Advertisement

Acta Geodaetica et Geophysica

, Volume 53, Issue 2, pp 275–293 | Cite as

Polynomial approximation for fast generation of associated Legendre functions

  • M. R. Seif
  • M. A. Sharifi
  • M. Eshagh
Original Study
  • 161 Downloads

Abstract

Today high-speed computers have simplified many computational problems, but fast techniques and algorithms are still relevant. In this study, the Hermitian polynomial approximation is used for fast evaluation of the associated Legendre functions (ALFs). It has lots of applications in geodesy and geophysics. This method approximates the ALFs instead of computing them by recursive formulae and generate them several times faster. The approximated ALFs by the Newtonian polynomials are compared with Hermitian ones and their differences are discussed. Here, this approach is applied for computing a global geoid model point-wise from EGM08 to degree and order 2160 and in propagating the orbit of a low Earth orbiting satellite. Our numerical results show that the CPU-time decreases at least two times for orbit propagation, and five times for geoid computation comparing to the case where recursive formulae for generation of ALFs are used. The approximation error in the orbit computation is at a sub-millimeter level over two weeks and that the computed geoid 0.01 mm, with a maximum of 1 mm.

Keywords

Associated Legendre function Polynomial approximation Newton polynomial Hermite polynomial Fast orbit propagation Geoid computation 

Supplementary material

References

  1. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Dover Publications, New York 55Google Scholar
  2. Atkinson KE (2008) An introduction to numerical analysis. Wiley, New YorkGoogle Scholar
  3. Bettadpur SV, Schutz BE, Lundberg JB (1992) Spherical harmonic synthesis and least squares computations in satellite gravity gradiometry. Bull Géod 66(3):261–271CrossRefGoogle Scholar
  4. Boyd JP, Alfaro LF (2013) Hermite function interpolation on a finite uniform grid: defeating the runge phenomenon and replacing radial basis functions. Appl Math Lett 26(10):995–997CrossRefGoogle Scholar
  5. Cheong HB, Park JR, Kang HG (2012) Fourier-series representation and projection of spherical harmonic functions. J Geod 86(11):975–990CrossRefGoogle Scholar
  6. Dormand JR, Prince PJ (1980) A family of embedded Runge–Kutta formulae. J Comput Appl Math 6(1):19–26CrossRefGoogle Scholar
  7. Embree M (2010) Numerical analysis I. Lecture notes. Rice University, pp 1–207Google Scholar
  8. Eshagh M (2009) Impact of vectorization on global synthesis and analysis in gradiometry. Acta Geod Geophys Hung 44(3):323–342CrossRefGoogle Scholar
  9. Eshagh M, Abdollahzadeh M (2010) Semi-vectorization: an efficient technique for synthesis and analysis of gravity gradiometry data. Earth Sci Inform 3(3):149–158CrossRefGoogle Scholar
  10. Eshagh M, Abdollahzadeh M (2012) Software for generating gravity gradients using a geopotential model based on an irregular semivectorization algorithm. Comput Geosci 39:152–160CrossRefGoogle Scholar
  11. Földváry L (2015) Sine series expansion of associated Legendre functions. Acta Geod Geophys 50(2):243–259CrossRefGoogle Scholar
  12. Fukushima T (2012) Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers: first-, second-, and third-order derivatives. J Geod 86(11):1019–1028CrossRefGoogle Scholar
  13. Gautschi W (1967) Computational aspects of three-term recurrence relations. SIAM Rev 9(1):24–82CrossRefGoogle Scholar
  14. Haken H, Wolf HC (2004) Molecular physics and elements of quantum chemistry: introduction to experiments and theory. Springer, BerlinCrossRefGoogle Scholar
  15. Hildebrand FB (1987) Introduction to numerical analysis. Courier Corporation, North ChelmsfordGoogle Scholar
  16. Hobson EW (1955) The theory of spherical and ellipsoidal harmonics. CUP Archive, CambridgeGoogle Scholar
  17. Hoffman JD, Frankel S (2001) Numerical methods for engineers and scientists. CRC Press, Boca RatonGoogle Scholar
  18. Hofmann-Wellenhof B, Moritz H (2006) Physical geodesy. Springer Science & Business Media, BerlinGoogle Scholar
  19. Holmes SA, Featherstone WE (2002) A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. J Geod 76(5):279–299CrossRefGoogle Scholar
  20. Hwang C, Lin MJ (1998) Fast integration of low orbiter’s trajectory perturbed by the earth’s non-sphericity. J Geod 72(10):578–585CrossRefGoogle Scholar
  21. Ilk KH (1983) Ein Beitrag zur Dynamik ausgedehnter Körper: Gravitationswechselwirkung. Deutsche Geodaetische Kommission Bayer. Akad. Wiss., 288Google Scholar
  22. Kaula WM (2000) Theory of satellite geodesy: applications of satellites to geodesy. Courier Dover Publications, New YorkGoogle Scholar
  23. Keller W, Sharifi M (2005) Satellite gradiometry using a satellite pair. J Geod 78(9):544–557CrossRefGoogle Scholar
  24. Kolb WM (1984) Curve fitting for programmable calculators. 3rd edn, Syntec inc, Bowie, MDGoogle Scholar
  25. Lundberg JB, Schutz BE (1988) Recursion formulas of legendre functions for use with nonsingular geopotential models. J Guid Control Dyn 11(1):31–38CrossRefGoogle Scholar
  26. Montenbruck O, Gill E (2000) Satellite orbits: models, methods, and applications, 1st edn. Springer, BerlinCrossRefGoogle Scholar
  27. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res Solid Earth 117:1–38CrossRefGoogle Scholar
  28. Phillips GM (2003) Interpolation and approximation by polynomials, vol 14. Springer, BerlinCrossRefGoogle Scholar
  29. Reigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30(2):129–134CrossRefGoogle Scholar
  30. Robin L (1957) Fonctions sphériques de Legendre et fonctions sphéroidales, t. 1. Gauthier-Villars, ParisGoogle Scholar
  31. Rothwell EJ, Cloud MJ (2001) Electromagnetics. CRC Press, Boca RatonCrossRefGoogle Scholar
  32. Seeber G (2003) Satellite geodesy: foundations, methods, and applications. Walter de Gruyter, BerlinCrossRefGoogle Scholar
  33. Shampine LF, Reichelt MW (1997) The Matlab ode suite. SIAM J Sci Comput 18(1):1–22CrossRefGoogle Scholar
  34. Sharifi M, Seif M (2014) A new family of multistep numerical integration methods based on hermite interpolation. Celest Mech Dyn Astron 118(1):29–48CrossRefGoogle Scholar
  35. Sharifi MA (2006) Satellite to satellite tracking in the space-wise approach. Ph.D. thesis, University of StuttgartGoogle Scholar
  36. Sneeuw N, Bun R (1996) Global spherical harmonic computation by two-dimensional fourier methods. J Geod 70(4):224–232CrossRefGoogle Scholar
  37. Szegö G (1975) Orthogonal polynomials, 4th edn. American Mathematical Society, ProvidenceGoogle Scholar
  38. Yang WY, Cao W, Chung TS, Morris J (2005) Applied numerical methods using MATLAB. Wiley, New YorkCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2018

Authors and Affiliations

  1. 1.Department of Surveying EngineeringArak University of TechnologyArakIran
  2. 2.School of Surveying and Geospatial Engineering, College of EngineeringUniversity of TehranTehranIran
  3. 3.Research Institute of Geoinformation Technology (RIGT), College of EngineeringUniversity of TehranTehranIran
  4. 4.Department of Engineering ScienceUniversity WestTrollhaättanSweden

Personalised recommendations