Skip to main content

Advertisement

Log in

PET imaging of dopaminergic system and clinical applications

  • Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Aim

Dopamine is one of the major neurotransmitters of the central nervous system. Dopamine is involved in various cerebral and peripheral physiological functions and pathological conditions. The aim of this mini review is to overview the dopamine, PET radiotracers of dopaminergic system and their clinical applications.

Methods

Dopamine synthesis, dopamine receptors, role of dopamine in physiological functions and diseases, PET radiotracers of dopaminergic system and their clinical applications were reviewed.

Results

There is a large number of PET radiotracers to assess various elements of dopaminergic system such as F-18 fluorodopamine to assess dopamine transfer and storage in peripheral catecholamine-synthesizing cells, F-18 FDOPA to assess L-DOPA transfer via l-amino acid transporters, conversion of L-DOPA to dopamine by aromatic l-amino acid decarboxylase and storage of dopamine at vesicles, C-11 methylphenidat, C-11 dihydrotetrabenazine, and C-11 deprenyl to assess dopamine transport via dopamine transporters, dopamine transport into vesicles by vesicular monoamine transporter-2, and dopamine degredation by monoamine oxidase, respectively, in presynaptic dopaminergic nerve terminals in the brain and in certain peripheral cells and C-11 raclopride and C-11 SCH 23,390 to assess dopamine receptors at postsynaptic nerve terminals. Among these radiotracers, only F-18 FDOPA is widely and commercially available. The other radiotracers are available in limited centers, mainly for research purpose. Dopaminergic PET radiotracers help to detect or diagnose various diseases such as parkinsonian syndromes, huntington’s disease, dementias, schizophrenia, drug addictions, paragangliomas, pheochromocytoma, medullary thyroid carcinoma, gut carcinoids, gliomas and hyperinsulinemic hypoglycemia.

Conclusion

There is a large number of dopaminergic PET radiotracers which help to detect or diagnose diseases of the various systems in which dopaminergic system is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors - IUPHAR Review 13. Br J Pharmacol 172:1–23

    Article  CAS  PubMed  Google Scholar 

  2. Vallone D, Picetti R, Borrelli E (2000) Structure and function of dopamine receptors. Neurosci Biobehav Rev 24:125–132

    Article  CAS  PubMed  Google Scholar 

  3. Franco R, Reyes-Resina I, Navarro G (2021) Dopamine in Health and Disease: much more than a neurotransmitter. Biomedicines 9:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chinta SJ, Andersen JK (2005) Dopaminergic neurons. Int J Biochem Cell Biol 37:942–946

    Article  CAS  PubMed  Google Scholar 

  5. Grant CE, Flis AL, Ryan BM (2022) Understanding the role of dopamine in cancer: past, present and future. Carcinogenesis 43:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kilbourn MR (2021) 11C- and 18F-Radiotracers for in vivo imaging of the dopamine system: past. Present Future Biomedicines 9:108. https://doi.org/10.3390/biomedicines9020108

    Article  CAS  PubMed  Google Scholar 

  7. Sarikaya I (2022) Biology of Cancer and PET Imaging: Pictorial Review. J Nucl Med Technol 50:81–89

    Article  Google Scholar 

  8. Minn H, Kauhanen S, Seppänen M et al (2009) 18F-FDOPA: a multiple-target molecule. J Nucl Med 50:1915–1918

    Article  CAS  PubMed  Google Scholar 

  9. Morbelli S, Esposito G, Arbizu J et al (2020) EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging 47:1885–1912

    Article  PubMed  PubMed Central  Google Scholar 

  10. Taïeb D, Hicks RJ, Hindié E et al (2019) European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 46:2112–2137

    Article  PubMed  PubMed Central  Google Scholar 

  11. Giovanella L, Treglia G, Iakovou I et al (2020) EANM practice guideline for PET/CT imaging in medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 47:61–77

    Article  PubMed  Google Scholar 

  12. Law I, Albert NL, Arbizu J et al (2019) Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging 46:540–557

    Article  CAS  PubMed  Google Scholar 

  13. Vernaleken I, Kumakura Y, Cumming P et al (2006) Modulation of [18F]fluorodopa (FDOPA) kinetics in the brain of healthy volunteers after acute haloperidol challenge. NeuroImage 30:1332–1339

    Article  PubMed  Google Scholar 

  14. Garnett S, Firnau G, Nahmias C et al (1983) Striatal dopamine metabolism in living monkeys examined by positron emission tomography. Brain Res 280:169–171

    Article  CAS  PubMed  Google Scholar 

  15. Chondrogiannis S, Marzola MC, Al-Nahhas A, Venkatanarayana TD, Mazza A, Opocher G, Rubello D (2013) Normal biodistribution pattern and physiologic variants of 18F-DOPA PET imaging. Nucl Med Commun 34:1141–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sarikaya I (2015) PET imaging in neurology: Alzheimer’s and Parkinson’s diseases. Nucl Med Commun 36:775–781

    Article  CAS  PubMed  Google Scholar 

  17. Carvey PM, Punati A, Newman MB (2006) Progressive dopamine neuron loss in Parkinson’s disease: the multiple hit hypothesis. Cell Transpl 15:239–250

    Article  Google Scholar 

  18. Blesa J, Trigo-Damas I, Dileone M et al (2017) Compensatory mechanisms in Parkinson’s disease: circuits adaptations and role in disease modification. Exp Neurol 298:148–161

    Article  CAS  PubMed  Google Scholar 

  19. Ishiwata K, Kimura Y, Oda K et al (2010) Development of PET radiopharmaceuticals and their clinical applications at the Positron Medical Center. Geriatr Gerontol Int 10(Suppl 1):S180–S196

    PubMed  Google Scholar 

  20. Dentresangle C, Veyre L, le Bars Pierre C et al (1999) Striatal D2 dopamine receptor status in Parkinson’s disease: an 18F DOPA and 11 C-raclopride PET study. Mov Disord 14:1025–1030

    Article  CAS  PubMed  Google Scholar 

  21. Turjanski N, Lees AJ, Brooks DJ (1997) In vivo studies on striatal dopamine D1 and D2 site binding in L-DOPA treated Parkinson’s disease patients with and without dyskinesias. Neurology 49:717–723

    Article  CAS  PubMed  Google Scholar 

  22. Antonini A, Schwarz J, Oertel WH et al (1997) Long-term changes of striatal dopamine D2 receptors in patients with Parkinson’s disease: a study with positron emission tomography and [11 C]raclopride. Mov Disord 12:33–38

    Article  CAS  PubMed  Google Scholar 

  23. Brooks DJ, Ibanez V, Sawle GV et al (1990) Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 28:547–555

    Article  CAS  PubMed  Google Scholar 

  24. Oh M, Lee N, Kim C et al (2021) Diagnostic accuracy of dual-phase 18F-FP-CIT PET imaging for detection and differential diagnosis of parkinsonism. Sci Rep 11:14992. https://doi.org/10.1038/s41598-021-94040-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van Laere K, Clerinx K, D’Hondt E, de Groot T et al (2010) Combined striatal binding and cerebral influx analysis of dynamic 11 C-raclopride PET improves early differentiation between multiple-system atrophy and Parkinson disease. J Nucl Med 51:588–595

    Article  PubMed  Google Scholar 

  26. la Fougère C, Pöpperl G, Levin J et al (2010) The value of the dopamine D2/3 receptor ligand 18F-desmethoxyfallypride for the differentiation of idiopathic and nonidiopathic parkinsonian syndromes. J Nucl Med 51:581–587

    Article  PubMed  Google Scholar 

  27. Criswell SR, Perlmutter JS, Videen TO et al (2011) Reduced uptake of [18F]FDOPA PET in asymptomatic welders with occupational manganese exposure. Neurology 76:1296–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sarikaya I, Apaydin H, Topal U, Karaoglan O (2006) Cyanide-induced parkinsonism and F-18 FDG PET/CT findings. Clin Nucl Med 31:363–364

    Article  CAS  PubMed  Google Scholar 

  29. Wallert E, Letort E, van der Zant F et al (2022) Comparison of [18F]-FDOPA PET and [123I]-FP-CIT SPECT acquired in clinical practice for assessing nigrostriatal degeneration in patients with a clinically uncertain parkinsonian syndrome. EJNMMI Res 12:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eshuis SA, Jager PL, Maguire RP, Jonkman S, Dierckx RA, Leenders KL (2009) Direct comparison of FP-CIT SPECT and F-DOPA PET in patients with Parkinson’s disease and healthy controls. Eur J Nucl Med Mol Imaging 36:454–462

    Article  CAS  PubMed  Google Scholar 

  31. Sood A, Shukla J, Shree R, Vatsa R, Modi M, Mittal BR (2021) Comparative performance of 99mTc-TRODAT-1 SPECT/CT and 18F-FDOPA PET/CT imaging in patients with Parkinson’s Disease, Parkinson-Plus Syndrome, and essential tremor. Clin Nucl Med 46:95–102

    Article  PubMed  Google Scholar 

  32. Kerstens VS, Varrone A (2020) Dopamine transporter imaging in neurodegenerative movement disorders: PET vs. SPECT. Clin Transl Imaging 8:349–356

    Article  Google Scholar 

  33. Jakobson Mo S, Axelsson J, Jonasson L et al (2018) Dopamine transporter imaging with [18F]FE-PE2I PET and [123I]FP-CIT SPECT-a clinical comparison. EJNMMI Res 8:100. https://doi.org/10.1186/s13550-018-0450-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee I, Kim JS, Park JY et al (2018) Head-to-head comparison of 18 F-FP-CIT and 123 I-FP-CIT for dopamine transporter imaging in patients with Parkinson’s disease: a preliminary study. Synapse 72:e22032. https://doi.org/10.1002/syn.22032

    Article  CAS  PubMed  Google Scholar 

  35. Li C, Chen M, Zhao X et al (2017) Chemical Exchange Saturation transfer MRI Signal loss of the Substantia Nigra as an imaging biomarker to evaluate the diagnosis and severity of Parkinson’s Disease. Front Neurosci 11:489

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shang S, Li D, Tian Y, Li R et al (2021) Hybrid PET-MRI for early detection of dopaminergic dysfunction and microstructural degradation involved in Parkinson’s disease. Commun Biol 4:1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen S, Leung YM, Yeung KMA et al (2016) Comparative study of 18F-DOPA PET/MR and PET/CT in quantification accuracy and clinical applicability for Parkinson’s disease: A static and dynamic data analysis. Journal of Nuclear Medicine 57 (supplement 2) 1830

  38. Arabi H, AkhavanAllaf A, Sanaat A, Shiri I, Zaidi H (2021) The promise of artificial intelligence and deep learning in PET and SPECT imaging. Phys Med 83:122–137

    Article  PubMed  Google Scholar 

  39. Boyle AJ, Gaudet VC, Black SE, Vasdev N, Rosa-Neto P, Zukotynski KA (2021) Artificial intelligence for molecular neuroimaging. Ann Transl Med 9:822

    Article  PubMed  PubMed Central  Google Scholar 

  40. Palumbo B, Bianconi F, Nuvoli S et al (2021) Artificial intelligence techniques support nuclear medicine modalities to improve the diagnosis of Parkinson’s disease and parkinsonian syndromes. Clin Transl Imaging 9:19–35

    Article  Google Scholar 

  41. Glaab E, Trezzi JP, Greuel A et al (2019) Integrative analysis of blood metabolomics and PET brain neuroimaging data for Parkinson’s disease. Neurobiol Dis 124:555–562

    Article  CAS  PubMed  Google Scholar 

  42. Choi H, Ha S, Im HJ et al (2017) Refining diagnosis of Parkinson’s disease with deep learning-based interpretation of dopamine transporter imaging. Neuroimage Clin 16:586–594

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang J, Xue L, Jiang J et al (2024) Diagnostic performance of artificial intelligence-assisted PET imaging for Parkinson’s disease: a systematic review and meta-analysis. npj Digit med 7:17

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hwang D, Kim KY, Kang SK, Seo S et al (2018) Improving the Accuracy of simultaneously reconstructed activity and attenuation maps using deep learning. J Nucl Med 59:1624–1629

    Article  CAS  PubMed  Google Scholar 

  45. Sarikaya I, Sarikaya A, Elgazzar AH (2018) Current status of 18F-FDG PET brain imaging in patients with dementia. J Nucl Med Technol 46:362–367

    Article  PubMed  Google Scholar 

  46. McKeith I, O’Brien J, Walker Z et al (2007) Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 6:305–313

    Article  PubMed  Google Scholar 

  47. Thomas AJ, Attems J, Colloby SJ et al (2017) Autopsy validation of 123I-FP-CIT dopaminergic neuroimaging for the diagnosis of DLB. Neurology 88:276–283

    Article  PubMed  PubMed Central  Google Scholar 

  48. Klein JC, Eggers C, Kalbe E et al (2010) Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology 74:885–892

    Article  CAS  PubMed  Google Scholar 

  49. Xiasheng H, Xiaoyan Z, Hu Po (2002) 18F-DOPA PET imaging in the diagnosis of dementia with Lewy bodies. Chin J Nuclear Med 22:143–145

    Google Scholar 

  50. Lee YG, Jeon S, Baik K et al (2023) Substantia Nigral dopamine transporter uptake in dementia with Lewy bodies. NPJ Parkinsons Dis 9:88. https://doi.org/10.1038/s41531-023-00534-9

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rinne JO, Laine M, Kaasinen V et al (2002) Striatal dopamine transporter and extrapyramidal symptoms in frontotemporal dementia. Neurology 58:1489–1493

    Article  CAS  PubMed  Google Scholar 

  52. Schöll M, Carter SF, Westman E et al (2015) Early astrocytosis in autosomal dominant Alzheimer’s disease measured in vivo by multi-tracer positron emission tomography. Sci Rep 5:16404

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cybulska K, Perk L, Booij J, Laverman P, Rijpkema M (2020) Huntington’s disease: a review of the known PET imaging biomarkers and targeting Radiotracers. Molecules 25:482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Turjanski N, Weeks R, Dolan R et al (1995) Striatal D1 and D2 receptor binding in patients with Huntington’s disease and other choreas. A PET study. Brain. 1995;118:689–96

  55. Sedvall G, Karlsson P, Lundin A et al (1994) Dopamine D1 receptor number—asensitive PET marker for early brain degeneration in Huntington’s disease. Eur Arch Psychiatry Clin Neurosci 243:249–255

    Article  CAS  PubMed  Google Scholar 

  56. Andrews TC, Weeks RA, Turjanski N et al (1999) Huntington’s disease progression. PET and clinical observations. Brain 122:2353–2363

    Article  PubMed  Google Scholar 

  57. Pavese N, Andrews TC, Brooks DJ et al (2003) Progressive striatal and cortical dopamine receptor dysfunction in Huntington’s disease: a PET study. Brain 126:1127–1135

    Article  PubMed  Google Scholar 

  58. Ginovart N, Lundin A, Farde L et al (1997) PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington’s disease. Brain 120:503–514

    Article  PubMed  Google Scholar 

  59. Everix L, Staelens S, Bertoglio D (2023) Positron Emission Tomography (PET) imaging biomarkers in Huntington’s Disease. In: Thomas EA, Parkin GM (eds) Biomarkers for Huntington’s Disease. Contemporary clinical neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-32815-2_6

    Chapter  Google Scholar 

  60. Pagano G, Niccolini F, Politis M (2016) Current status of PET imaging in Huntington’s disease. Eur J Nucl Med Mol Imaging 43:1171–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fusar-Poli P, Meyer-Lindenberg A (2013) Striatal presynaptic dopamine in schizophrenia, part I: meta-analysis of dopamine active transporter (DAT) density. Schizophr Bull 39:22–32

    Article  PubMed  Google Scholar 

  62. Fusar-Poli P, Meyer-Lindenberg A (2013) Striatal presynaptic dopamine in schizophrenia, part II: meta-analysis of [(18)F/(11)C]-DOPA PET studies. Schizophr Bull 39:33–42

    Article  PubMed  Google Scholar 

  63. Plavén-Sigray P, Ikonen Victorsson P, Santillo A et al (2022) Thalamic dopamine D2-receptor availability in schizophrenia: a study on antipsychotic-naive patients with first-episode psychosis and a meta-analysis. Mol Psychiatry 27:1233–1240

    Article  PubMed  Google Scholar 

  64. Agid O, Mamo D, Ginovart N et al (2007) Striatal vs extrastriatal dopamine D2 receptors in antipsychotic Response—A double-blind PET study in Schizophrenia. Neuropsychopharmacol 32:1209–1215

    Article  CAS  Google Scholar 

  65. Abi-Dargham A, Gil R, Krystal J et al (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155:761–767

    CAS  PubMed  Google Scholar 

  66. Weinstein JJ, van de Giessen E, Rosengard RJ et al (2018) PET imaging of dopamine-D2 receptor internalization in schizophrenia. Mol Psychiatry 23:1506–1511

    Article  CAS  PubMed  Google Scholar 

  67. Okubo Y, Suhara T, Suzuki K et al (1997) Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385:634–636

    Article  CAS  PubMed  Google Scholar 

  68. Wu JC, Bell K, Najafi A et al (1997) Decreasing striatal 6-FDOPA uptake with increasing duration of cocaine withdrawal. Neuropsychopharmacology 17:402–409

    Article  CAS  PubMed  Google Scholar 

  69. Heinz A, Siessmeier T, Wrase J et al (2005) Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatry 1515–1520

  70. McCann UD, Wong DF, Yokoi F et al (1998) Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11 C]WIN-35,428. J Neurosci 18:8417–8422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sekine Y, Iyo M, Ouchi Y et al (2001) Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry 158:1206–1214

    Article  CAS  PubMed  Google Scholar 

  72. Shi J, Zhao LY, Copersino ML et al (2008) PET imaging of dopamine transporter and drug craving during methadone maintenance treatment and after prolonged abstinence in heroin users. Eur J Pharmacol 579:160–166

    Article  CAS  PubMed  Google Scholar 

  73. Wang GJ, Volkow ND, Fowler JS et al (1997) Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal. Neuropsychopharmacology 16:174–182

    Article  CAS  PubMed  Google Scholar 

  74. Fehr C, Yakushev I, Hohmann N et al (2008) Association of low striatal dopamine d2 receptor availability with nicotine dependence similar to that seen with other drugs of abuse. Am J Psychiatry 165:507–514

    Article  PubMed  Google Scholar 

  75. Dagher A, Bleicher C, Aston JA et al (2001) Reduced dopamine D1 receptor binding in the ventral striatum of cigarette smokers. Synapse 42:48–53

    Article  CAS  PubMed  Google Scholar 

  76. Volkow ND, Fowler JS, Gatley SJ et al (1996) PET evaluation of the dopamine system of the human brain. J Nucl Med 37:1242–1256

    CAS  PubMed  Google Scholar 

  77. Carrasquillo JA, Chen CC, Jha A et al (2021) Imaging of Pheochromocytoma and Paraganglioma. J Nucl Med. 2021;62:1033–1042

  78. Treglia G, Cocciolillo F, de Waure C et al (2012) Diagnostic performance of 18F-dihydroxyphenylalanine positron emission tomography in patients with paraganglioma: a meta-analysis. Eur J Nucl Med Mol Imaging 39:1144–1153

    Article  PubMed  Google Scholar 

  79. Piccardo A, Morana G, Puntoni M et al (2020) Diagnosis, treatment response, and prognosis: the role of 18F-DOPA PET/CT in children affected by Neuroblastoma in comparison with 123I-mIBG scan: the first prospective study. J Nucl Med 61:367–374

    Article  CAS  PubMed  Google Scholar 

  80. PiccardoA, Lopci E, Conte M et al (2012) Comparison of 18F-dopa PET/CT and 123I MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging 39:57–71

    Article  PubMed  Google Scholar 

  81. Kim Yong-il, Lee DY, Kim D-H et al (2019) Diagnostic Value of Early F-18-FDOPA PET-CT for Initial Staging of Neuroblastoma: A Comparison Study with Delay F-18-FDOPA PET-CT and I-123-MIBG Scintigraphy/SPECT-CT Journal of Nuclear Medicine 60 (supplement 1):157

  82. Schiepers C, Chen W, Cloughesy T et al (2007) 18F-FDOPA kinetics in brain tumors. J Nucl Med 48:1651–1661

    Article  PubMed  Google Scholar 

  83. Somme F, Bender L, Namer IJ et al (2020) Usefulness of 18F-FDOPA PET for the management of primary brain tumors: a systematic review of the literature. Cancer Imaging 20:70. https://doi.org/10.1186/s40644-020-00348-5

    Article  PubMed  PubMed Central  Google Scholar 

  84. Evangelista L, Cuppari L, Bellu L et al (2019) Comparison between 18F-Dopa and 18F-Fet PET/CT in patients with suspicious recurrent high Grade Glioma: A literature review and our experience. Curr Radiopharm 12:220–228

    Article  CAS  PubMed  Google Scholar 

  85. Xiao J, Jin Y, Nie J et al (2019) Diagnostic and grading accuracy of 18F-FDOPA PET and PET/CT in patients with gliomas: a systematic review and meta-analysis. BMC Cancer 19:767

    Article  PubMed  PubMed Central  Google Scholar 

  86. Herrmann K, Czernin J, Cloughesy T et al (2014) Comparison of visual and semiquantitative analysis of 18F-FDOPA-PET/CT for recurrence detection in glioblastoma patients. Neuro-Oncol 16:603–609

    Article  PubMed  Google Scholar 

  87. Hoegerle S, Altehoefer C, Ghanem N et al (2001) 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 28:64–71

    Article  CAS  PubMed  Google Scholar 

  88. Golubić AT, Pasini Nemir E, Žuvić M et al (2017) The value of 18F-DOPA PET/CT in patients with medullary thyroid carcinoma and increased calcitonin values. Nucl Med Commun 38:636–641

    Article  PubMed  Google Scholar 

  89. Soussan M, Nataf V, Kerrou K et al (2012) Added value of early 18F-FDOPAPET/CT acquisition time in medullary thyroid cancer. Nucl Med Commun 33:775–779

    Article  PubMed  Google Scholar 

  90. Kjærulff MLG, Dias AH, Iversen P et al (2022) Early acquisition of [18F]FDOPA PET/CT imaging in patients with recurrent or residual medullary thyroid cancer is safe—and slightly better! Eur J Hybrid Imaging 6:20

    Article  PubMed  PubMed Central  Google Scholar 

  91. Schillaci O (2014) 18F-DOPA and other radiopharmaceuticals for imaging unknown primary neuroendocrine tumors. J Nucl Med 55:357–359

    Article  CAS  PubMed  Google Scholar 

  92. States LJ, Davis JC, Hamel SM et al (2021) 18F-6-Fluoro-l-Dopa PET/CT Imaging of Congenital Hyperinsulinism. J Nucl Med 62(Suppl 2):51S–56S

    Article  CAS  PubMed  Google Scholar 

  93. Imperiale A, Sebag F, Vix M et al (2015) 18F-FDOPA PET/CT imaging of insulinoma revisited. Eur J Nucl Med Mol Imaging 42:409–418

    Article  CAS  PubMed  Google Scholar 

  94. Leroy-Freschini B, Amodru V, Addeo P et al (2019) Early 18F-FDOPA PET/CT imaging after carbidopa premedication as a valuable diagnostic option in patients with insulinoma. Eur J Nucl Med Mol Imaging 46:686–695

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr Sarikaya wrote the article.

Corresponding author

Correspondence to Ismet Sarikaya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

No potential conflict of interest relevant to this article was reported.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarikaya, I. PET imaging of dopaminergic system and clinical applications. Clin Transl Imaging (2024). https://doi.org/10.1007/s40336-024-00646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40336-024-00646-z

Keywords

Navigation