MY (2007) Programmed cell death-involved Al toxicity in yeast alleviated by anti-apoptotic members with decreased calcium signals. Plant Physiol 143:38–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Wang H, Zhu Y, Zou J, Zhao FJ, Huang CF (2015) Genome-wide transcriptomic and phylogenetic analyzes reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum). BMC Plant Biol 15:1–13

    Article  CAS  Google Scholar 

Download references

Funding

Fundação de Apoio à Pesquisa do Distrito Federal,0193.001622/2017,Luiz A R Pereira,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Author information

Authors and Affiliations

Authors

Contributions

LMRC contributed to writing of the review, CCV supervised and helped the writing, SMCG supervised the sections on molecular biology, TCRW supervised the writing on metabolism and English correction, NFC supervised and helped with writing on proteomics, MCS helped with the writing on the ecology of Cerrado plants, LARP helped with the writing, English, and final revision of the manuscript.

Corresponding author

Correspondence to Luiz Alfredo Rodrigues Pereira.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro, L.M.R., Vinson, C.C., da Gordo, S.M.C. et al. Molecular and physiological aspects of plant responses to aluminum: what do we know about Cerrado plants?. Braz. J. Bot 45, 545–562 (2022). https://doi.org/10.1007/s40415-021-00781-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-021-00781-1

Keywords

Navigation