Exogenous triacontanol-mediated increase in phenolics, proline, activity of nitrate reductase, and shoot k+ confers salt tolerance in maize (Zea mays L.)

Abstract

Triacontanol (TRIA) has been shown to regulate growth in some crop species exposed to stressful environments. In the present study, we assessed whether or not and to what extent foliar-applied TRIA can alter metabolism and nutrient uptake, and thus induce salt tolerance in maize (Zea mays L.). For this purpose, 14-day-old plants of two maize cultivars (MMRI-Yellow and Hybrid S-515) were subjected to salt stress (0 mM and 100 mM NaCl). 21-day-old plants were exogenously treated with different concentrations (0, 2, 5 µM) of TRIA. After 51 days of TRIA treatment (72-day-old plants), data of various attributes were collected. Generally, salt stress negatively affected the growth attributes in both maize cultivars. Furthermore, salinity increased relative membrane permeability (RMP), malondialdehyde (MDA), total soluble protein contents, free proline and sodium (Na+) contents, and the activities of peroxidase (POD) and catalase (CAT) in both maize cultivars. Foliar spray of TRIA enhanced growth, soluble proteins, nitrate reductase (NR) activity, total phenolics, and free proline and shoot K+ contents, while it decreased RMP and root Na+ contents in maize. Overall, cv. MMRI-Yellow showed greater tolerance to salinity compared with Hybrid S-515. Among the various TRIA levels, 5 µM was much more effective in increasing growth of maize plants under both normal and saline regimes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aftab T, Khan MMA, Idrees M, Naeem M, Singh M, Ram M (2010) Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application. J Plant Interact 4:273–281

    Article  Google Scholar 

  2. Allen SK, Dobrenz AK, Schonhorst MH, Stoner JE (1985) Heritability of NaCl tolerance in germinating alfalfa seeds. Agron J 77:90–96

    Article  Google Scholar 

  3. Arnon DT (1949) Copper enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Aziz R, Shahbaz M, Ashraf M (2013) Influence of foliar application of triacontanol on growth attributes, gas exchange and chlorophyll fluorescence in sunflower (Helianthus annuus L.) under saline stress. Pak J Bot 45:1913–1918

    CAS  Google Scholar 

  5. Bates IS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    CAS  Article  Google Scholar 

  6. Beevers L, Hageman RH (1969) Nitrate reduction and its role in nitrate assimilation in plants. Physiol Plant 74:214–219

    Google Scholar 

  7. Ben Rejeb KB, Abdelly C, Savoure A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284

    CAS  Article  PubMed  Google Scholar 

  8. Borowski E, Blamowski ZK (2009) The effect of triacontanol ‘TRIA’ and Asahi-SL on the development and metabolic activity of sweet basil (Ocimum basilicum L.) plants treated with chilling. Folia Hort 21:39–48

    Google Scholar 

  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ana Biochem 72:248–254

    CAS  Article  Google Scholar 

  10. Carleton AE, Foote WH (1965) A comparison of methods for estimating total leaf area of barley plants. Crop Sci 5:602–603

    Article  Google Scholar 

  11. Carmak I, Horst JH (1991) Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    Article  Google Scholar 

  12. Chance B, Maehly A (1955) Assay of catalase and peroxidase. Meth Enzymol 2:764–817

    Article  Google Scholar 

  13. Charest C, Phan CT (1990) Cold acclimation of wheat (Triticum aestivum) properties of enzymes involved in proline metabolism. Physiol Plant 80:159–168

    CAS  Article  Google Scholar 

  14. Charlton JL, Hunter NR, Green NA, Fritzi W, Addisoni BM, Woodburyz W (1980) The effects of triacontanol and triacontanol derivatives on germination and seedling growth of Leeds durum wheat. Can J Plant Sci 60:795–797

    CAS  Article  Google Scholar 

  15. Chen X, Yuan H, Chen R, Zhu L, He G (2003) Biochemical and photochemical changes in response to triacontanol in rice (Oryza sativa L.). Plant Growth Regul 40:249–256

    CAS  Article  Google Scholar 

  16. Dheera S, Ekta K, Malik CP (2012) Effect of drought stress and its interaction with two phytohormones on Vigna radiata seed germination and seedling growth. Int J Life Sci 1:201–207

    Article  Google Scholar 

  17. Garg SK (2013) Role and hormonal regulation of nitrate reductase activity in higher plants: a review. Plant Sci Feed 3:13–20

    Google Scholar 

  18. Giannopolitis CN, Ries SK (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol 59:309–314

    CAS  PubMed  Google Scholar 

  19. Giberti S, Funck D, Forlani G (2014) Δ1-pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate. New Phytol 202:911–919

    CAS  Article  PubMed  Google Scholar 

  20. Grieve CM, Grattan SR (1983) Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    CAS  Article  Google Scholar 

  21. Grzegorczyk I, Bilichowski I, Mikicuik-Olasik E, Wysokinska H (2005) In vitro cultures of Salvia officinalis L. as a source of antioxidant compounds. Acta Soc Bot Pol 74:17–21

    Article  Google Scholar 

  22. Grzegorczyk I, Bilichowski I, Mikicuik-Olasik E, Wysokinska H (2006) The effect of triacontanol on shoot multiplication and production of antioxidant compounds in shoot cultures of Salvia officinalis L. Acta Soc Bot Pol 75:11–15

    CAS  Article  Google Scholar 

  23. Hoagland RE (1980) Effects of triacontanol on seed germination and early growth. Bot Gaz 141:53–55

    CAS  Article  Google Scholar 

  24. Iqbal M, Ashraf M (2013) Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ Exp Bot 86:76–85

    CAS  Article  Google Scholar 

  25. Jaworski EG (1971) Nitrate reductase assay in intact plant tissue. Biochem Biophys Res Commun 43:1274–1279

    CAS  Article  PubMed  Google Scholar 

  26. Julkenen-Titto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem 33:213–217

    Article  Google Scholar 

  27. Kaya C, Sonmez O, Aydemir S, Ashraf M, Dikilitas M (2013) Exogenous application of mannitol and thiourea regulates plant growth and oxidative stress responses in salt-stressed maize (Zea mays L.). J Plant Interact 8:234–241

    CAS  Article  Google Scholar 

  28. Khan MMA, Bhardwaj G, Naeem M, Moinuddin Mohammad F, Singh M, Nasir S, Idrees M (2009) Response of tomato (Solanum lycopersicum L.) to application of potassium and triacontanol. Acta Hortic (ISHS) 823:199–208

    CAS  Article  Google Scholar 

  29. Khan NA, Khan MIR, Asgher M, Fatma M, Masood A, Syeed S (2014) Salinity tolerance in plants: revisiting the role of sulfur metabolites. J Plant Biochem Physiol 2:120. doi:10.4172/2329-9029.1000120

    Article  Google Scholar 

  30. Krishnan RR, Kumari BDR (2008) Effect of n-triacontanol on the growth of salt stressed soyabean plants. J Biosci 19:53–56

    Google Scholar 

  31. Moore S, Stein WH (1957) A modified ninhydrin Reagent for the photometric determination of amino acids and related compounds. J Biol Chem 211:907–913

    Google Scholar 

  32. MSTAT Development Team (1989) MSTAT user’s guide: A microcomputer program for the design management and analysis of agronomic research experiments. Michigan State University, East Lansing

    Google Scholar 

  33. Muthuchelian K, Murugan C, Harigovindan R, Nedunchezhian N, Kulandaivelu G (1996) Ameliorating effect of triacontanol on salt stressed Erythrina variegata seedlings. Changes in growth, biomass, pigments and solute accumulation. Biol Plant 38:133–136

    CAS  Article  Google Scholar 

  34. Naeem M, Khan MMA, Moinuddin Idrees M, Aftab T (2010) Changes in photosynthesis, enzyme activities and production of anthraquinone and sennoside content of coffee senna (Senna occidentalis L.) by triacontanol. Int J Plant Dev Biol 4:53–59

    Google Scholar 

  35. Naeem M, Khan MMA, Moinuddin Idrees M, Aftab T (2011) Triacontanol-mediated regulation of growth and other physiological attributes, active constituents and yield of Mentha arvensis L. Plant Growth Regul 65:195–206

    CAS  Article  Google Scholar 

  36. Ozden M, Demirel U, Kahraman A (2009) Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Sci Hort-Amsterdam 119:163–168

    CAS  Article  Google Scholar 

  37. Perveen S, Shahbaz M, Ashraf M (2010) Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. Pak J Bot 42:3073–3081

    CAS  Google Scholar 

  38. Perveen S, Shahbaz M, Ashraf M (2011) Modulation in activities of antioxidant enzymes in salt stressed and non-stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. Pak J Bot 43:2463–2468

    CAS  Google Scholar 

  39. Perveen S, Shahbaz M, Ashraf M (2012a) Is pre-sowing seed treatment with triacontanol effective in improving some physiological and biochemical attributes of wheat (Triticum aestivum L.) under salt stress? J Appl Bot Food Qual 85:41–48

    Google Scholar 

  40. Perveen S, Shahbaz M, Ashraf M (2012b) Changes in mineral composition, uptake and use efficiency of salt stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. Pak J Bot 44:27–35

    CAS  Google Scholar 

  41. Perveen S, Shahbaz M, Ashraf M (2013) Influence of foliar-applied triacontanol on growth, gas exchange characteristics, and chlorophyll fluorescence at different growth stages in wheat under saline conditions. Photosynthetica 51:541–551

    CAS  Article  Google Scholar 

  42. Perveen S, Shahbaz M, Ashraf M (2014) Triacontanol-induced changes in growth, yield, leaf water relations, antioxidative defense system and some key osmoprotectants in bread wheat (Triticum aestivum L.) under saline stress. Turk J Bot 38:896–913

    Article  Google Scholar 

  43. Posmyk MM, Kontek R, Janas KM (2009) Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotox Environ Safe 72:596–602

    CAS  Article  Google Scholar 

  44. Ramanarayan K, Bhut A, Shripathi V, Swamy GS, Rao KS (2000) Triacontanol inhibits both enzymatic and nonenzymatic lipid peroxidation. Phytochem 55:59–66

    CAS  Article  Google Scholar 

  45. Ries SK, Richman TL, Wert VF (1978) Growth and yield of crops treated with triacontanol. J Am Soc Hort Sci 103:361–364

    CAS  Google Scholar 

  46. Ries S, Savithiry S, Wert V, Widders I (1993) Rapid induction of ion pulses in tomato, cucumber, and maize plants following a foliar application of L(+)-Adenosine. Plant Physiol 101:49–55

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Cri Rev Plant Sci 32:237–249

    Article  Google Scholar 

  48. Shekoofeh E, Shahla S (2012) Influence of salicylic acid on growth and some biochemical parameters in a C4 plant (Panicum miliaceum L.) under saline conditions. Afr J Biotechnol 11:621–627

    Google Scholar 

  49. Singh M, Khan MMA, Moinuddin, Naeem M (2011) Augmentation of nutraceuticals, productivity and quality of ginger (Zingiber officinale Rosc.) through triacontanol application. Plant Biosyst 146:106–113

  50. Snedecor GW, Cochran GW (1980) Statistical Methods, 7th edn. The Lowa State University Press, Lowa

    Google Scholar 

  51. Soda N, Wallace S, Karan R (2015) Omics study for abiotic stress responses in plants. Adv Plants Agric Res 2(1):00037. doi:10.15406/apar.2015.02.00037

    Google Scholar 

  52. Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    CAS  Article  PubMed  Google Scholar 

  53. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective roles of exogenous polyamines. Plant Sci 151:59–66

    CAS  Article  Google Scholar 

  54. Verma A, Malik CP, Gupta VK, Bajaj BK (2011) Effects of in vitro triacontanol on growth, antioxidant enzymes, and photosynthetic characteristics in Arachis hypogaea L. Braz J Plant Physiol 23:271–277

    CAS  Google Scholar 

  55. Yang G, Rhodes G, Joly RG (1996) Effects of high temperature on membrane stability and chlorophyll fluorescence in glycinebetaine-deficient and glycinebetaine-containing maize lines. Aust J Plant Physiol 23:437–443

    CAS  Article  Google Scholar 

  56. Zadebagheri M, Azarpanah A, Javanmardi S (2014) Proline metabolite transport an efficient approach in corn yield improvement as response to drought conditions. Int J Farm Alli Sci 3:453–461

    Google Scholar 

  57. Zulfiqar S, Shahbaz M (2013) Modulation in gas exchange parameters and photosystem-II activity of canola (Brassica napus L.) by foliar-applied triacontanol under salt stress. Agrochimica 57:193–200

    CAS  Google Scholar 

Download references

Acknowledgments

The current study is part of the project No. PD-IPFP/HRD/HEC/2013/1117, financially supported by Higher Education Commission (HEC) of Pakistan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shagufta Perveen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perveen, S., Iqbal, M., Parveen, A. et al. Exogenous triacontanol-mediated increase in phenolics, proline, activity of nitrate reductase, and shoot k+ confers salt tolerance in maize (Zea mays L.). Braz. J. Bot 40, 1–11 (2017). https://doi.org/10.1007/s40415-016-0310-y

Download citation

Keywords

  • Antioxidants
  • Maize
  • Phenolics
  • Proline
  • Triacontanol
  • Salinity