Skip to main content

Mechanisms of Hyper-resistance and Hyper-tolerance to Aluminum in Plants

  • Chapter
Aluminum Stress Adaptation in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 24))

Abstract

As a widespread, permanent stress factor in acid soils, Aluminum toxicity has driven the evolution of different mechanisms that allow plants to colonize these adverse environments. Even more, Al-induced stimulation of growth has frequently been observed in highly adapted plants. Plant strategies for handling excess Al span from highly efficient exclusion (hyper-resistance) to the tolerance of extremely high Al accumulation within leaf tissues (hyper-tolerance). This chapter, after considering potential mechanisms for Al-induced growth stimulation, gives an overview of the current knowledge on Al hyper-resistance and Al hyper-tolerance mechanisms in plants with special focus on both the highly efficient excluder species of the genus Urochloa (former Brachiaria) and the most studied Al accumulators, tea and buckwheat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleekseva T, Alekseev A, Xu R-K, Zhao A-Z, Kalinin P (2011) Effect of soil acidification by a tea plantation on chemical and mineralogical properties of Alfisols in eastern China. Environ Geochem Health 33:137–148

    Article  Google Scholar 

  • Amenós M, Corrales I, Poschenrieder C, Illéš P, Baluška F, Barceló J (2009) Different effects of aluminum on the actin cytoskeleton and brefeldin A-sensitive vesicle recycling in root apex cells of two maize varieties differing in root elongation rate and aluminium tolerance. Plant Cell Physiol 50:528–540

    Article  PubMed  Google Scholar 

  • Arroyave C, Barceló J, Poschenrieder C, Tolrà R (2011) Aluminium-induced changes in root epidermal cell patterning, a distinctive feature of hyperresistance to Al in Brachiaria decumbens. J Inorg Biochem 105:1477–1483

    Article  CAS  PubMed  Google Scholar 

  • Arroyave C, Tolrà R, Thuy T, Barceló J, Poschenrieder C (2013) Differential aluminum resistance in Brachiaria species. Environ Exp Bot 89:11–18

    Article  CAS  Google Scholar 

  • Ayeni O, Kambizi L, Laubscher C, Fatoki O, Olatunji O (2014) Risk assessment of wetland under aluminium and iron toxicities: a review. Aq Ecosyst Health Manag 17:122–128

    CAS  Google Scholar 

  • Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Article  Google Scholar 

  • Becker M, Asch F (2005) Iron toxicity in rice-conditions and management concepts. J Plant Nutr Soil Sci 168:558–573

    Article  CAS  Google Scholar 

  • Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249:9–18

    Article  CAS  Google Scholar 

  • Bitencourt GA, Chiari L, Laura VA, do Valle CB, Jank L, Moro JR (2011) Aluminum tolerance on genotypes of signal grass. Rev Bras Zootec 40:245–250

    Article  Google Scholar 

  • Brunner I, Sperisen C (2013) Aluminum exclusion and aluminum tolerancein woody plants. Front Plant Sci 4:172

    Article  PubMed Central  PubMed  Google Scholar 

  • Carr HP, Lombi E, Kupper H, McGrath SP, Wong MH (2003) Accumulation and distribution of aluminium and other elements in tea (Camellia sinensis) leaves. Agronomie 23:705–710

    Article  CAS  Google Scholar 

  • Chen YM, Wang MK, Zhuang SY, Chiang PN (2006) Chemical and physical properties of rhizosphere and bulk soils of three tea plants cultivated in Ultisols. Geoderma 136:378–387

    Article  CAS  Google Scholar 

  • De Andrade LRM, Barros LMG, Echevarria GF, do Amaral LIV et al (2011) Al-hyperaccumulator Vochysiaceae from the Brazilian Cerrado store aluminum in their chloroplasts without apparent damage. Environ Exp Bot 70:37–42

    Article  Google Scholar 

  • Delhaize E, Gruber B, Ryan PR (2007) The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Lett 581:2255–2262

    Article  CAS  PubMed  Google Scholar 

  • Delhaize E, Ma JF, Ryan PR (2012) Transcriptional regulation of aluminum tolerance genes. Trends Plant Sci 17:341–348

    Article  CAS  PubMed  Google Scholar 

  • Doncheva S, Amenós M, Poschenrieder C, Barceló J (2005) Root cell patterning: a primary target for aluminium toxicity in maize. J Exp Bot 56:1213–1220

    Article  CAS  PubMed  Google Scholar 

  • Eticha D, Stass A, Horst WJ (2005) Localization of aluminium in the maize root apex: can morin detect cell wall bound aluminium? J Exp Bot 56(415):1351–1357

    Article  CAS  PubMed  Google Scholar 

  • Fageria NK, Baligar VC (2008) Ameliorating soil acidity of tropical oxisols by liming for sustainable crop production. Adv Agron 99:345–399

    Article  CAS  Google Scholar 

  • Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH, Bustamante C, Kochian LV, McCouch SR (2011) Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 7, e1002221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao HJ, Zhao Q, Zhang XC, Wan XC, Mao JD (2014) Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots. J Agr Food Chem 62:2313–2319

    Article  CAS  Google Scholar 

  • Gould B, McCouch S, Geber M (2014) Variation in soil aluminium tolerance genes is associated with local adaptation to soils at the Park Grass Experiment. Mol Ecol 23:6058–6072

    Article  CAS  PubMed  Google Scholar 

  • Gout E, Rébeillé F, Douce R, Bligny R (2014) Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unraveling the role of Mg2+ in cell respiration. Proc Natl Acad Sci U S A 111:E4560–E4567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guimaraes CT, Simoes CC, Pastina MM, Maron LG et al (2014) Genetic dissection of Al tolerance QTLs in the maize genome by high density SNP scan. BMC Genom 15:153

    Article  Google Scholar 

  • Hajiboland R, Poschenrieder C (2015) Localization and compartmentation of Al in the leaves and roots of tea plants. Phyton In J Exp Bot (in press)

    Google Scholar 

  • Hajiboland R, Bahrami-Rad S, Bastani S, Tolrà R, Poschenrieder C (2013a) Boron re-translocation in tea (Camellia sinensis (L.) O. Kuntze) plants. Acta Physiol Plant 35:2373–2381

    Article  CAS  Google Scholar 

  • Hajiboland R, Barceló J, Poschenrieder C, Tolrà R (2013b) Amelioration of iron toxicity: a mechanism for aluminum-induced growth stimulation in tea plants. J Inorg Biochem 128:183–187

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R, Rad SB, Barceló J, Poschenrieder C (2013c) Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis). J Plant Nutr Soil Sci 176:616–625

    Article  CAS  Google Scholar 

  • Hajiboland R, Bastani S, Bahrami-Rad S, Poschenrieder C (2015) Interactions between aluminum and boron in tea (Camellia sinensis) plants. Acta Physiol Plant (in press)

    Google Scholar 

  • Haridasan M (1982) Aluminum accumulation by some Cerrado native species of Central Brazil. Plant Soil 65:265–273

    Article  CAS  Google Scholar 

  • Haridasan M, Paviani TI, Schiavini I (1986) Localization of aluminum in the leaves of some aluminum-accumulating species. Plant Soil 94:435–437

    Article  Google Scholar 

  • Horst WJ, Wagner A, Marschner H (1982) Mucilage protects root-meristem from aluminum injury. J Plant Physiol 105:435–444

    CAS  Google Scholar 

  • Ikka T, Ogawa T, Li D, Hiradate S, Morita A (2013) Effect of aluminum on metabolism of organic acids and chemical forms of aluminum in root tips of Eucalyptus camaldulensis Dehnh. Phytochemistry 94:142–147

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa S, Wagatsuma T, Sasaki R, Ofei-Manu P (2000) Comparison of the amount of citric and malic acids in Al media of seven plant species and two cultivars in five species. Soil Sci Plant Nutr 46:751–758

    Article  CAS  Google Scholar 

  • Jansen S, Broadley MR, Robbrecht E, Smets E (2002) Aluminum hyperaccumulation in angiosperms: a review of its phylogentic significance. Bot Rev 68:235–269

    Article  Google Scholar 

  • Jansen S, Watanabe T, Dessein S, Smets E, Robbrecht E (2003) A comparative study of metal levels in leaves of some Al-accumulating Rubiaceae. Ann Bot 91:657–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khabaz-Saberi H, Barker SJ, Rengel Z (2012) Tolerance to ion toxicities enhances wheat (Triticum aestivum L.) grain yield in waterlogged acidic soils. Plant Soil 354:371–381

    Article  CAS  Google Scholar 

  • Khabaz-Saberi H, Barker SJ, Rengel Z (2014) Tolerances to ion toxicities enhances wheat grain yield in acid soils prone to drought and transient waterlogging. Crop Pasture Sci 65:862–867

    Article  CAS  Google Scholar 

  • Kidd PS, Proctor J (2000) Effects of aluminium on the growth and mineral composition of Betula pendula Roth. J Exp Bot 51:1057–1066

    Article  CAS  PubMed  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunsé B, Barceló J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    Article  CAS  PubMed  Google Scholar 

  • Kinraide TB (1998) Three mechanisms for the calcium aññeviation of mineral toxicities. Plant Physiol 118:513–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kinraide TB, Ryan PR, Kochian LV (1992) Interactive effects of Al3+, H+, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol 99:1461–1468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kinraide TB, Poschenrieder C, Kopittke PM (2011) The standard electrode potential (E-theta) predicts the prooxidant activity and the acute toxicity of metal ions. J Inorg Biochem 105:1438–1445

    Article  CAS  PubMed  Google Scholar 

  • Klug B, Horst WJ (2010) Oxalate exudation into the root tip water free space confers protection from aluminum toxicity and allows accumulation in the symplast in buckwheat (Fagopyrum esculentum). New Phytol 187:380–391

    Article  CAS  PubMed  Google Scholar 

  • Klug B, Specht A, Horst WJ (2011) Aluminium localization in root tips of the aluminium-accumulating plant species buckwheat (Fagopyrum esculentum Moench). J Exp Bot 62:5453–5462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kochian LV, Piñeros MA, Hoekenga OA (2005) The Physiology, genetics and molecular Biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    Article  CAS  Google Scholar 

  • Larsen PB, Geisler J, Jones C, Williams K, Cancel J (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363

    Article  CAS  PubMed  Google Scholar 

  • Lazerda AL, de Dusi DMA, Alves E, Rodrigues JCM et al (2013) Expression analysis of Brachiaria brizantha genes encoding ribosomal proteins BbrizRPS8, BbrizRPS15a, and BbrizRPL41 during development of ovaries and anthers. Protoplasma 250:505–514

    Article  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses, vol 1, 2nd edn. Academic Press, New York, NY

    Google Scholar 

  • Li XF, Ma JF, Hiradate S, Matsumoto H (2000) Mucilage strongly binds aluminum but does not prevent roots from aluminum injury in Zea mays. Physiol Plant 108:152–160

    Article  CAS  Google Scholar 

  • Liu J, Piñeros MA, Kochian LV (2014) The role of aluminum sensing and signaling in plant aluminum resistance. J Integr Plant Biol 56:221–230

    Article  CAS  PubMed  Google Scholar 

  • Llugany M, Poschenrieder C, Barceló J (1995) Monitoring of aluminium-induced inhibition of root elongation in four maize cultivars differing in tolerance to aluminium and proton toxicity. Physiol Plant 93:265–271

    Article  CAS  Google Scholar 

  • Llugany M, Lombini A, Poschenrieder C, Dinelli E, Barceló J (2003) Different mechanisms account for enhanced copper resistance in Silene armería ecotypes from mine spoil and serpentine sites. Plant Soil 251:55–63

    Article  CAS  Google Scholar 

  • Ma JF, Hiradate S (2000) Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211:355–360

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat. II Oxalic acid detoxifies aluminum internally. Plant Physiol 117:753–759

    Article  PubMed Central  CAS  Google Scholar 

  • Ma JF, Xhen ZC, Shen RF (2014) Molecular mechanisms of Al tolerance in gramineous plants. Plant Soil 381:1–12

    Article  CAS  Google Scholar 

  • Massot N, Nicander B, Barceló J, Poschenrieder C, Tillberg E (2002) A rapid increase in cytokinin levels and enhanced ethylene production precede Al3+-induced inhibition of root growth in vean seedlings (Phaseolus vulgaris L.). Plant Growth Reg 37:105–112

    Article  CAS  Google Scholar 

  • Matsumoto H, Hirasawa E, Morimura S, Takahashi E (1976) Localization of aluminum in tea leaves. Plant Cell Physiol 17:627–631

    CAS  Google Scholar 

  • Meda AR, Furlani PR (2005) Tolerance to aluminum toxicity by tropical leguminous plants used as cover crops. Braz Arch Biol Technol 48:309–317

    Article  CAS  Google Scholar 

  • Metali F, Salim KA, Burslem DFRP (2012) Evidence of foliar aluminium accumulation in local, regional and global dataset of wild plants. New Phytol 193:637–649

    Article  CAS  PubMed  Google Scholar 

  • Mongon J, Konnerup D, Colmer TD, Rerkasem B (2014) Responses of rice to Fe2+ in aerated and stagnat conditions: growth, root porosity and radial oxygen barrier. Funct Plant Biol 9:922–929

    Article  Google Scholar 

  • Morita A, Horie H, Fujii Y, Takatsu S, Watanabe N, Yagi A, Yokota H (2004) Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.). Phytochemistry 65:2775–2780

    Article  CAS  PubMed  Google Scholar 

  • Morita A, Yanagisawa O, Takatsu S, Maeda S, Hiradate S (2008) Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis (L.) Kuntze). Phytochemistry 69:147–153

    Article  CAS  PubMed  Google Scholar 

  • Nagata T, Hayatsu M, Kosuge N (1992) Identification of aluminium forms in tea leaves by 27Al NMR. Phytochemistry 31:1215–1218

    Article  CAS  Google Scholar 

  • Olivares E, Peña E, Marcano E, Mostacero J, Aguiar G, Benítez M, Rengifo E (2009) Aluminum accumulation and its relationship with mineral nutrients in 12 pteridophytes from Venezuela. Environ Exp Bot 65:132–141

    Article  CAS  Google Scholar 

  • Osaki M, Watanabe T, Tadano T (1997) Beneficial effect of aluminium on growth of plants adapted to low pH soils. Soil Sci Plant Nutr 43:551–563

    Article  CAS  Google Scholar 

  • Osaki M, Watanabe T, Ishizawa T, Nilnod C, Nuyim T, Sittibush C, Tadano T (1998) Nutritional characteristics in leaves of native plants grown in acid sulfate, peat, sandy podzolic, and saline soils distributed in peninsular Thailand. Plant Soil 201:175–182

    Article  CAS  Google Scholar 

  • Osawa H, Ikeda S, Tange T (2013) The rapid accumulation of aluminum is ubiquitous in both evergreen and deciduous leaves of Theaceae and Ternstroemiaceae plants over a wide pH range in acidic soils. Plant Soil 363:49–59

    Article  CAS  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pillon Y, Hopkins HCF, Rigault F, Jaffré T, Stacy EA (2014) Cryptic adaptive radiation in tropical forest trees in New Caledonia. New Phytol 202:521–530

    Article  PubMed  Google Scholar 

  • Poschenrieder C, Gunsé B, Corrales I, Barceló J (2008) A glance into aluminum toxicity and resistance in plants. Sci Total Environ 400:356–368

    Article  CAS  PubMed  Google Scholar 

  • Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25

    Article  CAS  PubMed  Google Scholar 

  • Reyna-Llorens I, Corrales I, Poschenrieder C, Barceló J, Cruz-Ortega R (2015) Both aluminum and ABA induce the expression of an ABC-like transporter gene (FeALS3) in the Al-tolerant species Fagopyrum esculentum. Environ Exp Bot 111:74–82

    Article  CAS  Google Scholar 

  • Ruan JY, Wong MH (2004) Aluminium absorption by intact roots of the Al-accumulating plant Camellia sinensis L. Agronomie 24:137–142

    Article  CAS  Google Scholar 

  • Sarkarung S (1986) Screening upland rice for aluminum tolerance and blast resistance. In: Progress in upland rice research. Proceeding of the 1985 Jakarta Conference. The International Rice Research Institute, Manila, Philippines, pp 272–281

    Google Scholar 

  • Serrano HC, Pinto MJ, Martins-Louçao MA, Branquinho C (2011) How does Al hyperaccumulator plant respond to a natural field gradient of soil phytoavailable Al. Sci Total Environ 409:3749–3756

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Shabala L, Barceló J, Poschenrieder C (2014) Membrane transporters mediating root signaling and adaptive responses to oxygen deprivation and soil flooding. Plant Cell Environ 37:2216–2233

    CAS  PubMed  Google Scholar 

  • Shen R, Ma JF (2001) Distribution and mobility of aluminium in an Al-accumulating plant, Fagopyrum esculentum Moench. J Exp Bot 52:1683–1687

    Article  CAS  PubMed  Google Scholar 

  • Silva PIT, Martins AM, Gouvea EG, Pessoa-Filho M, Ferreira ME (2013) Development and validation of microsatellite markers for Brachiaria ruziziensis obtained by partial genome assembly of Illumina single-end reads. BMC Genom 14:17

    Article  CAS  Google Scholar 

  • Silveira E, Guimaraes L, de Dusi DMA, Silva F et al (2012) Expressed sequence-tag analysis of ovaries of Brachiaria brizantha reveals genes associated with the early steps of embryo sac differentiation of apomitic plants. Plant Cell Rep 31:403–416

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto E, Homma T, Matsuo K, Hoshino T, Lux A, Luxova M (2004) Root structure and cell wall extensibility of adventitious roots of tea (Camellia sinensis cv. Yabukita). Biologia 59:57–66

    Google Scholar 

  • Tolrà RP, Poschenrieder C, Luppi B, Barceló J (2005) Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosa L. Environ Exp Bot 54:231–238

    Article  Google Scholar 

  • Tolrà R, Vogel-Mikus K, Hajiboland R, Kump P et al (2011) Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy. J Plant Res 124:165–172

    Article  PubMed  Google Scholar 

  • Torres González AM, Morton CM (2005) Molecular and morphological phylogenetic analysis of Brachiaria and Urochloa (Poaceae). Mol Phylogenet Evol 37:36–44

    Article  PubMed  Google Scholar 

  • Vázquez MD, Poschenrieder C, Corrales I, Barceló J (1999) Change in apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety. Plant Physiol 119:435–444

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang H, Xu R-K, Wang N, Li X-H (2010) Soil acidification of alfisols as influenced by tea cultivation in China. Pedosphere 20:799–806

    Article  CAS  Google Scholar 

  • Wang H, Chen RF, Iwashita T, Shen RF, Ma JF (2015) Physiological characterization of aluminum tolerance and accumulation in tartary and wild buckwheat. New Phytol 205:273–279

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Osaki M (2001) Influence of aluminum and phosphorus on growth and xylem sap composition in Melastoma malabathricum L. Plant Soil 237:63–70

    Article  CAS  Google Scholar 

  • Watanabe T, Osaki M (2002) Role of organic acids in aluminum accumulation and plant growth in Melastoma malabathricum. Tree Physiol 22:785–792

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Osaki M, Tadano T (2001) Al uptake kinetics in roots of Melastoma malabathricum L. – an Al accumulator plant. Plant Soil 231:283–291

    Article  CAS  Google Scholar 

  • Watanabe T, Misawa S, Hiradate S, Osaki M (2008) Characterization of root mucilage from Melastoma malabathricum, with emphasis on its role in aluminum accumulation. New Phytol 178:581–589

    Article  CAS  PubMed  Google Scholar 

  • Wenzl P, Patiño GM, Chaves AL, Mayer JE, Rao IM (2001) The high level of aluminum resistance in signal grass is not associated with known mechanisms of external aluminum detoxification in root apices. Plant Physiol 125:1473–1484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wenzl P, Chaves A, Patiño GM, Mayer JE, Rao IM (2002) Aluminum stress stimulates the accumulation of organic acids in root apices of Brachiaria species. J Plant Nutr Soil Sci 165:582–588

    Article  CAS  Google Scholar 

  • Wheeler DM, Edmeades DC, Chriestie RA, Gardner R (1992) Effect of aluminum on the growth of 34 plant species – a summary of results obtained in low ionic-strength solution culture. Plant Soil 146:61–66

    Article  CAS  Google Scholar 

  • Wu LB, Shhadi MY, Gregorio G, Matthus E et al (2014) Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice 7:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamaji N, Huang CF, Nagao S, Yano M et al (2009) A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21:3339–3349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang ZB, Rao IM, Horst WJ (2013) Interaction of aluminium and drought stress on root growth and crop yield on acid soils. Plant Soil 372:3–25

    Article  CAS  Google Scholar 

  • Yang ZB, Geng XY, He CM, Zhang F et al (2014) TAA1-regulated local auxin biosynthesis in the root ápex transition zone mediates the aluminium-induced inhibition of root growth in Arabidopsis. Plant Cell 26:2889–2904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yokosho K, Yamaji N, Ma JF (2014) Global transcriptome analysis of Al-induced genes in an Al-accumulating species, common buckwheat (Fagopyrum esculentum Moench). Plant Cell Physiol 55:2077–2091

    Article  PubMed  Google Scholar 

  • Zeng QL, Chen RF, Zhao XQ, Wang HY, Shen RF (2011) Aluminium uptake and accumulation in the hyperaccumulator Camellia oleifera Abel. Pedosphere 21:358–364

    Article  Google Scholar 

  • Zeng QL, Chen RF, Zhao XQ, Shen RF, Noguchi A, Shinmachi F, Hasegawa I (2013) Aluminum could be transported via phloem in Camellia oleifera Abel. Tree Physiol 33:96–105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors’ cited work was supported by the Spanish MICINN (projects BFU2010-14873 and BFU2013-42839-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Poschenrieder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poschenrieder, C., Tolrà, R., Hajiboland, R., Arroyave, C., Barceló, J. (2015). Mechanisms of Hyper-resistance and Hyper-tolerance to Aluminum in Plants. In: Panda, S., Baluška, F. (eds) Aluminum Stress Adaptation in Plants. Signaling and Communication in Plants, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-19968-9_5

Download citation

Publish with us

Policies and ethics