Skip to main content
Log in

Polynomial approximation for fast generation of associated Legendre functions

  • Original Study
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

Today high-speed computers have simplified many computational problems, but fast techniques and algorithms are still relevant. In this study, the Hermitian polynomial approximation is used for fast evaluation of the associated Legendre functions (ALFs). It has lots of applications in geodesy and geophysics. This method approximates the ALFs instead of computing them by recursive formulae and generate them several times faster. The approximated ALFs by the Newtonian polynomials are compared with Hermitian ones and their differences are discussed. Here, this approach is applied for computing a global geoid model point-wise from EGM08 to degree and order 2160 and in propagating the orbit of a low Earth orbiting satellite. Our numerical results show that the CPU-time decreases at least two times for orbit propagation, and five times for geoid computation comparing to the case where recursive formulae for generation of ALFs are used. The approximation error in the orbit computation is at a sub-millimeter level over two weeks and that the computed geoid 0.01 mm, with a maximum of 1 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Dover Publications, New York 55

    Google Scholar 

  • Atkinson KE (2008) An introduction to numerical analysis. Wiley, New York

    Google Scholar 

  • Bettadpur SV, Schutz BE, Lundberg JB (1992) Spherical harmonic synthesis and least squares computations in satellite gravity gradiometry. Bull Géod 66(3):261–271

    Article  Google Scholar 

  • Boyd JP, Alfaro LF (2013) Hermite function interpolation on a finite uniform grid: defeating the runge phenomenon and replacing radial basis functions. Appl Math Lett 26(10):995–997

    Article  Google Scholar 

  • Cheong HB, Park JR, Kang HG (2012) Fourier-series representation and projection of spherical harmonic functions. J Geod 86(11):975–990

    Article  Google Scholar 

  • Dormand JR, Prince PJ (1980) A family of embedded Runge–Kutta formulae. J Comput Appl Math 6(1):19–26

    Article  Google Scholar 

  • Embree M (2010) Numerical analysis I. Lecture notes. Rice University, pp 1–207

  • Eshagh M (2009) Impact of vectorization on global synthesis and analysis in gradiometry. Acta Geod Geophys Hung 44(3):323–342

    Article  Google Scholar 

  • Eshagh M, Abdollahzadeh M (2010) Semi-vectorization: an efficient technique for synthesis and analysis of gravity gradiometry data. Earth Sci Inform 3(3):149–158

    Article  Google Scholar 

  • Eshagh M, Abdollahzadeh M (2012) Software for generating gravity gradients using a geopotential model based on an irregular semivectorization algorithm. Comput Geosci 39:152–160

    Article  Google Scholar 

  • Földváry L (2015) Sine series expansion of associated Legendre functions. Acta Geod Geophys 50(2):243–259

    Article  Google Scholar 

  • Fukushima T (2012) Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers: first-, second-, and third-order derivatives. J Geod 86(11):1019–1028

    Article  Google Scholar 

  • Gautschi W (1967) Computational aspects of three-term recurrence relations. SIAM Rev 9(1):24–82

    Article  Google Scholar 

  • Haken H, Wolf HC (2004) Molecular physics and elements of quantum chemistry: introduction to experiments and theory. Springer, Berlin

    Book  Google Scholar 

  • Hildebrand FB (1987) Introduction to numerical analysis. Courier Corporation, North Chelmsford

    Google Scholar 

  • Hobson EW (1955) The theory of spherical and ellipsoidal harmonics. CUP Archive, Cambridge

    Google Scholar 

  • Hoffman JD, Frankel S (2001) Numerical methods for engineers and scientists. CRC Press, Boca Raton

    Google Scholar 

  • Hofmann-Wellenhof B, Moritz H (2006) Physical geodesy. Springer Science & Business Media, Berlin

    Google Scholar 

  • Holmes SA, Featherstone WE (2002) A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. J Geod 76(5):279–299

    Article  Google Scholar 

  • Hwang C, Lin MJ (1998) Fast integration of low orbiter’s trajectory perturbed by the earth’s non-sphericity. J Geod 72(10):578–585

    Article  Google Scholar 

  • Ilk KH (1983) Ein Beitrag zur Dynamik ausgedehnter Körper: Gravitationswechselwirkung. Deutsche Geodaetische Kommission Bayer. Akad. Wiss., 288

  • Kaula WM (2000) Theory of satellite geodesy: applications of satellites to geodesy. Courier Dover Publications, New York

    Google Scholar 

  • Keller W, Sharifi M (2005) Satellite gradiometry using a satellite pair. J Geod 78(9):544–557

    Article  Google Scholar 

  • Kolb WM (1984) Curve fitting for programmable calculators. 3rd edn, Syntec inc, Bowie, MD

    Google Scholar 

  • Lundberg JB, Schutz BE (1988) Recursion formulas of legendre functions for use with nonsingular geopotential models. J Guid Control Dyn 11(1):31–38

    Article  Google Scholar 

  • Montenbruck O, Gill E (2000) Satellite orbits: models, methods, and applications, 1st edn. Springer, Berlin

    Book  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res Solid Earth 117:1–38

    Article  Google Scholar 

  • Phillips GM (2003) Interpolation and approximation by polynomials, vol 14. Springer, Berlin

    Book  Google Scholar 

  • Reigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30(2):129–134

    Article  Google Scholar 

  • Robin L (1957) Fonctions sphériques de Legendre et fonctions sphéroidales, t. 1. Gauthier-Villars, Paris

    Google Scholar 

  • Rothwell EJ, Cloud MJ (2001) Electromagnetics. CRC Press, Boca Raton

    Book  Google Scholar 

  • Seeber G (2003) Satellite geodesy: foundations, methods, and applications. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Shampine LF, Reichelt MW (1997) The Matlab ode suite. SIAM J Sci Comput 18(1):1–22

    Article  Google Scholar 

  • Sharifi M, Seif M (2014) A new family of multistep numerical integration methods based on hermite interpolation. Celest Mech Dyn Astron 118(1):29–48

    Article  Google Scholar 

  • Sharifi MA (2006) Satellite to satellite tracking in the space-wise approach. Ph.D. thesis, University of Stuttgart

  • Sneeuw N, Bun R (1996) Global spherical harmonic computation by two-dimensional fourier methods. J Geod 70(4):224–232

    Article  Google Scholar 

  • Szegö G (1975) Orthogonal polynomials, 4th edn. American Mathematical Society, Providence

    Google Scholar 

  • Yang WY, Cao W, Chung TS, Morris J (2005) Applied numerical methods using MATLAB. Wiley, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Seif.

Appendices

Appendix A

The Earth’s gravity acceleration in the Earth-centered inertial frame is computed using (Keller and Sharifi 2005)

$$\begin{aligned} \mathbf r _g= & {} \left[ \begin{array}{ccc} \cos (\varphi )\cos (\lambda ) &{} {-\sin (\varphi )\cos (\lambda ) \over r} &{} {-\sin (\lambda ) \over r\cos (\varphi )} \\ \cos (\varphi )\sin (\lambda ) &{} {-\sin (\varphi )\sin (\lambda ) \over r} &{} {\cos (\lambda ) \over r\cos (\varphi )} \\ \sin (\varphi ) &{} {\cos (\varphi ) \over r} &{} 0 \\ \end{array} \right] \nonumber \\&\times {GM\over r}\sum _{n=0}^{\infty }\left( {R\over r}\right) ^n \sum _{m=0}^n \left[ \begin{array}{c} -{n+1\over r} \left( \overline{C}_{nm}\cos (m\lambda ) + \overline{S}_{nm}\sin (m\lambda )\right) \overline{P}_{nm}(\sin (\varphi )) \\ \left( \bar{C}_{nm}\cos (m\lambda ) + \bar{S}_{nm}\sin (m\lambda )\right) \bar{P}'_{nm}(\sin (\varphi )) \\ \left( -m\bar{C}_{nm}\sin (m\lambda ) + m\bar{S}_{nm}\cos (m\lambda )\right) \bar{P}_{nm}(\sin (\varphi )) \\ \end{array}\right] \end{aligned}$$
(19)

In this equation \(\bar{P}'_{nm}\) is the first order derivative of the associated Legendre function (\(\hbox {degree}=n\) and \(\hbox {order}=m\)) with respect to the latitude (\(\varphi \)). The first order derivative of the ALFs could be computed based on the ALFs themselves (Robin 1957), and \(\bar{C}_{nm}\) and \(\bar{S}_{nm}\) are the degree-n and order-m Stokes coefficients (e.g. Hofmann-Wellenhof and Moritz 2006).

$$\begin{aligned} \bar{P}'_{nm}={\partial \bar{P}_{nm} \over \partial \varphi }=K_{nm}\bar{P}_{n,m+1}-m\tan (\varphi )\bar{P}_{nm} \end{aligned}$$
(20)

where

$$\begin{aligned} K_{nm} = \sqrt{{(2-\delta _{m,0})(n-m)(n+m+1) \over 2}} \end{aligned}$$
(21)

Matlab code description

There are one main function needed for the ALFs computation and two related program files which have been used to create the required grid data. The main source functions and scripts are listed bellow.

  1. 1.

    \({\mathtt {APnmH.m}} \): This sub-routine is used for the fast computation of the ALFs using the Hermite polynomial approximation based on Eq. (13).

  2. 2.

    \( {\mathtt {PnmGrid.m}} \): This script is used for generating the needed grid-data.

  3. 3.

    \( {\mathtt {P.m}} \): This function is used to compute the ALFs and their first- and second-derivatives.

  4. 4.

    \( {\mathtt {example.m}} \): In this script, the fast computation of the ALFs has been described for more details.

In order to use this source codes, please follow the steps: (i) Run \( \mathtt {PnmGrid.m} \) to produce and save the grid file, the latitude interval of \(0.5^{\circ }\) is suggested for the fast orbit propagation. (ii) At the first of the computation, load the grid file. Once loaded, nothing more loading is needed. (iii) Run \( \mathtt {APnmH.m} \) for any desired latitude. As an example, run \( \mathtt {example.m} \) after producing grid file.

figure a
figure b
figure c
figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seif, M.R., Sharifi, M.A. & Eshagh, M. Polynomial approximation for fast generation of associated Legendre functions. Acta Geod Geophys 53, 275–293 (2018). https://doi.org/10.1007/s40328-018-0216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-018-0216-1

Keywords

Navigation