Skip to main content
Log in

Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Aluminum toxicity in acid soils severely limits crop productivity through inhibition of root growth and, consequently, shoot development. Several Arabidopsis mutants were previously identified as having roots with Al hypersensitivity, suggesting that these represent deleterious mutations affecting genes required for either Al tolerance or resistance mechanisms. For this report, the als1-1 mutant was chosen for further characterization. The phenotype of als1-1 is most obviously presented in Al challenged roots, as evidenced by exaggerated root growth inhibition in conjunction with increased expression of Al-responsive genes compared to wt. Using a map-based cloning approach, the als1-1 mutation was isolated and found to represent a deleterious amino acid substitution in a previously uncharacterized half type ABC transporter, At5g39040, which is expressed in a non-Al dependent manner in all organs tested. GUS-dependent analyses revealed that ALS1 expression is primarily localized to the root tip and the vasculature throughout the plant. Concomitant with this, an ALS1: GFP fusion accumulates at the vacuolar membrane of root cells, indicating that ALS1 may be important for intracellular movement of some substrate, possibly chelated Al, as part of a mechanism of Al sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abele R, Tampe R (2004) The ABCs of immunology: structure and function of TAP, the transporter associated with antigen processing. Physiology 19:216–224

    Article  PubMed  CAS  Google Scholar 

  • Blancaflor EB, Jones DL, Gilroy S (1998) Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol 118:159–172

    Article  PubMed  CAS  Google Scholar 

  • Boudonck K, Dolan L, Shaw PJ (1998) Coiled body numbers in the Arabidopsis root epidermis are regulated by cell type, developmental stage and cell cycle parameters. J Cell Sci 111:3687–3694

    PubMed  CAS  Google Scholar 

  • Cousson A (2006) Two Ca2+ mobilizing pathways implicated within abscisic acid-induced stomatal closing in Arabidopsis thaliana (L.) Heynh. (Columbia-4 ecotype). Biol Plant (in press)

  • Davidson AL, Chen J (2004) ATP-binding cassette transporters in bacteria. Annu Rev Biochem 73:241–268

    Article  PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101:15249–15254

    Article  PubMed  CAS  Google Scholar 

  • Gabrielson KM, Cancel JD, Morua LF, Larsen PB (2006) Identification of dominant mutations that confer increased aluminium tolerance through mutagenesis of the Al-sensitive Arabidopsis mutant, als3–1. J Exp Bot 57:943–951

    Article  PubMed  CAS  Google Scholar 

  • Grabski S, Schindler M (1995) Aluminum induces rigor within the actin network of soybean cells. Plant Physiol 108:897–901

    PubMed  CAS  Google Scholar 

  • Haug A, Shi B, Vitorello V (1994) Aluminum interaction with phosphoinositide-associated signal transduction. Arch Toxicol 68:1–7

    Article  PubMed  CAS  Google Scholar 

  • Hoekenga O, Maron LG, Piñeros MA, Cançado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743

    Article  PubMed  CAS  Google Scholar 

  • Jones DL, Kochian LV (1995) Aluminum inhibition of the inositol 1,4,5-triphosphate signal transduction pathway in wheat roots: a role in aluminum toxicity? Plant Cell 7:1913–1922

    Article  PubMed  CAS  Google Scholar 

  • Jones DL, Kochian LV (1997) Aluminum interaction with plasma membrane lipids and enzyme metal binding sites and its potential role in Al cytotoxicity. FEBS Lett 400:51–57

    Article  PubMed  CAS  Google Scholar 

  • Kispal G, Csere P, Guiard B, Lill R (1997) The ABC transporter Atm1p is required for mitochondrial iron homeostasis. FEBS Lett 418:346–350

    Article  PubMed  CAS  Google Scholar 

  • Kispal B, Csere P, Prohl C, Lill R (1999) The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J 18:3981–3989

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer. ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • Larsen PB, Tai CY, Kochian LV, Howell SH (1996) Arabidopsis mutants with increased sensitivity to aluminum. Plant Physiol 110:743–751

    Article  PubMed  CAS  Google Scholar 

  • Larsen PB, Kochian LV, Howell SH (1997) Al inhibits both shoot development and root growth in als3, an Al sensitive Arabidopsis mutant. Plant Physiol 114:1207–1214

    PubMed  CAS  Google Scholar 

  • Larsen PB, Geisler M.J, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363

    Article  PubMed  CAS  Google Scholar 

  • Leighton J, Schatz G (1995) An ABC transporter in the mitochondrial inner membrane is required for normal growth of yeast. EMBO J 14:188–195

    PubMed  CAS  Google Scholar 

  • Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci USA 94:42–47

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Luan S (2001) Internal aluminum block of plant inward K+ channels. Plant Cell 13:1453–1466

    Article  PubMed  CAS  Google Scholar 

  • Ma JF (2000) Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 4:383–390

    Google Scholar 

  • Ma JF, Hiradate S (2000) Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211:355–360

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Hiradate S, Nomoto K, Iwashita T, Matsumoto H (1997) Internal detoxification mechanism of Al in hydrangea (identification of Al form in the leaves). Plant Physiol 113:1033–1039

    PubMed  CAS  Google Scholar 

  • Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat. Plant Physiol 117:753–759

    Article  CAS  Google Scholar 

  • Pellet DM Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum tolerance mechanism in maize (Zea mays L.). Planta 196:788–795

    Article  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418

    Article  PubMed  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995a) Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103–110

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995b) Malate efflux from root apices and tolerance to aluminium are highly correlated in wheat. Aust J Plant Physiol 22:531–536

    Article  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi A, Matsumoto H (2001) Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition. Physiol Plant 112:353–358

    Article  PubMed  CAS  Google Scholar 

  • Van HL, Kuraishi S, Sakurai N (1994) Aluminum-induced rapid root inhibition and changes in cell-wall components of squash seedlings. Plant Physiol 106:971–976

    Google Scholar 

  • von Uexkull HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  • Wemmie JA, Szcypka MS, Thiele DJ, Moye-Rowley WS (1994) Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1. J Biol Chem 269:32592–32597

    PubMed  CAS  Google Scholar 

  • Yamaguchi M, Sasaki T, Sivaguru M, Yamamoto Y, Osawa H, Ahn SJ, Matsumoto H (2005) Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1). Plant Cell Physiol 46:812–816

    Article  PubMed  CAS  Google Scholar 

  • Zheng SJ, Ma JF, Matsumoto H (1998) High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol 117:745–751

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Ohio State University Arabidopis Biological Resource Center for providing the Arabidopsis T-DNA knockout line used for this analysis. We would also like to thank Dr. Chris Amrhein and Woody Smith of the UC-Riverside Environmental Sciences program, Dr. Harley Smith of the UC-Riverside Botany and Plant Sciences Department, and Dr. David Carter of the Center for Plant Cell Biology for technical assistance with this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Larsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, P.B., Cancel, J., Rounds, M. et al. Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225, 1447–1458 (2007). https://doi.org/10.1007/s00425-006-0452-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0452-4

Keywords

Navigation